浅谈统计与概率的应用问题构架

2018-01-29 20:46崔小珂
考试周刊 2017年56期
关键词:统计概率应用

摘 要:在我们的日常生活中,各行各业都需要应用到统计与概率的相关知识,无论是日常生活中的小事还是有关经济发展的大事,想要获得准确的数据并进行处理或预测,就必须应用统计与概率的方式进行分析。因此,只有熟练地掌握如何应用统计与概率分析方法,才能对各行业的数据进行分析、处理、预测等操作。本文将对统计与概率的应用问题构架进行分析,提高统计与概率的应用能力。

关键词:统计;概率;应用;问题架构

一、 引言

在日常生活中,统计与概率可以用于研究所有数据的随机现象以及出现的概率,在应用过程中,我们需要收集数据,再对这些数据进行整理分析,利用统计与概率的方法描述事件发生的可能性,为事件的判读与决策提供参考条件。分析生活中的不确定信息,找出其中的关键因素并归纳其中的规律,做出正确的判断,是统计与概率的主要任务。在目前的社会建设与经济发展中,统计与概率是最常用的数据处理工具,广泛应用在国民经济发展的各个行业中,并且在经济发展中发挥着十分重要的作用。

二、 统计与概率在日常生活中的应用

在十七世纪中叶,人们就开始研究统计与概率论,随着计算机技术的发展与普及,统计与概率更加广泛地应用在人们的生活与工作中,主要的应用范围包括生产统计、人口统计、保险统计等行业内,并且在人们的日常生活中随处可见。

例如,一个人在工作中需要与外地的10个客户电话联系,如果每个客户的电话线路是互相独立的,并且这些电话线路会在1分钟内平均占线12秒。想要确保这个人在任何时间点拨通这些客户的电话都有99%的接通概率,那么需要有多少条电话线路?针对这个问题,我们可以应用统计与概率做出以下解答:这个问题需要解决的是想要满足这个人的工作需求需要使用的电话线路数量。在解决这一问题时,我们可以将任何时间点中10个外地客户在使用的电话线路数量设为ξ,将确保这个人在任何时间点拨打电话接通概率为99%的线路数量设为k,想要满足题目中的要求,其数据关系就应满足P(ξ≤k)=0.99。已知这10个客户使用的电话线路都是互相独立的,并且任何一个客户在任何时间点的电话接通概率为P=12/60=1/5,因此ξ服从参数n=10,P=1/5的二项分布。通过二项分布的计算,可以得出当k的数值为5时,能够满足在任何时间点拨打电话接通概率为99%,因此,当安排5条电话线路时,能够满足这个人在任何时间点拨打电话接通概率为99%的需求。在这个问题的解决过程中,我们可以发现,统计与概率知识能够有效地解决了我们在日常生活中遇到的复杂问题,有效地节省了资源。

三、 统计与概率在保险行业中的应用

在人们的日常生活中,随机现象随时都在发生,概率论就是对这些随机现象的过滤性进行研究的学科,能够为我们对客观世界形成具体的认识提供关键的问题解决方式,并且能够为统计学的发展提供理论支持。在社会发展的过程中,出现了越来越多的行业,其中保险行业就是近几十年兴起并不断发展的行业之一。如今,在人们的生活中,无论是养老、医疗、出行等行为都有与其对应的保险业务,这些已经成为当今社会人们生命财产安全的重要保障。但是,人们一般不会了解,如果不利用概率论的特点从事保险事业,那么保险公司将无法获得收益,因此,保险公司的资产运营需要合理地应用概率论。

例如,如果一家保险公司的人寿保险参与人数为2000人,这些人员的年龄相同,他们每人在投保的第一天缴纳20元作为保险金。一旦有人在一年以内死亡,那么这个人的家属将领到3000元的补偿金。如果一年以内这些投保人的死亡率为0.25%,那么这家保险公司在这一年中能够盈利10000元的概率有多大?这家保险公司的亏损率又有多大?以及保险公司在这一年内能够有多少盈利。在解决这一问题时,我们可以将投保人员在一年以内的死亡人数设为ξ,则有:

ξ~B(2000,0.0025)

想要保险公司盈利,必须满足2000·20-3000≥10000,因此,死亡人数ξ必须满足条件0≤ξ≤10,因此,这家保险公司在一年以内能够盈利10000元以上的概率为P(0≤ξ≤10)=0.9863,这家公司有98.63%的几率盈利在10000元以上。在第二个问题中由于3000ξ>40000,则ξ≥14,可得这家保险公司在一年以内亏损的概率为P(ξ≥14)=0.0007,也就是0.007%。第三个问题,这家保险公司在一年以内平均盈利数量为E(40000-3000ξ)=40000-3000E(ξ)=25000元,只有满足这些条件才能够确保这家保险公司得以继续发展。

