张元宝,许志珍,王煜倩,朱鹏,张斌,唐仕川,赵鹏
北京市劳动保护科学研究所(职业安全健康北京市重点实验室), 北京 100054
世界卫生组织(WHO)预计,至2050年,全球约2/3的人群将生活在城市中,因此城市空气的质量与城市人群的健康息息相关。近几十年的大规模流行病学研究显示:随着城市空气质量的恶化,中风、心血管疾病(心脏病)、肺癌、急性与慢性呼吸系统疾病(包括哮喘)的发病风险大大增加,该风险与大气中颗粒物的浓度密切相关[1-9]。
对人群健康产生损害的大气颗粒物中,粒径越小其可能导致损伤的风险愈大。美国环境保护署(EPA)在大气颗粒物潜在的暴露风险研究报告中指出:大气中每增加10 μg·m-3的PM10,短期暴露导致的全因死亡率增加0.12%~0.84%;每增加10 μg·m-3的PM2.5导致的相应死亡率增加至0.29%~1.21%[1];对于超细颗粒物(ultrafine particles, UFPs),因其粒径更小(<100 nm),可能存在更大的健康风险[10]。然而,国内外尚没有统一的UFPs检测方法及标准,传统的质量浓度法不能科学反映颗粒物暴露剂量与健康效应之间的相关性,给环境中的UFPs定量检测工作带来了巨大的挑战,亟需建立新的检测方法科学评价超细颗粒暴露风险。本文主要总结了目前国内外关于超细颗粒物的检测方法,分析最新研究动态,为进一步的方法学研究提供参考及帮助。
环境中产生UFPs的主要途径有2个[11-12]:一是自然界中产生的UFPs,如火山喷发、燃烧过程、海水溅沫、植物花粉末、超细粉尘等;二是人类活动过程中产生的UFPs,如工业生产及加工活动、煤及天然气的燃烧、机动车尾气排放、工程纳米材料的生产加工以及含纳米材料的产品消解释放等[13-15],也包括由一次排放出的气态污染物(主要有二氧化硫、氮氧化物、氨气、挥发性有机物等)转化生成的二次颗粒物(如硫酸盐、硝酸盐和有机气溶胶等)[12, 16-17]。由于来源广、产生量大等,人类活动产生的UFPs导致的健康效应问题已逐渐引起人们的关注[18]。
传统的颗粒物的检测评价方法主要是质量浓度法,然而超细颗粒物的粒径极小,传统的过滤式采集方法对其捕集效率极低;同时大量毒理学研究表明相同质量的颗粒物,粒径越小,其产生的损伤效应越大[19],因此传统的质量浓度不能真实反映超细颗粒的剂量-反应关系。目前,国内外尚没有统一的检测方法及标准,但国内外多数科研机构及学者推荐用质量浓度法、数量浓度法[20-22]、表面积浓度法[23-25]和理化性质分析等相结合,综合检测超细颗粒物的暴露情况。
2.1.1 质量浓度
目前,学者多采用多级切割分层采样和在线多通道实时检测仪器进行超细颗粒质量浓度检测。多级切割分层采样器主要是根据不同空气动力学直径颗粒物的运动规律不同等原理进行采样。如有学者在纳米氧化铁等生产企业采用了微孔均匀沉积碰撞采样器(micro-orifice uniform deposit impactor,MOUDI)对暴露颗粒物进行分级采样,MOUDI具有多级碰撞式切割器,可检测一定时间段内各层级(10~18 000 nm)颗粒物的累积浓度,缺点是不可实时检测各层颗粒物浓度及其变化趋势[26-28]。类似的,Keck等[29]和Burton等[30]使用电子低压冲击仪(ELPI)、低压碰撞采样器(low pressure cascade impactor)和宽范围气溶胶检测系统(wide range aerosol system)等对超细颗粒物进行分级采样检测。在线多通道实时质量浓度检测仪器主要有便携型气溶胶检测仪,包括Mini-WRAS(Mini Wide Range Aerosol Spectrometer)、DustTrak系列检测仪等,如Mini-WRAS结合了光学散射粒径分析技术、递进式电迁移率粒径分级技术和法拉第电杯静电检测技术,达到了多通道全谱粒径的实时检测目的,可实时显示颗粒物的粒径分布和质量浓度。DustTrak可实时检测粒径在100 nm~10 μm范围内颗粒物的质量浓度,根据切割头粒径的不同可检测不同粒径范围内颗粒物的质量浓度。此外,检测质量浓度的仪器还包括颗粒物静电沉淀器(electrostatic precipitator)、热力沉淀器(thermal precipitator)以及超细颗粒个体颗粒采样仪等,但该类仪器仅可检测出一定时间段内总颗粒物的累积浓度,无实时检测功能。
2.1.2 数量浓度
数量浓度法是目前国内外学者最为推荐的检测超细颗粒物的方法之一。如美国国家职业安全与卫生研究院(National Institute for Occupational Safety and Health,NIOSH)每年投入数百万的科研经费用于超细颗粒物的暴露评价方法及标准的研究,在其科研报告中,建议使用数量浓度作为评价超细颗粒物的指标[31];Xing等[28]学者的研究表明数量浓度较质量浓度更灵敏,能更准确地反映超细颗粒物暴露水平的变化趋势,更适合超细颗粒物的暴露检测,张元宝等[26]和王煜倩等[27]在研究纳米氧化铁等生产企业超细颗粒暴露特征时得到了相似的结果。目前,根据能否对不同粒径范围内的颗粒物进行分段计数,用于检测数量浓度的仪器可分为两大类:(1)不可分段计数:如冷凝颗粒计数仪(CPC),CPC可实时检测粒径在10 nm~>1 μm范围内总颗粒物的数量浓度,此类仪器可实时检测适用范围内所有颗粒物的浓度及其变化趋势,但不可对颗粒物数量浓度进行粒径分级计数检测;(2)可分段计数:该类仪器可以实时地检测颗粒物的浓度和粒径分布及其浓度变化趋势。包括电子低压冲击仪(ELPI)、Mini-WRAS 粒径谱仪、法拉利杯静电计(FCE)、扫描电迁移率粒径谱仪(SMPS)等,可实时检测每个分段范围内的颗粒数量浓度,并可以实时显示检测数据[32]。其他的检测仪器如移动式多通道超细颗粒数量浓度检测仪以及其他全谱粒径谱仪、差分电迁移率分析仪(DMA)结合CPC或FCE等也可进行实时地检测粒径分布及数量浓度。
2.1.3 表面积浓度
