面孔空想性错视及其神经机制

2018-02-22 07:57:35杨志刚
心理科学进展 2018年11期
关键词:空想面孔波幅

王 昊 杨志刚



面孔空想性错视及其神经机制

王 昊 杨志刚

(河北大学教育学院, 保定 071000)

面孔空想性错视, 是指在不存在面孔的物体或抽象图案上看到面孔, 例如在月球表面看到面孔。它受到自下而上信息与自上而下加工的共同影响。近年来, 研究者通过行为实验、事件相关电位技术以及脑成像技术对不同的空想性错视影响因素进行研究。结果发现, 面孔空想性错视的产生取决于刺激是否包含类似面孔结构, 内部面孔模板是否能与当前刺激匹配, 以及有无面孔相关背景。同时也受到个体差异与情绪状态影响。脑成像研究发现, 在发生空想性错视时, 来自额叶区与枕叶视觉区的信息会在FFA进行整合。未来研究可以致力于探索面孔空想性错视中个体差异的行为与神经机制, 以及不同类型的自上而下调节之间的相互影响及其神经机制。

面孔空想性错视; 自上而下加工; 自下而上加工; 面孔加工

1 引言

面孔是最常见的社会信息, 快速而准确地识别面孔对人类的社会生活至关重要。检测是否存在面孔是一个快速高效的过程。以往研究发现, 面孔可以在100 ms之内被检测到(Crouzet, Kirchner, & Thorpe, 2010), 即使面孔呈现在阈值以下也能被检测到(Lee, Kim, Shim, & Lee, 2017)。通常情况下人们可以轻易发现隐藏的面孔, 但由此带来的代价是, 与面孔有微小的结构相似甚至没有面孔信息的物体也常会被误判为面孔。比如在月球表面的卫星照片上看到面孔, 在烤面包片或者云上看到面孔。从演化的角度来说, 在周围环境中快速发现其他人的面孔所带来的收益, 远远大于将物体误判为面孔带来的代价(Verpooten & Nelissen, 2010)。在不存在面孔的物体或随机噪音图案上“看到”面孔, 这种错觉被称为面孔空想性错视(face pareidolia), 这种现象不仅发生在成年人中, 也发生在10个月大的婴儿中, 甚至发生在其它灵长类动物中(Kato & Mugitani, 2015; Taubert, Wardle, Flessert, Leopold, & Ungerleider, 2017), 这反映了视觉系统对面孔结构的高敏感性。之前研究发现将刺激判断为面孔受到刺激本身特征的影响(Jemel et al., 2003; Tanskanen, Näsänen, Ojanpää, & Hari, 2007), 这称为自下而上加工; 也受到对面孔的期待以及是否存在面孔相关背景的影响(Cox, Meyers, & Sinha, 2004; Gosselin & Schyns, 2003; Hansen, Thompson, Hess, & Ellemberg, 2010; Smith, Gosselin, & Schyns, 2012; Liu et al., 2014), 称为自上而下调节。而近期的一些研究发现, 面孔空想性错视也受到如性别等个体因素的影响。通过对面孔空想性错视的研究可以了解大脑如何识别面孔, 以及如何整合自下而上与自上而下信息并作出判断的心理与神经机制。

2 面孔空想性错视现象的影响因素

2.1 自下而上因素

以前的研究者认为, 是否将一个视觉刺激判断为面孔, 首先取决于刺激本身的物理特征。例如Costen, Parker和Craw (1996)的实验中使用不同清晰度的面孔要求被试进行再认, 结果发现被试的识别正确率随着图像的清晰度提高而提高。在最近的一项行为实验中(Pavlova, Scheffler, & Sokolov, 2015), 研究者用食物与盘子组成类似面孔的图形, 从完全不像面孔到非常像面孔, 分成10个级别。依次向被试展示并要求被试报告看到了什么, 随着图像越来越接近面孔, 被试也更多地报告发现了面孔。

