畜牧实验设计中的统计学错误简析

2018-01-27 12:17陈静刘显军朱玉博邓亮
考试周刊 2018年100期
关键词:实验设计畜牧错误

陈静 刘显军 朱玉博 邓亮

摘 要: 本文对畜牧实验设计中的实验方案、实验设计方法、设计原则和样本含量的确定中常出现的统计学问题和错误进行分析,并相应提出了制定合理畜牧实验设计的建议。提出了在统计学和专业知识基础上制定的畜牧实验设计是正确进行畜牧科研生产的重要保证。

关键词: 畜牧;实验设计;统计学;错误

一、 引言

科学研究是推动畜牧业的发展的重要手段。动物品种选育,饲料配方的配置,新的饲养管理方法的确定等都离不开实验研究。实验设计是在研究工作前,根据研究项目的需要,应用数理统计原理,作出的整体实验安排,力求较少的投入,获得最多的可靠的资料。畜牧实验设计的制定是在生物统计学的基础上制定的。然而由于畜牧研究人员对生物统计基础知识和应用缺乏深入的了解,致使在畜牧实验设计和统计分析中常或多或少出现统计学方法上的问题和错误。

二、 畜牧实验设计中常出现的统计学的问题和错误

(一) 实验方案不合理

实验设计的目的是为了控制降低实验误差,无偏估计处理效应,对总体作出可靠、正确的推断。实验设计的核心是实验方案,而实验方案的核心是研究的因素和水平。根据因素的多少可以分为单因素实验方案和多因素实验方案。不同的方案有不同的设计方法。然而如果混淆实验方案和实验方法,实验设计就可能从根本上发生错误。比如在育肥猪饲料中添加6种不同剂量的亚麻籽油(0%、0.4%、0.8%、1.2%、1.6%、2%),进行饲养实验。这是一个有6个水平的单因素完全随机实验,是单因素实验方案。但如果每个亚麻籽油水平下分析2个不同剂量豆油的育肥猪的饲喂效果,结果用单因素方差分析显然不对。该实验实际是一个多因素实验方案,是6×2析因设计,应进行两因素方差分析(即多因素方差分析)。

在设置因素水平时,要充分考虑课题、因素的特点及动物的反应能力。水平的数目过多和水平数太少都会导致结果分析不全面。同时水平间的差异要根据因素的性质来确定,如仔猪饲料中油脂的含量在2%左右,而铁的含量仅为0.008%左右,两者在数量等级差异很大,因此两个因素的水平差异就不能统一确定。此外,因素水平的排列可采用灵活方式,如等差法、等比法等设置水平。

(二) 实验设计方法不恰当

在畜牧实验设计时,即使是相同的实验方案,也要根据因素的关系采取不同的设计方法。同样是两因素的设计,如果两因素是平等关系(如考查不饱和脂肪酸和品种对育肥猪生产性能的影响),可采用多因素析因设计。如两因素是从属关系(如考查公畜的种用价值,要考虑与配母畜,但是在同期,公畜和母畜的不同水平是不能交叉),这种情况则可选取系统分组设计。如果要研究饱和脂肪酸(动物油)的饲喂效果,但实验动物差异较大,这时可采用随机单位组设计,把单位组(动物)作为一个因素进行统计。虽然实验结果是按照两因素方差分析进行,但本实验设计本质是单因素实验设计。除假定单位组因素与实验因素不存在交互作用外,单位组效应也认为是随机效应,是从误差中分离出来的,如果单位组不显著,还要与误差进行合并,以增加误差自由度,提高实验的精确性。

(三) 不遵循实验设计重复原则进行实验设计

实验研究中总会出现误差。根据产生误差的原因和性质不同,可分为系统误差(片面误差)和随机误差(抽样误差)两类。动物实验误差的主要来源主要来自供试动物、饲养管理、环境条件以及一些随机因素等引起的差异。重复的作用是估计实验误差和降低实验误差。如果一处理内只有一个观测值,即无重复,则无法计算统计量,也就不能估计实验误差的大小。值得注意的是,在多因素析因设计中,由于每个因素水平都有多个观测值,实验人员在统计时往往忽视多因素实验的处理数与水平数的差异。单因素实验设计中处理数等于水平数,每个水平内(即处理)的观测值的个数就是重复数。而多因素析因设计中,处理数等于水平组合,即水平数的乘积,因此实验的重复数是每个处理内的观测值的个数,这才是真正的重复数。