Marier等[33]和Duffin等[34]学者进行了大量的毒理学研究,结果显示二氧化钛等超细颗粒物的表面积是影响颗粒物毒性效应的重要因素之一,且与数量浓度有显著相关性[26-28]。在超细颗粒暴露评价方法中,表面积浓度也是重要方法之一,与数量浓度法相结合,评价超细颗粒物环境暴露特征[26-28, 31]。目前,用于实时在线检测颗粒物表面积的仪器有粒子气溶胶监测仪(AeroTrak),其9000型可实时检测粒径在10~1 000 nm范围内总颗粒物的表面积浓度(肺泡模式和气管支气管模式),但不可对颗粒物表面积浓度进行粒径分级检测。
2.1.4 粒径分布
颗粒物的粒径不仅是影响其健康损伤效应和毒性效应的重要因素,同时也是决定采样检测方法和指标选择的重要因素。本研究团队在前期研究纳米氧化铁、纳米碳酸钙等超细颗粒物暴露特征时发现:颗粒物的粒径影响其3种浓度(质量浓度、数量浓度和表面积浓度)间的相关关系,颗粒物的粒径处在纳米级别时,数量浓度与表面积浓度间的相关性更强,更能反映超细颗粒物浓度的变化[26-28]。目前可检测超细颗粒粒径分布的仪器主要有扫描电迁移率粒径谱仪(SMPS)、移动式多通道超细颗粒数量浓度检测仪、宽范围气溶胶粒径测量仪、快速电迁移率粒径谱仪(FMPS)、发动机废气排放颗粒物粒径谱仪(EEPS)、电子低压冲击仪(ELPI)、激光气溶胶分光计(LAS)等,并可实时显示各粒径范围内的颗粒物浓度数据。
2.1.5 理化分析
超细材料的形貌特征与成分分析是评价其生物毒性的重要方面。通过形貌特征与成分分析,更能了解超细材料与生物学效应之间的联系。大量的毒理研究表明:颗粒物的毒性作用受诸多因素的影响,如形状、粒径、比表面积和化学成分[35-36]。Marier等[33]和Duffin等[34]研究显示超细颗粒物的粒径、形状、聚集状态等是影响颗粒物毒性效应的重要因素。目前,国内外用于对超细颗粒物进行颗粒物形貌表征、团聚状态等分析的仪器主要有扫描电子显微镜(SEM)、透射电子显微镜(TEM);X射线衍射(XRD)可用于超细颗粒物晶型结构的分析;BET法可检测颗粒物的比表面积;原子吸收、原子发射、ICP质谱法、能量色散X射线光谱仪(EDX)和色谱法等方法检测颗粒物成分等。
国内外尚没有统一的针对超细颗粒物采样方法、检测策略及标准。目前,已有研究机构及学者针对作业场所中超细颗粒物的采样、检测开展了一定的研究,并提出了相关的采样、检测方法及策略[37-38]。
NIOSH建议使用“NEAT”策略(Nanoparticle Emission Assessment Technique):即先使用便携式实时颗粒物计数器(如CPC)在作业活动中确定有无超细颗粒物的释放(源),若初步检测结果与背景值无明显差异,则可不用进行进一步检测;若初步检测结果明显高于背景值,则进一步开展检测调查,如开展采样、质量浓度检测、电镜分析、粒径分布、成分分析等,结合颗粒物数量浓度与化学成分等对接触人群进行综合暴露评价。此策略所收集数据多是基于静态或定点检测,加之采样检测过程中可能存在一些不确定因素,可能对检测结果产生一定影响[31,39-40]。
经济合作与发展组织(Organization for Economic Co-operation and Development,OECD)在其纳米暴露评估策略(2009)中建议的检测方法与NIOSH相似,即先进行观察性的预调查,使用CPC和OPC在生产作业活动开始前检测可疑的纳米颗粒泄露区域/点;生产活动开始后,使用CPC和OPC再一次检测可疑的暴露区域/点,若检测浓度值高于预调查检测浓度值(≥10%),则进行进一步检测和实验室分析,包括定点和个体的采样、质量浓度检测、电镜、元素分析等,以便确定纳米颗粒的暴露情况,采取合理防护措施[41]。
德国联邦职业安全与健康研究所联合能源与环境技术研究所等机构联合推荐使用层级法(Tiered Approach)用于超细颗粒物的暴露评价及风险管理。第一级:信息收集获取阶段,即通过基础信息的获取及调查,决策是否有超细颗粒物泄露及能否适当地排除泄露问题,若可以排除,则不需要下一级检测,否则进入第二级阶段;第二级:基础暴露评估阶段,根据有无职业接触限值(OELs),通过比较检测超细颗粒物的浓度(如CPC检测)与背景值或是否超过干扰值(interference value),来判断是否进行下一级评估。若检测值明显高于背景颗粒物浓度值或超过干扰值,则进入第三级阶段;第三级:专业暴露评估阶段,即运用CPC、SMPS等最新的现场检测仪器,结合实验室分析结果(晶型、成分等),证实超细颗粒物存在的暴露情况,采取相关防护措施,再重复第二级阶段,以便验证防护的有效性[42]。
在超细颗粒物浓度检测的过程中,选择背景值(颗粒)的不同,如何消除背景值的干扰,正确、适当地选择背景值(或辨别背景颗粒物)至关重要。目前多数国内外学者采用时间序列法、空间法、对比法、化学/形貌分析法或上述方法相结合的方法,通过统计学分析,来区分、辨别背景颗粒物。Bello等[50]在研究中使用时间序列法结合化学/形貌分析法来检测碳纳米管和碳纳米颗粒的暴露、判别背景颗粒物;Bello和Tsai等[51-53]的研究中均使用时间或空间法结合元素分析、形貌分析等方法来判别背景颗粒物。
Birmili等[54]认为环境中颗粒物的质量浓度主要取决于粒径大于100 nm的颗粒物,在检测点附近不存在强暴露源条件下,其随空间的变异性并不大;然而对于数量浓度来说,其受空间变异的影响较大,甚者可达到数个数量级的差异,如Kaur等[55]在研究大气污染物在城市中的扩散与渗透实验中发现,随着检测点与道路间距离的增大,超细颗粒物的数量浓度有显著的下降。Zimmer等[56]研究发现,随着时间和距离的增加,焊接产生的颗粒物间存在不确定性的团聚/聚集和沉降现象,导致超细颗粒物数量浓度的变化。
尽管目前的检测仪器和技术已发展到可以检测到1 nm以下的颗粒物[57],但检测仪器的一些缺点与不足仍较大程度地影响超细颗粒物的暴露检测,如仪器长时间无人检测的不稳定性、仪器的检测结果缺乏可重复性以及不同仪器间检测原理的不同导致的数据不具有可比性等,因此亟需统一、科学的检测仪器及方法来评价超细颗粒物的暴露[45]。