除行为实验外, 也有大量实验使用ERP技术, 通过分析面孔特异性成分N170, 检测被试是否将刺激判断为面孔。研究发现, 当面孔刺激出现后约170 ms, 会在枕颞区引发一个负成分, 称为N170, 它体现了面孔结构信息处理的早期阶段(Bentin, Allison, Puce, Perez, & Mccarthy, 1996; Rossion et al., 2000)。不仅仅是呈现真实面孔可以引发该成分(Batty & Taylor, 2003; Pourtois, Schwartz, Seghier, Lazeyras, & Vuilleumier, 2005; W. Luo, Feng, He, Wang, & Y. J. Luo, 2010), 即使是卡通面孔或情绪符号(Churches, Nicholls, Thiessen, Kohler, & Keage, 2014; Krombholz, Schaefer, & Boucsein, 2007; Schindler, Zell, Botsch, & Kissler, 2017),甚至是有类似面孔结构的日常物体(Proverbio & Galli, 2016), 只要被试将刺激判断为面孔都能观测到该成分, 因此可以认为N170是将刺激判断为面孔的神经标志。以往研究发现, 当面孔刺激加入噪声或相位乱置(gradual phase-scrambling)后, 引发的N170波幅明显降低, 这说明自下而上信息的减弱影响了面孔加工过程(Jemel et al., 2003; Tanskanen et al., 2007; Németh, Kovács, Vakli, Kovács, & Zimmer, 2014)。而之后的研究发现, N170的波幅能反映出刺激“像面孔”的程度。例如Gajewski和Stoerig (2011)的研究中由人类面孔引发的N170波幅明显大于动物面孔, 而猴子面孔引发的波幅也大于狗的面孔。有研究使用京剧脸谱作为材料, 也发现人类脸谱引发的N170波幅大于动物脸谱(Liu et al., 2016; S. Luo, W. Luo, He, Chen, & Y. Luo, 2013)。为了探究能引发面孔判断的刺激特征, 在Paras和Webster(2013)的研究中, 使用随机噪声图片要求被试检测其中是否存在面孔, 结果发现在沿中轴线左右对称的随机噪声图片中检测出的面孔远远多于不对称图片, 被试检测出的面孔都集中在中轴线上, 并且只能检测出正立面孔。除此以外, 刺激中是否存在“眼睛”至关重要。当刺激中存在与周围亮度或颜色差异明显并左右对称的斑点时, 会被视为眼睛, 随后自动寻找类似面孔特征的斑点, 并从整体上将周围随机噪音“捕获”为面孔。通常眼睛意味着另一个个体, 而这种对眼睛或类似眼睛结构的敏感反映了对隐藏的其它个体的快速检测, 因此在随机图像中检测面孔与检测物体可能具有不同的意义。

2.2 自上而下因素

2.2.1 内部面孔模板

近些年来, 对面孔自上而下加工过程的研究发现, 是否做出面孔判断, 取决于刺激可以与记忆中“什么是面孔”模板的匹配。在过去大量面孔相关研究中, 之所以可以快速识别面孔, 是由于被试对什么是面孔早已有大量经验。有研究发现儿童观看面孔时也可以产生与成人类似的N170成分(Kuenfner, de Heering, Jacques, Palmero-Soler & Rossion, 2009), 而另一项研究发现, 先天性失明的儿童在2岁到14岁间接受手术恢复视力后, 识别面孔的能力受到损害, 并且没有观测到面孔特异性N170波幅(Röder, Ley, Shenoy, Kekunnaya, & Bottari, 2013)。该研究认为, 特定对象的快速识别(例如面孔), 不是由于拥有高特异性的神经环路导致, 而是由于早期视觉经验的积累。Churches等人(2014)的研究进一步证明了面孔判断不仅取决于刺激本身, 更取决于刺激是否与记忆中的面孔匹配。该研究发现经常在网络交流中被作为表情的符号:-)可以诱发N170波形, 但与之相似却没有被当做表情的符号(-:却没有诱发相似波形。不仅是长期经验, 临时获得的经验也会引发面孔反应, 例如在Bentin, Sagiv, Mecklinger, Friederici和von Cramon (2002)的研究中, 单独向被试呈现两个左右对称的点并没有引发面孔判断和面孔相关ERP成分, 若先呈现一个抽象面孔, 而这两个点正好作为面孔的眼睛出现, 随后单独呈现这两点就会引发N170面孔特异性成分, 这说明相关背景提供了一个可与当前刺激进行匹配的面孔模板, 因此被试可以将两个孤立的点解释为眼睛, 并诱发面孔反应。N170波幅的增加反映了对工作记忆中面孔信息的提取。

为了得到做出判断时面孔的内部表征, 一些研究使用了图片分类技术(CI, classification image), 这类研究要求被试从随机噪音图片中检测是否存在面孔, 并且根据被试反应将图片分类, 并将有面孔与无面孔两类图片分别叠加, 最后用有面孔图片减去无面孔图片并将得到的图片进行滤波, 得到的差异图上会出现类似面孔的结构(Gosselin & Schyns, 2003; Hansen et al., 2010; Smith et al., 2012; Liu et al., 2014)。与之前研究中N170波幅受刺激特征调节相对应, 在Hansen等人(2010)的研究中要求被试从纯噪音图片中检测面孔, 并报告作出面孔判断的确信程度, 从一定存在面孔到完全看不到面孔共分为4个水平, 结果发现被试确信程度越高时N170波幅越大。Smith等人(2012)的研究使用相同的范式, 当被试完成一半数量图片的判断后, 使用CI技术得到每个被试的内部面孔表征图片。在被试判断另一半噪音图片时, 发现噪音图片的频谱结构越接近被试的内部面孔表征图片, 该图片诱发的神经活动就越强。值得注意的是, 神经活动是否增强仅仅取决于当前刺激的频谱特征与被试本人内部面孔表征图片的频谱特征是否相似, 而刺激与其他被试的内部面孔表征图片相似程度并不造成影响。这进一步说明面孔判断取决于当前刺激与被试记忆中面孔模板的匹配程度。