四、 统计与概率在比赛活动中的应用

在人们的日常生活中,经常会进行一些体育比赛活动,在这些活动中,统计与概率的相关知识同样可以得到全面的应用。

例如,两个乒乓球运动员进行比赛,已知运动员A每局的胜率为60%,B每局的胜率为40%。那么,比赛时采用三局两胜与五局三胜这两种赛制的哪一种时,运动员A获得胜利的概率更高。在解决这一问题时,可以应用统计与概率理论,如果比赛为三局两胜的赛制,那么运动员A获胜的情况有两种:第一种是A连胜两局,我们用A1表示,第二种是前两局二人打成1∶1平,最后一局,我们用A2表示。因此,运动员A获得比赛胜利的概率为P(A1+A2)=0.648。如果比赛为五局三胜的赛制,那么运动员A获胜的情况有三种:第一种是A连胜三局,我们用B1表示,第二种是A以3∶1获胜,我们用B2表示,第三种是前4局双方打平,A在第五局取胜,我们用B3表示,因此,运动员A获得比赛胜利的概率为P(B1+B2+B3)=0.682。由以上计算结果我们可以得出,运动员A在五局三胜的赛制中获得胜利的概率更高。想要在比赛中取得胜利,必须根据统计与概率知识做出相应的决策,以获取比赛胜利。

五、 统计与概率在经营活动中的应用

在社会经济不断发展的同时,科学技术也在不断进步,对信息化的需求也越来越高,我们需要经常收集大量的数据来从中提取更多有价值的信息,并根据这些信息采取相应的措施。统计学就是对这些数据的采集、整理、分析以及提取信息过程進行研究的学科,是人们制定决策的关键依据。在人们从事的经营活动中,统计学的应用具有更加显著的作用。endprint

例如,一个体户售卖白菜,每售出1千克白菜能够盈利a角,而每剩余1千克白菜则会亏损b角,如果个体户每天的白菜销量X服从参数为λ的泊松分布,那么在1天中个体户需要进货多少千克的白菜最为合理?在利用统计学原理解决这个问题时,可以先將个体户进货的白菜总量设为n千克,则个体户1天获得的利润为F(X),就有:

F(X)=an,X>n

aX-(n-X)b,X≤n

为了确定最优值,我们需要研究在进货增加1千克的情况下,其利润fn与fn+1的关系,只要fn+1-fn>0,如果设n1为满足上面不等式的最大的正整数,就有

F1fn1+2>…

所以,个体户进货白菜n1+1千克,才能够获得最高的利润。通过这个问题的研究,我们可以得知,统计与概率可以为经营活动提供重要的帮助,帮助经营者赚钱。

六、 统计与概率在环境保护中的应用

随着生存环境的不断恶化,人们对环境保护工作的重视程度越来越高,在环境保护工作中,统计与概率的相关知识同样能够发挥关键作用。

例如,如果规定向河流内排放废水中有害物质的含量不得高于3ppm。在对一个工厂的排放进行检测的记录显示为2.9,3.1,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5。想要在显著水平为0.05的基础上判定这个工厂是否符合规定,就必须应用假设检验的方法来判定。首先求出样本的方差为S=0.421,统计量T=X-μ0s/n=1.776,而拒绝域为C={t≥t0.05(14)Σ=1.76},明显可以看出,样本的观察值在拒绝域中。所以,在显著水平为0.05的基础上,这家工程的废水排放超标,必须采取有效措施来改善污水处理。

七、 结束语

总而言之,在日常生活中,类似这样的例子有很多,例如在生物学、心理学、行为学以及气象学中,统计与概率的相关知识都发挥着十分重要的作用。因此,无论我们从事哪个行业,都必须对统计与概率的相关知识有一定的了解,并能够应用这些知识解决遇到的实际问题。

参考文献:

[1]汪娜,庄海根,侯志芳.概率统计在评估体系中的指标简化作用应用[J].现代商贸工业,2015(19).

[2]詹福琴.概率统计在解决实际问题中的应用[J].科教文汇(上旬刊),2012(02).

[3]王亮红,韩玉.概率论与数理统计课程案例式教学模式探索与实践[J].吉林广播电视大学学报,2011(10).

[4]丁胜.当前概率统计在实际生活中的应用研究[J].黑龙江科技信息,2017(02).

[5]刘承萍,胡晓飞.概率统计思想与方法在实际问题中的应用[J].佳木斯职业学院学报,2015(04).

作者简介:

崔小珂,讲师,平顶山工业职业技术学院。

猜你喜欢
统计概率应用
第6讲 “统计与概率”复习精讲
第6讲 “统计与概率”复习精讲
概率与统计(一)
概率与统计(二)
2008—2015我国健美操科研论文的统计与分析
山东省交通运输投资计划管理信息系统的设计
市场经济背景下的会计统计发展探究
GM(1,1)白化微分优化方程预测模型建模过程应用分析
煤矿井下坑道钻机人机工程学应用分析
气体分离提纯应用变压吸附技术的分析