除以上影响因素外,有学者的研究表明部分其他因素也是影响超细颗粒物浓度检测的原因,如Zimmer等[56]的研究中发现焊接过程中超细颗粒物的团聚/聚集和沉积现象导致超细颗粒物数量浓度的降低;Elihn和Berg[58]在调查焊接、熔炼、激光切割等不同作业场所中纳米颗粒物的暴露水平时,发现不同的产生源和生产工艺可影响纳米颗粒物的暴露浓度。Buccolieri等[59]在其城市的“透气性”与污染物的扩散关系研究中表明:城市环境中超细颗粒物浓度的变化不仅与风速、风向和逆温现象有关,亦受到城市的“透气性”,即城市的高层建筑密度、建筑的序列等影响。
综上,虽然国内外学者针对超细颗粒物开展了一定的研究,如Kumar等学者[60-61]研究了欧洲多个城市超细颗粒物的排放源、扩散、暴露与分布特征,并开展了与亚洲部分城市的对比研究[62-64];有学者研究了作业场所中超细颗粒物的暴露特征与规律,并探讨了超细颗粒物的检测方法及标准以及对接触人群的健康效应[26-28,65-66]。由于缺乏统一的采样检测标准与方法,检测仪器原理不同导致的数据间缺乏可比性、数据重现性差,缺乏毒理学、大规模的人群流行病学调查研究及个体暴露数据等原因[67-71],目前超细颗粒物的健康损害机制仍有待阐明,人群暴露-反应关系仍不明确。
因此,亟需开展超细颗粒物检测方法与技术、人群暴露与个体暴露等相关研究,以便阐明大气超细颗粒物的健康效应和作用机制,为保护接触人群提供科学依据,具体建议如下:
(1)方法学研究:系统性地开展超细颗粒物暴露检测的方法学研究,确定合适的检测指标,阐明不同来源、结构、性质的超细颗粒物的大气扩散模式,阐明超细颗粒物浓度在不同气候、不同时间空间及复杂因素影响下的变化规律。
(2)仪器优化研究:进一步优化超细颗粒物的检测、采样仪器,提高长时间在线检测的稳定性,实现不同仪器间结果的可对比性;研发个体暴露剂量的在线及离线检测装备。
(3)健康效应研究:系统性地开展长期人群流行病学调查研究,调查不同人群及个体的暴露量,揭露人群暴露剂量-反应效应关系,保护易感人群;开展毒理学实验,研究超细颗粒物进入人体器官组织及细胞的途径、机制以及靶器官,阐明其健康损伤效应及机制。
[1] U.S. EPA. 2009 Final Report: Integrated Science Assessment for Particulate Matter EPA/600/R-08/139F [R]. Washington, DC: U.S. Environmental Protection Agency, 2009
[2] Kumar P, Morawska L, Birmili W, et al. Ultrafine particles in cities [J]. Environment International, 2014, 66(2): 1-10
[3] Sioutas C, Delfino R J, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research [J]. Environmental Health Perspectives, 2005, 113(8): 947-955
[4] Oberdörster G, Finkelstein J, Ferin J, et al. Ultrafine particles as a potential environmental health hazard. Studies with model particles [J]. Chest, 1996, 109(3): 68S-69S
[5] Nel A. Atmosphere. Air pollution-related illness: Effects of particles [J]. Science, 2005, 308(5723): 804-806
[6] Oberdörster G. Pulmonary effects of inhaled ultrafine particles [J]. International Archives of Occupational and Environmental Health, 2001, 74(1): 1-8
[7] Oberdörster G, Sharp Z, Atudorei V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats [J]. Journal of Toxicology and Environmental Health Part A, 2002, 65(20):1531-1543
[8] Englert N. Fine particles and human health—A review of epidemiological studies [J]. Toxicology Letters, 2004, 149(1-3): 235-242
[9] Gilmour P S, Ziesenis A, Morrison E R, et al. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles[J]. Toxicology and Applied Pharmacology, 2004, 195(1): 35-44
[10] Stölzel M, Breitner S, Cyrys J, et al. Daily mortality and particulate matter in different size classes in Erfurt, Germany [J]. Journal of Exposure Science and Environmental Epidemiology, 2007, 17(5): 458-467