2.2.2 面孔背景与期待

对面孔的期待以及面孔相关信息的启动也会诱发被试做出面孔判断。Cox等人(2004)的研究使用fMRI技术发现面孔相关背景会导致被试将当前模糊的刺激视为面孔。当被试看到一个椭圆形物体呈现在肩膀上时, 位于枕颞皮层的梭状回面孔识别区(FFA)有明显激活, 而单独呈现相同物体则不会导致FFA激活。这可能是由于相关背景信息使被试将当前的椭圆形物体视为面孔导致的。之后的研究检验了面孔启动的作用, Ge, Wang, Mccleery和Kang (2006)的研究使用面孔文字双关图作为材料, 以是否发生面孔倒置效应来判断是否将刺激视为面孔加工。结果发现, 在面孔启动条件下, 被试更倾向于将双关图感知为面孔, 并且产生了面孔倒置效应, 在字母启动条件下更倾向于将双关图感知为字母,没有产生倒置效应。该研究认为, 面孔启动激活了特定的面孔加工系统, 因此对之后出现的刺激中包含的面孔信息优先加工。在最近一项研究中(Lu, Zhang, & Liang, 2017), 要求被试在观看随机噪音图片之前想象面孔或房子, 然后分别判断随机噪声图片中面孔的性别或房子的楼层。结果发现, 在想象面孔的条件下判断性别时, 引发了比房子条件下更大的顶叶正电位(VPP)。VPP是在面孔呈现160~200 ms后在顶叶观测到的正电位, 该成分在过去的研究中被认为与N170类似, 也有研究认为两者反映不同的神经机制(Saavedra, Olivares, & Iglesias, 2012)。在该研究中面孔想象仅影响VPP却未影响N170, 因此VPP反映了面孔的心理意向对当前知觉的增强。而以往一些研究发现由面孔引发的VPP大于非面孔物体(Rossion & Jacques, 2008; Itier & Taylor, 2004), 并且类似面孔的物体也会引发VPP, 但小于真实面孔(Proverbio & Galli, 2016)。而在该研究中, 并没有发现N170的差异, 因此认为VPP反映了自上而下的调节作用。

2.2.3 个体差异

虽然已经有大量关于面孔空想性错视影响因素的研究, 但是大多都只关注早期知觉阶段。最近研究发现是否将刺激判断为面孔也受到情绪状态与性别差异的影响。之前有研究发现女性在抽象面孔检测任务中表现优于男性, 例如, Mcbain, Norton和Chen (2009)的研究中要求被试判断抽象面孔或树出现的位置, 结果发现女性可以更快更准确地对面孔做出反应, 但随着刺激呈现时间的增加, 性别差异逐渐减小并消失。该研究认为这反映了女性对刺激强度较弱的面孔信息比男性更加敏感。而另一项研究发现, 女性也更倾向于将“像面孔”的物体判断为面孔。Pavlova等人(2015)的研究要求被试观察一组从完全不像面孔到非常像面孔逐渐变化的图片(均由食物和盘子组成的类似Arcimboldo风格的面孔), 要求被试报告看到了什么。结果发现女性更早地报告看到面孔, 并且在整体上报告更多的面孔。在之后的研究中(Pavlova, Mayer, Hosl, & Sokolov, 2016), 要求被试给刺激的像面孔程度与刺激的可爱程度评分, 结果发现仅对女性被试而言, 像面孔程度与可爱程度呈正相关。研究者怀疑女性更加倾向于发现面孔, 因此, 会将与面孔有微小相似的物体判断为面孔。随后有实验对该现象以及现象背后的神经机制展开了进一步探索(Proverbio & Galli, 2016), 该实验中要求被试给类似面孔的日常物体像面孔的程度打分(例如, 像面孔的包), 发现女性打分明显高于男性, 之后向另一批被试(与之前参与评分的被试同质)分别呈现真实面孔, 类似面孔的物体, 以及日常物体。结果发现, 女性被试由类似面孔物体引发的VPP波幅与真实面孔引起的波幅没有差异, 但都明显高于日常物体引发的波幅; 男性被试由真实面孔引起的VPP波幅明显高于类似面孔物体, 并且类似面孔物体引发的VPP波幅高于日常物体。研究者认为这反映了女性更高的面孔反应倾向(Pavlova et al., 2015), 并且女性相比于男性更大的VPP可能反映了女性受到更多自上而下调节, 例如更倾向将刺激想象为面孔(Lu et al., 2017), 这为之前的研究提供了支持。Proverbio和Galli (2016)用SwLORETA源重建发现, 在呈现类似面孔物体时, 女性与男性相比更多的激活处理社会信息与情绪相关脑区, 该研究认为这反映了女性将类似面孔物体想象为真实面孔, 并且自动进行表情判断。之前也有研究发现女性对社会性刺激更加敏感(Proverbio, Zani, & Adorni, 2008; Alaerts, Nackaerts, Meyns, Swinnen, & Wenderoth, 2011), 并且在表情判断任务中优于男性(Hall & Matsumoto, 2004; Mcclure, 2000; Thompson & Voyer, 2014), 支持了该研究的结论。但上述研究中所呈现的刺激都或多或少包含着与面孔类似的结构, 类似面孔物体明显比一般物体提供了更多自下而上面孔信息。因此, 女性更容易将刺激判断为面孔是由于女性可以检测到更微弱的类似面孔结构信息, 还是由于女性更倾向于将刺激想象为面孔, 换句话说, 该现象的性别差异存在于对信息的自下而上提取中, 还是存在于自上而下的调节中, 这依然存在争议。