在无重复正交设计中,其误差是由“空列”来估计的。然而“空列”并不空,实际上是被未考查的交互作用。误差既包含实验误差,也包含交互作用,称为模型误差。但一些研究者进行正交设计时,没有认识到“空列”存在的意义,用因素占用了“空列”,这将导致误差平方和(SS e)和误差自由度(df e)为零,此实验得出的数据没有统计学意义。解决占用“空列”的措施只有增加重复,最好能有二次以上的重复。重复可采用完全随机或随机单位组设计。但即使有重复,我们也不提倡这种占用“空列”的正交设计,因为多因素之间的交互作用会被掩盖,而模型误差会夸大实验误差,有可能掩盖考查因素的显著性。

(四) 不满足实验精度的要求忽视样本含量

在实验研究中,样本含量的大小关系到结果的精确性。一味选取较大的样本含量,必然相应投入较多的人力、物力和时间。但在实际实验中,人为的操作对动物的影响必然导致动物生产性能的下降,从经济方面考虑却要求样本越小越好。因此,如何确定适宜样本含量是畜牧实验设计中一个重要内容。在实验设计中,研究者往往忽略统计中对实验精度的要求。实验精度要求是(df e≥12),而df e=12是实验精度的最低要求。不同的实验设计计算处理内重复数的方法是不同的。完全随机设计中处理数k≥3,则n≥12/k+1。在随机单位组设计中,处理数k≥3,则n≥12/(k-1)+1。然后再根据实验单位数(kn),乘以每个实验单位包含的动物数既得最小样本含量。但拉丁方设计比较特殊,r×r拉丁方虽然有r 2个观测值,但其实验单位只有r个。当处理数低于4,即3×3和4×4拉丁方,其df e<12,为了使df e达到12,需要进行重复拉丁方设计,即3×3拉丁方重复6次,4×4拉丁方重复2次。因此在计算最小样本含量时,要考虑拉丁方的重复数。

除此之外,处理数k=2的实验设计中,最小样本含量还要参考实验要求的准确性高低、所研究对象的变异度大小和能够接受的允许误差。如处理数k=2的完全随机设计(即非配对设计或成组设计),重复数n=2t 2 αS/(x  1-x  2) 2;在处理数k=2是随机单位组设计(即配对设计),重复数n=t α 2S 2 d/d  2。

三、 小结

完善可行的实验设计能够严格的控制误差,提高实验效率。而实验设计不当,不仅达不到实验的目的,甚至导致整个实验的失败。因此,能否合理地进行实验设计,关系到科研工作的成败。掌握生物统计学知识和专业技能,提高实验设计方法的选择能力,防止错误发生,是保障科研顺利开展和进行的基础。

参考文献:

[1]李转见,韩瑞丽,孙桂荣,等.生物统计附试验设计教学心得与常见错误分析[J].畜牧与饲料科学,2016,37(10):89-92.

[2]陈庭木,王宝祥,杨波,等.3因素随机裂区试验设计及其统计分析[J].安徽农业科学,2017,45(25):3-5,7.

[3]赵振华,贾青.试验设计中的统计学错误浅析[J].邯郸农业高等专科学校学报,2004,21(4):11-13.

[4]明道绪.生物统计附試验设计[M].北京:中国农业出版社,2014.

[5]邱世芳,郭黎萱.双边试验设计下基于区间估计的样本量的确定[J].重庆理工大学学报(自然科学),2018,32(4):219-229.

猜你喜欢
实验设计畜牧错误
荣昌:做强畜牧品牌 建好国家畜牧科技城
在错误中成长
《现代畜牧兽医》杂志征订启事
不同的温度
有趣的放大镜
武汉天种畜牧有限责任公司
哪个凉得快?
无字天书
2019年全国畜牧兽医
不犯同样错误