[11] Nowack B, Bucheli T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1): 5-22
[12] Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspectives, 2005, 113(7): 823-839
[13] Kumar P, Fennell P S, Hayhurst A N, et al. Street versus roof top level concentrations of fine particles in a Cambridge Street Canyon[J]. Boundary-Layer Meteorology, 2009, 131(1): 3-18
[14] Wichmann H E. Diesel exhaust particles[J]. Inhalation Toxicology, 2007, 19 (Suppl 1): 241-244
[15] Peters T M, Heitbrink W A, Evans D E, et al. The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility [J]. The Annals of Occupational Hygiene, 2006, 50: 249-257
[16] Oberdörster G, Ferin J, Lehnert B E. Correlation between particle size,invivoparticle persistence, and lung injury [J]. Environmental Health Perspectives, 1994, 102 (Suppl 5): 173-179
[17] Renwick L C, Brown D, Clouter A, et al. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types [J]. Occupational and Environmental Medicine, 2006, 61: 442-447
[18] 蒋国翔, 沈珍瑶, 牛军峰, 等. 环境中典型人工纳米颗粒物毒性效应[J]. 化学进展, 2011, 23(8): 1769-1781
Jiang G X, Shen Z Y, Niu J F, et al. Toxicity of typical artificial nanoparticles in the environment [J]. Progress in Chemistry, 2011, 23(8): 1769-1781 (in Chinese)
[19] Sioutas C, Delfino R J, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research [J]. Environmental Health Perspectives, 2005, 113(8): 947-955
[20] Kumar P, Robins A, Vardoulakis S, et al. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls[J]. Atmospheric Environment, 2010, 44(39): 5035-5052
[21] Institute of Occupational Medicine for Health & Safety, Executive 2004 Research Report 274 [R]. Atlanta: Institute of Occupational Medicine for Health & Safety, 2004
[22] Peters A, Wichmann H E, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles [J]. American Journal of Respiratory & Critical Care Medicine, 1997, 155(4): 1376-1383
[23] Tran C L, Buchanan D, Cullen R T, et al. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance [J]. Inhalation Toxicology, 2000, 12(12): 1113-1126
[24] Brown J S, Zeman K L, Bennett W D. Ultrafine particle deposition and clearance in the healthy and obstructed lung [J]. American Journal of Respiratory & Critical Care Medicine, 2002, 166(9): 1240-1247
[25] Stoeger T, Reinhard C, Takenaka S, et al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice [J]. Environmental Health Perspectives, 2006, 114(3): 328-333
[26] 张元宝, 付朝晖, 王煜倩, 等. 某纳米氧化铁生产企业工作场所中纳米颗粒暴露特征分析[J]. 中华劳动卫生职业病杂志, 2015, 33(6): 427-429