此外, 一些人格因素也会影响空想性错视的出现频率。例如Whitson和Galinsky (2008)的研究发现控制感的缺失会导致被试更多地从随机噪音中检测出面孔和其它有意义的物体。Partos, Cropper和Rawlings (2016)的研究发现人格的精神分裂维度也与空想性错视有关。与精神分裂维度得分较低的被试相比, 得分高的被试会在随机噪音图片中检测到更多的面孔, 并在开放式反应中检测出更多有意义的图案。这种差异可能是由不同的自上而下调节导致的。

面孔作为一种包含丰富社会信息的刺激, 快速检测面孔也意味着社会交流的能力, 而自闭症患者通常有社会信息加工缺陷。有研究将自闭症谱系障碍(ASD)患者与正常的同龄被试对类似面孔物体的加工过程进行了对比(Akechi, Kikuchi, Tojo, Osanai, & Hasegawa, 2014), 结果发现, 在对刺激类似面孔程度评分上两者没有差异, 并且均发现类似面孔物体引发的N170波幅大于普通物体, 但在不同的任务要求下(判断类似面孔程度, 或判断刺激形状是圆形还是方形), 两种被试由类似面孔物体引起的N170波幅有明显差异。对于正常被试来说, 面孔判断任务中类似面孔物体引发的N170波幅明显大于形状判断任务, 但对于自闭症被试没有发现任务要求的调节作用。由此可认为, 自闭症被试与正常被试使用相同的神经回路处理类似面孔信息, 也有相似的面孔判断标准, 但正常被试更多地受到自上而下信息调节, 对面孔的预期会促进之后的加工过程。此外有研究发现, 面对由食物和盘子组成的类似面孔图案时, 自闭症患者与威廉综合征患者相比正常被试更少的报告发现面孔(Pavlova, Heiz, Sokolov, & Barisnikov, 2016; Pavlova et al., 2017)。由此可以怀疑, 社会信息加工缺陷导致被试缺乏发现面孔的动机, 因此当任务要求与检测面孔无关时不会自发的检测出面孔, 而正常被试无论任务是否要求都在自发的检测面孔或类面孔结构。值得注意的是, 面孔失认症患者也能产生面孔空想性错视, 尽管他们对真实面孔存在加工缺陷。研究发现, 与正常被试相比失认症患者缺乏自下而上的加工, 但当患者报告从噪音中发现了面孔时, 右侧FFA明显激活, 这说明自上而下调节依然存在(Righart, Andersson, Schwartz, Mayer, & Vuilleumier, 2010)。

2.2.4 情绪影响

在类似面孔物体被判断为面孔的过程中, 物体的“表情”也会影响判断, 有研究发现被试对类似面孔物体像面孔程度的评分与对该物体表情强度的评分成正相关(Ichikawa, Kanazawa, & Yamaguchi, 2011)。并且有研究发现, 被试情绪状态会导致被试做出更多面孔判断(Epley, Akalis, Waytz, & Cacioppo, 2008), 该研究中受恐惧启动的被试对抽象线条产生了更多面孔判断, 研究者认为恐惧情绪调节了被试的内部反应偏好, 这可能由于, 在恐惧情境中漏报的代价远高于虚报的代价。考虑到面孔与一般物体的差异, 恐惧情绪的影响是否只作用于面孔错觉还有待验证。另一项研究使用信号检测范式发现, 焦虑情绪状态会增强被试对面孔的检测敏感性, 但并没有改变反应倾向(Cataldo & Cohen, 2015)。并发现, 这种影响仅仅作用于面孔, 没有作用于非社会性刺激(房子)。因此可以怀疑恐惧情绪状态也仅仅作用于具有威胁或社会性的刺激, 例如面孔, 并且和焦虑的影响可能有所不同。但情绪状态是否提供了一种试图发现面孔的动机依然存在争议, 对刺激中的情绪信息的提取如何影响面孔判断过程以及该影响的神经机制也有待探索。

