解析Besov型空间在Bloch空间的闭包

2018-01-29 02:27
岭南师范学院学报 2017年6期
关键词:易知乘积湛江

钱 睿 深

(岭南师范学院 数学与统计学院,广东 湛江 524048)

1 引 言

令Bloch空间B表示满足下列条件的全体函数f∈H(D):

2 主要结果

(1-|z|2)|f′(z)|≤(1-|z|2)|f′(z)-g′(z)|+(1-|z|2)|g′(z)|,

另一方面,设f∈B.由文献[11,引理4.2]知,

以及

那么f(z)=f1(z)+f2(z).现在将证明f1∈B.因为f2(z)=f(z)-f1(z),所以

即f2∈B,其中,C为正常数.从而,易知f1∈B.

称θ(z)为Blaschke乘积.

所以对于任意的ε>0,可以推出

因此,

由文献[12,69页],有

证毕.

[1] N. Arcozzi, D. Blasi and J. Pau, Interpolating sequences on analytic Besov type spaces[J].Indiana Univ Math J,2009,58:1281-1318.

[2] J Anderson, J Clunie , Ch Pommerenke, On Bloch functions and normal functions[J]. J Reine Angew Math, 1974,270:12-37.

[3] D. Blasi and J. Pau, A characterization of Besov-type spaces and applications to Hankel-type operators[J]. Michigan Math J,2008,56: 401-417.

[4] L Carleson, An interpolation problem for bounded analytic functions[J]. Amer J Math,1958,80:921-930.

[5] L Carleson, On the zeros of functions with bounded Dirichlet integrals[J]. Math Z,1958,56:289-295.

[6] L Carleson, Interpolation by bounded analytic functions and the Corona problem[J]. Ann of Math,1962,76:547-559.

[7] P Galanopoulos, N. Monreal Galan and J. Pau, Closure of Hardy spaces in the Bloch space[J]. J Math Anal Appl.,2015,429:1214-1221.

[8] D Girela, J. A. Pelaez and D. Vukotic, Integrability of the derivative of a Blaschke product[J]. Proc Edinb Math Soc,2007,50:673-687.

[9] N Monreal Galan and A. Nicolau, The closure of the Hardy space in the Bloch norm[J]. Algebra i Analiz. 2010,22:75-81, translation in St. Petersburg Math J,2011,22:55-59.

[10] ZHAO R. Distances from Bloch functions to some Mobius invariant spaces[J]. Ann. Acad Sci Fenn Math,2008,33:303-313.

[11] ZHU K. Bloch type spaces of analytic functions[J]. Rocky Mountain J Math,1993,23:1143--1177.

猜你喜欢
易知乘积湛江
序列(12+Q)(22+Q)…(n2+Q)中的完全平方数
漫步湛江
一个数论函数方程的可解性
乘积最大
最强大脑
最强大脑
从《曲律易知》看民国初年曲学理论的转型
一道高考立体几何题的多维度剖析
“无限个大于零小于1的数的乘积不等于零”的一则简例
写湛江、画湛江大型书画基层采风作品选