Zhang Y B, Fu Z H, Wang Y Q, et al. Analysis of the exposure characteristics of nano-particles in the workplace of a nano-iron oxide manufacturing enterprise [J]. Chinese Journal of Occupational Health and Occupational Diseases, 2015, 33(6): 427-429 (in Chinese)
[27] 王煜倩, 张元宝, 赵鹏, 等. 某纳米碳酸钙企业超细颗粒暴露特征及其健康影响[J]. 环境与职业医学, 2015, 32(10): 903-908
Wang Y Q, Zhang Y B, Zhao P, et al. Exposure characteristics of ultrafine particles in a nano-calcium carbonate enterprise and their health effects [J]. Environmental and Occupational Medicine, 2015, 32(10):903-908 (in Chinese)
[28] Xing M, Zhang Y, Zou H, et al. Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials[J]. Inhalation Toxicology, 2015, 27(3): 1-11
[29] Keck L, Pesch M, Grimm H. Comprehensive measurement of atmospheric aerosols with a wide range aerosol spectrometer [J]. Journal of Physics: Conference Series, 2011, 304(11): 77-82
[30] Burton R M, Lundgren D A. Wide range aerosol classifier: A size selective sampler for large particles [J]. Aerosol Science and Technology, 1987, 6(3): 289-301
[31] NIOSH. Approaches to safe nanotechnology [R]. Atlanta: The National Institute for Occupational Safety and Health (NIOSH), 2009
[32] Tritscher T, Beeston M, Zerrath A F, et al. NanoScan SMPS—A novel, portable nanoparticle sizing and counting instrument [J]. Journal of Physics: Conference Series, 2013, 429(1): 2757-2767
[33] Maier M, Hannebauer B, Holldorff H, et al. Does lung surfactant promote disaggregation of nanostructured titanium dioxide?[J]. Journal of Occupational & Environmental Medicine, 2006, 48(12): 1314-1320
[34] Duffin R, Tran C L, Clouter A, et al. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles [J]. Annals of Occupational Hygiene, 2002, 46(Suppl 1): 242-245
[35] Donaldson K, Stone V, Clouter A, et al. Ultrafine particles [J]. Occupational and Environmental Medicine, 2001, 58: 211-216
[36] Stoeger T, Reinhard C, Takenaka S, et al. Installation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice [J]. Environmental Health Perspectives, 2006, 114: 328-333
[37] Asbach C, Clavaguera S, Todea A M. Measurement Methods for Nanoparticles in Indoor and Outdoor Air[M]// Indoor and Outdoor Nanoparticles. Springer International Publishing, 2015: 1-31
[38] Zhao H, Stephens B. Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences [J]. Indoor Air, 2016, DOI: 10.1111/ina.12295
[39] Kuhlbusch T A, Asbach C, Fissan H, et al. Nanoparticle exposure at nanotechnology workplaces: A review [J]. Particle & Fibre Toxicology, 2011, 8(1): 22
[40] Methner M, Hodson L, Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--Part A [J]. Journal of Occupational & Environmental Hygiene, 2010, 7(3): 127