3 面孔空想性错视的神经机制

大量证据表明, 大脑中存在专门负责加工面孔信息的神经环路。一些区域在加工面孔信息时有更大的激活, 除了之前提到的位于颞叶皮层的“梭状回面孔区”(fusiform face area, FFA)以外, 还有位于枕叶的“枕叶面孔区”(occipital face area, OFA), 以及额下回(inferior frontal gyrus, IFG) (Kanwisher & Yovel, 2006)。以往研究发现, FFA不仅被真实面孔激活, 对面孔的期待和想象也会激活该区域(Esterman & Yantis, 2010; Cox et al., 2004), 即使在完全没有视觉信息输入时, FFA也可以被纯粹的自上而下信息激活(Mechelli, Price, Friston, & Ishai, 2004; O'Craven, & Kanwisher, 2000; Nestor, Vettel, & Tarr, 2013)。因此可以认为FFA的激活源于自上而下信息与自下而上信息的整合。Mechelli等人利用动态因果模型(dynamic causal modeling, DCM)对FFA如何整合自上而下与自下而上信息进行了研究。结果发现当被试想象面孔时, 从前额叶皮层(prefrontal cortex, PFC)到FFA的连接增强了, 从而增强了FFA的激活程度; 而被试观看真实面孔时, 从枕叶面孔区到FFA的连接增强了, 这反映了视觉信息的传递过程。Bar等人(2006)的研究也发现了自上而下信息对视觉感知的影响, 当被试对模糊刺激做出判断时, 眶额皮层(orbitofrontal cortex, OFC)先于枕叶区激活。并且在之后的研究中发现, 对模糊信息(例如, 纯噪音图像)做出面孔判断时也引发了额叶区的激活(Liu et al., 2014; Smith et al., 2012; Proverbio & Galli, 2016), 这反映了自上而下信息对感觉输入的调节。在Zhang等人(2008)实验中, 使用fMRI成像技术发现, 当被试将纯噪音图片判断为有面孔时, FFA以及IFG的激活程度远大于将图片判断为无面孔时, 并且FFA的激活程度与IFG激活程度正相关, 因此认为这反映了一条自上而下的神经通路, 但该实验中OFA未表现出差异, 因此可以推测OFA敏感于视觉输入而非高级信息。然而Liu等人(2010)发现被试在经历字母错觉时也引起了FFA的激活, 其它激活区域(例如眶额皮层)也与Zhang等人(2008)的实验中面孔错觉激活区域高度一致。为区分面孔与字母错觉的差异, 在Liu (2014)等人的研究中, 要求被试分别从噪音中检测面孔与字母。与检测字母相比, 检测出面孔时右侧梭状回面孔区(rFFA), 以及前额叶皮层(PFC), 双侧额下回(IFG), 额中回(MFG), 右侧脑岛区有更大激活, 但OFA没有差别。除此以外, Proverbio和Galli (2016)的研究发现呈现类似面孔物体时, 与男性相比, 女性右颞上沟(rSTS), 后扣带回皮层(PCC), 眶额皮层(OFC)激活程度更大。以往研究中发现这些区域与情绪处理有关, 尤其是OFC与STS, 深度参与面孔情绪加工(Xiu, Geiger, & Klaver, 2015; Lahnakoski et al., 2012; Candidi, Stienen, Aglioti, & de Gelder, 2015), 并且调节了杏仁核与海马之间的连接(A. P. Smith, Stephan, Rugg, & Dolan, 2006), 也受面孔吸引力影响(Pegors, Kable, Chatterjee, & Epstein, 2015)。Proverbio和Galli (2016)认为, FFA的激活中有一部分来自杏仁核, 这反映了对面孔所包含的社会信息与动机意义的编码, 增强了对刺激的注意与知觉分析。由上述研究可以发现一个复杂的神经网络:FFA既接收来自OFA提取的刺激中的面孔信息, 也接收来自PFC等高级区域的调节信息, 而个体本身的情绪状态与刺激中的情绪信息又会通过杏仁核等情绪加工区域作用于FFA, 以增强对刺激的注意与知觉分析, 调节判断标准, 并且这两种情绪的影响可能存在神经机制上的差异, 刺激中情绪信息是否影响面孔加工过程, 取决于情绪信息是否得到足够提取与加工, 这更像是一个自下而上的过程。最后, FFA将得到的自下而上信息与自上而下信息进行整合, 然后作出面孔判断。

4 评述和展望

综上所述, 面孔空想性错视是一种常见却又复杂的现象。是否将刺激判断为面孔不仅受到刺激的清晰度、是否对称、是否存在类似眼睛的结构, 以及与真实面孔相似程度的影响, 也取决于被试记忆中是否存在可以与当前刺激匹配的“面孔模板”, 这又会受到长期与临时经验的调节。当刺激中不存在, 或仅存在微小的面孔信息时, 对面孔的期待与想象会以自上而下的方式影响视觉信息的提取, 使个体从有限的视觉信息中寻找可以被整合为面孔的特征; 随着刺激中包含的面孔信息不断累积, 当达到某个阈限时个体做出面孔判断, 而该阈值受到自上而下信息调节。通过对该现象的研究可以更深入地理解面孔加工以及自上而下信息与自下而上信息的整合过程。另一方面, 通过对个体差异的研究, 对比正常个体与社会性信息加工缺陷个体的行为与神经机制上的差异, 可以为临床病理研究中的一些幻觉机制的研究提供启示。此外, 对面孔空想性错视的研究成果也可以被广泛应用于其他领域, 例如有研究发现将物体视为面孔会增强对该物体的加工, 并产生注视线索效应(Takahashi & Watanabe, 2013, 2015), 这具有重要的实际意义。