[41] OECD. Environment Health and Safety Publications Series on the Safety of Manufactured Nanomaterials [R]. Paris: OECD, 2009
[42] BAuA, BGRCI, IFA and VCI. Consent report:Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations [R]. Germany: BAuA, BGRCI, IFA and VCI, 2011
[43] Dall'Osto M, Thorpe A, Beddows D C S, et al. Remarkable dynamics of nanoparticles in the urban atmosphere [J]. Atmospheric Chemistry & Physics & Discussions, 2011, 10(13): 6623-6637
[44] Kulmala M, Vehkamäki H, Petäjä T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations [J]. Journal of Aerosol Science, 2004, 35(2):143-176
[45] Kumar P, Robins A, Vardoulakis S, et al. Technical challenges in tackling regulatory concerns for urban atmospheric nanoparticles [J]. Particuology, 2011, 9(6): 566-571
[46] Carpentieri M, Kumar P. Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle [J]. Atmospheric Environment, 2011, 45(32): 5837-5852
[47] Kumar P, Robins A, Britter R. Fast response measurements of the dispersion of nanoparticles in a vehicle wake and a street canyon [J]. Atmospheric Environment, 2009, 43(38): 6110-6118
[48] Morawska L, Wang H, Ristovski Z, et al. JEM spotlight: Environmental monitoring of airborne nanoparticles [J]. Journal of Environmental Monitoring, 2009, 11(10): 1758-1773
[50] Bello D, Wardle B L, Yamamoto N, et al. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes[J]. Journal of Nanoparticle Research, 2009, 11(1): 231-249
[51] Tsai C J, Wu C H, Leu M L, et al. Dustiness test of nanopowders using a standard rotating drum with a modified sampling train [J]. Journal of Nanoparticle Research, 2009, 11(1): 121-131
[52] Bello D, Hart A J, Ahn K, et al. Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films [J]. Carbon, 2008, 46(6):974-977
[53] Tsai S J, Ashter A, Ada E, et al. Control of airborne nanoparticles release during compounding of polymer nanocomposites [J]. Nanoparticles, 2008, 3(4): 301-309
[54] Birmili W, Tomsche L, Sonntag A, et al. Variability of aerosol particles in the urban atmosphere of Dresden (Germany): Effects of spatial scale and particle size[J]. Meteorologische Zeitschrift, 2013, 22(2): 195-211
[55] Kaur S, Clark R D R, Walsh P T, et al. Exposure visualisation of ultrafine particle counts in a transport microenvironment [J]. Atmospheric Environment, 2006, 40(2): 386-398
[56] Zimmer A T, Baron P A, Biswas P. The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process [J]. Journal of Aerosol Science, 2002, 33(3): 519-531
[57] Kulmala M, Kontkanen J, Junninen H, et al. Direct observations of atmospheric aerosol nucleation[J]. Science, 2013, 339(6122): 943-946
[58] Elihn K, Berg P. Uhrafine particle characteristics in seven industrial plants [J]. The Annals of Occupational Hygiene, 2009, 53: 475-484
[59] Buccolieri R, Sandberg M, Sabatino S D. City breathability and its link to pollutant concentration distribution within urban-like geometries[J]. Atmospheric Environment, 2010, 44(15): 1894-1903
[60] Kumar P, Jain S, Gurjar B R, et al. New directions: Can a “blue sky” return to Indian megacities?[J]. Atmospheric Environment, 2013, 71: 198-201
[61] Kumar P, Pirjola L, Ketzel M, et al. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review [J]. Atmospheric Environment, 2013, 67(2): 252-277
[62] Sharma P, Sharma P, Jain S, et al. An integrated statistical approach for evaluating the exceedence of criteria pollutants in the ambient air of megacity Delhi [J]. Atmospheric Environment, 2013, 70(4): 7-17
[63] Kupiainen K. Aerosol particle number emissions and size distributions: Implementation in the GAINS Model and initial results [R]. Laxenburg, Austria: International Institute for Applied System Analysis, 2013
[64] Reddington C L, Carslaw K S, Spracklen D V, et al. Primary versus secondary contributions to particle number concentrations in the European boundary layer [J]. Atmospheric Chemistry & Physics, 2011, 11(23): 12007-12036
[65] Ravanel X, Derrough S, Zimmermann E, et al. Characterization of manufactured nanoparticles at workplace[J]. Journal of Physics Conference Series, 2011, 304(1), DOI: 10.1088/1742-6596/304/1/012003
[66] Wang J, Pui D Y H. Characterization, exposure measurement and control for nanoscale particles in workplaces and on the road [J]. Journal of Physics: Conference Series, 2011, 304(1), DOI: 10.1088/1742-6596/304/1/012008
[67] Mazaheri M, Clifford S, Jayaratne R, et al. School children’s personal exposure to ultrafine particles in the urban environment [J]. Environmental Science & Technology, 2014, 48(1): 113-120
[68] Buonanno G, Marini S, Morawska L, et al. Individual dose and exposure of Italian children to ultrafine particles [J]. Science of the Total Environment, 2012, 438(3): 271-277
[69] Heal M R, Kumar P, Harrison R M. Particles, air quality, policy and health [J]. Chemical Society Reviews, 2012, 41(19): 6606-6630
[70] Health Effects Institute. Understanding the health effects of ambient ultrafine particles[R]. Boston: Health Effects Institute, 2013
[71] Rückerl R, Schneider A, Breitner S, et al. Health effects of particulate air pollution: A review of epidemiological evidence [J]. Inhalation Toxicology, 2011, 23(10): 555