与一般物体相比, 面孔中包含大量社会性信息, 这可能导致了面孔空想性错视与其他物体空想性错视的差异, 情绪状态对二者的影响也会有所不同。但在以往研究中, 比较社会性信息加工优势, 以及情绪对面孔与其他物体空想性错视时, 并未使用专家物体, 因此面孔空想性错视是由于对面孔丰富的加工经验, 还是由于面孔的社会性, 依然有待验证。相比男性, 女性更容易产生面孔错觉, 并认为类似面孔的刺激更加具有吸引力。由于以往研究中发现不同性别只存在VPP的差异, 但VPP反映自上而下与自下而上信息的整合, 因此不能判断性别差异究竟存在于自上而下还是自下而上过程中。可能由于女性更倾向于将刺激想象为面孔, 也可能由于女性对刺激中包含的情绪信息(例如, 类面孔物体的“表情”)更加敏感, 或者由于女性倾向于将刺激视为同类个体并进行自动的情绪判断。而对情绪信息的加工引起的相关脑区激活又反过来促进对当前刺激的感知, 并调节反应标准。以后的研究可以对上述几种猜想进行检验。

另一方面, 虽然已有研究对空想性错视中自上而下调节的神经机制进行探索, 但该问题依然留有争议。虽然可以认为VPP反映了自上而下与自下而上信息的整合, 但由自上而下调节引起的波幅增益是否有一部分来源于情绪信息加工, 还缺乏足够的证据支持。并且N170也不仅反映自下而上加工, 也受任务类型调节, 由此可以推测N170中也包含一部分自上而下加工。或者, 在刺激中存在面孔信息的情况下, 由于面孔判断任务会导致被试更加注意面孔信息, 因此视觉皮层获取了更多面孔信息并传递给FFA, 而N170增强则反映了这种信号传递量的增加, 这种推测还有待验证。今后的研究可以致力于探究不同类型的自上而下调节在面孔空想性错视中的作用与相应的神经机制。

Akechi, H., Kikuchi, Y., Tojo, Y., Osanai, H., & Hasegawa, T. (2014). Neural and behavioural responses to face-likeness of objects in adolescents with autism spectrum disorder.,(4), 3874.

Alaerts, K., Nackaerts, E., Meyns, P., Swinnen, S. P., & Wenderoth, N. (2011). Action and emotion recognition from point light displays: an investigation of gender differences.,(6), e20989.

Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., … Halgren, E. (2006). Top-down facilitation of visual recognition.,(2), 449−454.

Batty, M., & Taylor, M. J. (2003). Early processing of the six basic facial emotional expressions.,(3), 613−620.

Bentin, S., Allison, T., Puce, A., Perez, E., & Mccarthy, G. (1996). Electrophysiological studies of face perception in humans.,(6), 551−565.

Bentin, S., Sagiv, N., Mecklinger, A., Friederici, A., & von Cramon, Y. D. (2002). Priming visual face-processing mechanisms: electrophysiological evidence.,(2), 190−193.

Candidi, M., Stienen, B. M. C., Aglioti, S. M., & de Gelder. B. (2015). Virtual lesion of right posterior superior temporal sulcus modulates conscious visual perception of fearful expressions in faces and bodies.,, 184−194.

Cataldo, A. M., & Cohen, A. L. (2015). The effect of emotional state on visual detection: A signal detection analysis.,(6), 846−853.

Churches, O., Nicholls, M., Thiessen, M., Kohler, M., & Keage, H. (2014). Emoticons in mind: an event-related potential study.,(2), 196−202.

Costen, N. P., Parker, D. M., & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification. Percept Psychophys,(4), 602-612.

Cox, D., Meyers, E., & Sinha, P. (2004). Contextually evoked object-specific responses in human visual cortex.,(5667), 115−117.

Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: face detection in just 100 ms.,(4), 1−17.

Epley, N., Akalis, S., Waytz, A., & Cacioppo, J. T. (2008). Creating social connection through inferential reproduction loneliness and perceived agency in gadgets, gods, and greyhounds.,(2), 114−120.

Esterman, M., & Yantis, S. (2010). Perceptual expectation evokes category-selective cortical activity.,(5), 1245−1253.

Hall, J. A., & Matsumoto, D. (2004). Gender differences in judgments of multiple emotions from facial expressions.,(2), 201−206.

Hansen, B. C., Thompson, B., Hess, R. F., & Ellemberg, D. (2010). Extracting the internal representation of faces from human brain activity: an analogue to reverse correlation.,(1), 373−390.

Ichikawa, H., Kanazawa, S., & Yamaguchi, M. K. (2011). Finding a face in a face-like object.,(4), 500−502.

Itier, R. J., & Taylor, M. J. (2004). N170 or n1? spatiotemporal differences between object and face processing using erps.,(2), 132−142.

Gajewski, P., D. & Stoerig, P. (2011). N170—an index of categorical face perception? an erp study of human, nonhuman primate, and dog faces.,(4), 174−179.

Ge, L., Wang, Z., Mccleery, J. P., & Kang, L. (2006). Activation of face expertise and the inversion effect.,(1), 12−16.

Gosselin, F., & Schyns, P. G. (2003). Superstitious perceptions reveal properties of internal representations.,(5), 505−509.

Jemel, B., Schuller, A. M., Cheref-Khan, Y., Goffaux, V. Crommelinck, M., & Bruyer, R. (2003). Stepwise emergence of the face-sensitive n170 event-related potential component.,(16), 2035−2039.

Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces.,(1476), 2109−2028.

Kato, M., & Mugitani, R. (2015). Pareidolia in infants.,(2), e0118539.

Krombholz, A., Schaefer, F., & Boucsein, W. (2007). Modification of n170 by different emotional expression of schematic faces.,(3), 156−162.

Kuenfner, D., de Heering, A., Jacques, C., Palmero-Soler, E., & Rossion, B. (2009). Early visually evoked electrophysiological responses over the human brain (p1, n170) show stable patterns of face-sensitivity from 4 years to adulthood.(7), 67.

Lahnakoski, J. M., Glerean, E., Salmi, J., Jääskeläinen, I. P., Sams, M., & Hari. (2012). Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception.,(1), 233.

Lee, S. A., Kim, C.-Y., Shim, M., & Lee, S.-H. (2017). Gender differences in neural responses to perceptually invisible fearful face—an ERP study.,.

Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing jesus in toast: neural and behavioral correlates of face pareidolia.,, 60−77.

Liu, J., Li, J., Zhang, H., Rieth, C. A., Huber, D. E., Li, W., Lee, K., & Tian, J. (2010). Neural correlates of top-down letter processing.,(2), 636−641.

Liu, T., Mu, S., He, H., Zhang, L., Fan, C., Ren, J., … Luo, W (2016). The n170 component is sensitive to face-like stimuli: a study of chinese peking opera makeup.,(6), 535−541.

Lu, L., Zhang, C., & Liang, L. (2017). Mental imagery of face enhances face-sensitive event-related potentials to ambiguous visual stimuli., 16−24.

Luo, S. W., Luo, W. B., He, W. Q., Chen, X., & Luo, Y. Y. (2013). P1 and n170 components distinguish human-like and animal-like makeup stimuli.,(9), 482−486.

Luo, W. B., Feng, W. F., He, W. Q., Wang, N.-Y., & Luo, Y.-J. (2010). Three stages of facial expression processing: erp study with rapid serial visual presentation.,(2), 1857−1867.

Mcbain, R., Norton, D., & Chen, Y. (2009). Females excel at basic face perception.,(2), 168−173.

Mcclure, E. B. (2000). A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents.,(3), 424−453.

Mechelli, A., Price, C. J., Friston, K. J., & Ishai, A. (2004). Where bottom-up meets top-down: Neuronal interactions during perception and imagery.,(11), 1256−1265.

Németh, K., Kovács, P., Vakli, P., Kovács, G., & Zimmer, M. (2014). Phase noise reveals early category-specific modulation of the event-related potentials.,, 367.

Nestor, A., Vettel, J. M., & Tarr, M. J. (2013). Internal representations for face detection: An application of noise-based image classification to bold responses.,(11), 3101−3115.

O'Craven, K. M., & Kanwisher, N. (2000). Mental imagery of faces and places activates corresponding stimulus- specific brain regions.(6), 1013−1023.

Paras, C. L., & Webster, M. A. (2013). Stimulus requirements for face perception: An analysis based on “totem poles”.,, 18.

Partos, T. R., Cropper, S. J., & Rawlings, D. (2016). You don’t see what i see: individual differences in the perception of meaning from visual stimuli.,(3), e0150615.

Pavlova, M. A., Annika, M., Franziska, H., & Sokolov, A. N. (2016). Faces on her and his mind: female and likable.,(6), e0157636.

Pavlova, M. A., Heiz, J., Sokolov, A. N., & Barisnikov, K. (2016). Social cognition in williams syndrome: Face tuning.,, 1131.

Pavlova, M. A., Guerreschi, M., Tagliavento, L., Gitti, F., Sokolov, A. N., Fallgatter, A. J., & Fazzi, E. (2017). Social cognition in autism: face tuning.,(1), 2734.

Pavlova, M. A., Scheffler, K., & Sokolov, A. N. (2015). Face-n-food: gender differences in tuning to faces.(7), e0130363.

Pegors, T. K., Kable, J. W., Chatterjee, A., & Epstein, R. A. (2015). Common and unique representations in pfc for face and place attractiveness.,(5), 959−973.

Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., & Vuilleumier, P. (2005). Portraits or people? distinct representations of face identity in the human visual cortex.(7), 1043−1057.

Proverbio, A. M., & Galli, J. (2016). Women are better at seeing faces where there are none: an erp study of face pareidolia.,(9), 1501−1512.

Proverbio, A. M., Zani, A., & Adorni, R. (2008). Neural markers of a greater female responsiveness to social stimuli.(56), 1−10.

Righart, R., Andersson, F., Schwartz, S., Mayer, E., & Vuilleumier, P. (2010). Top-down activation of fusiform cortex without seeing faces in prosopagnosia.(8), 1878−1890.

Röder, B., Ley, P., Shenoy, B. H., Kekunnaya, R., & Bottari, D. (2013). Sensitive periods for the functional specialization of the neural system for human face processing.,(42), 16760−16765.

Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., & Crommelinck, M. (2000). The N170 occipito- temporal component is delayed and enhanced to inverted faces but not to inverted objects: An electrophysiological account of face-specific processes in the human brain.(1), 69−74.

Rossion, B., & Jacques, C. (2008). Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? ten lessons on the n170.,, 1959−1979.

Saavedra, C., Olivares, E. I., & Iglesias, J. (2012). Cognitive decline effects at an early stage: evidence from n170 and vpp.,, 149−153.

Schindler, S., Zell, E., Botsch, M., & Kissler, J. (2017). Differential effects of face-realism and emotion on event-related brain potentials and their implications for the uncanny valley theory.,(45003).

Smith, A. P. R., Stephan, K. E., Rugg, M. D., & Dolan, R. J. (2006). Task and content modulate amygdala-hippocampal connectivity in emotional retrieval.,(4), 631−638.

Smith, M. L., Gosselin, F., & Schyns, P. (2012). Measuring internal representations from behavioral and brain data.,(3), 191−196.

Takahashi, K., & Watanabe, K. (2013). Gaze cueing by pareidolia faces.,(8), 490−492.

Takahashi, K., & Watanabe, K. (2015). Seeing objects as faces enhances object detection.,, 1−14.

Tanskanen, T., Näsänen, R., Ojanpää, H., & Hari, R. (2007). Face recognition and cortical responses: effect of stimulus duration.,(4), 1636−1644.

Taubert, J., Wardle, S. G., Flessert, M., Leopold, D. A., & Ungerleider, L. G. (2017). Face pareidolia in the rhesus monkey.,(16), 2505−2509.

Thompson, A. E., & Voyer, D. (2014). Sex differences in the ability to recognise non-verbal displays of emotion: A meta-analysis.,(7), 1164−1195.

Verpooten, J., & Nelissen, M. (2010). Sensory exploitation and cultural transmission: the late emergence of iconic representations in human evolution.,(2−3), 211−221.

Whitson, J. A., & Galinsky, A. D. (2008). Lacking control increases illusory pattern perception.,(5898), 115−117.

Xiu, D., Geiger, M. J., & Klaver, P. (2015). Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion.,(9), 90.

Zhang, H., Liu, J., Huber, D. E., Rieth, C. A., Tian, J., & Lee, K. (2008). Detecting faces in pure noise images: A functional MRI study on top-down perception.(2), 229−233.

Face pareidolia and its neural mechanism

WANG Hao; YANG Zhigang

(College of Education, Hebei University, Baoding 071002 China)

Face pareidolia refers to the compelling illusion of perceiving facial features on inanimate objects, such as an illusory face on the moon surface. Both top-down and bottom-up factors can modulate the occurrence of face pareidolia. In recent years, many studies using behavioral, brain imaging, as well as EEG techniques have been devoted to investigating its influential factors. It was found that the occurrence of face pareidolia depends on whether the stimuli contain face-like structures, whether the internal face template can match the current stimulus, and whether or not there are face related backgrounds. It was also influenced by individual differences and observers’ emotional states. Brain imaging studies suggest that information from the frontal and occipital vision regions can be infused at the fusiform face area (FFA) when experiencing face pareidolia. Future research should focus on exploring the behavioral and neural mechanisms of individual differences in face pareidolia, as well as the interactions and neural mechanisms between different types of top-down modulation.

face pareidolia; top-down processing; bottom-up processing; face processing

10.3724/SP.J.1042.2018.01952

2017-11-29

杨志刚, E-mail: yangzg.psy@gmail.com

B842

猜你喜欢
空想面孔波幅
本期面孔
辽河(2022年4期)2022-06-09 01:56:03
开封市健康人群面神经分支复合肌肉动作电位波幅分布范围研究
多变的面孔
警惕“空想”
自然面孔
人与自然(2019年4期)2019-07-26 12:52:37
警惕“空想”
开不同位置方形洞口波纹钢板剪力墙抗侧性能
价值工程(2018年25期)2018-09-26 10:14:36
考虑传输函数特性的行波幅值比较式纵联保护原理
频率偏移时基波幅值计算误差对保护的影响及其改进算法
不空想不抱怨 有激情在线状态
中国卫生(2014年9期)2014-11-12 13:01:58