陈 杰, 马永清, 薛泉宏
利用微生物防除根寄生杂草列当*
陈 杰1,2, 马永清3**, 薛泉宏1
(1. 西北农林科技大学资源环境学院 杨凌 712100; 2. 山西农业大学农学院 太谷 030801; 3. 中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室 杨凌 712100)
根寄生杂草列当(spp.)已经严重制约全球许多地区的农业发展, 寻找有效防除措施迫在眉睫。由于列当具有特殊生活史且与寄主关系密切, 常规防除杂草措施难以达到理想防效。目前, 尚无既能有效防除列当又不对寄主造成危害且便于大规模推广应用的列当防除措施。在众多列当防除措施中, 微生物防除越来越引起关注和重视。本文对微生物防除列当的国内外研究进展及防除机理进行了综述。目前, 列当生防微生物的研究主要集中在镰刀菌(spp.)等列当病原菌和根瘤菌(spp.)等列当寄主植物共生菌上。微生物防除列当的机制主要包括两方面: 一是通过产生代谢产物直接影响列当的萌发和生长, 或通过降解列当种子萌发诱导物质间接影响列当的萌发; 二是通过提高寄主植物自身对列当的抗性间接影响列当的寄生和生长。此外, 本文还重点介绍了植物土传病害的土壤拮抗微生物防除列当杂草的可行性及研究进展。植物土传病害病原菌和列当均首先通过在地下侵染作物的根系进而危害作物正常生长, 而作物抗土传病害的机理也与抗列当的机理类似。因此, 存在于土壤中具有防治植物土传病害能力的微生物可能也具有防除根寄生杂草列当的功能。本团队前期试验从植物土传病害的土壤拮抗微生物中筛选到在盆栽试验中能够有效防除向日葵列当(Wallr.)和瓜列当(Pers.)的放线菌各1株, 分别为淡紫褐链霉菌(Sveshnikova)和密旋链霉菌(Bhuyan B.K)。其中, 密旋链霉菌的菌剂在田间试验中既降低了瓜列当的出土数量又增加了番茄的产量。总之, 微生物是防除根寄生杂草列当的一条有效途径。
列当; 寄生杂草; 生物防除; 微生物; 土传微生物; 土传病害
列当(spp.)为列当科(Orobanchaceae)列当属一年生草本植物。由于缺少叶片、叶绿素和功能性根, 列当完全寄生在寄主植物根系上, 靠从寄主汲取水分、养分及各类生长激素来维持自身生长, 因此会对寄主造成严重危害[1]。列当杂草已经严重危害许多地区的农业生产。全球每年由列当杂草造成的经济损失达数十亿美元[2]。防除列当的措施主要包括人工拔除[3]、喷施化学农药[4]、农艺措施(轮作[5]和施肥[6]等)、培育抗性品种[7]和昆虫防治[8]等。上述防除措施或不能获得理想的防除效果或存在一定缺陷, 因此, 有效防除列当目前仍是一个世界性难题。
近年来, 在寄生植物的研究发展中, 研究者逐渐意识到微生物在“寄主-寄生杂草”这一特殊系统中的重要性[9]。研究列当生防微生物对于解决列当杂草问题具有重要意义。目前, 利用微生物防除列当杂草的研究日益增多。镰刀菌(spp.)[10]、根瘤菌[11]和丛枝菌根真菌[12]等多种微生物已被报道具有防除列当杂草的能力。与其他微生物相比, 应用来源于土壤中对农作物病害病原菌有拮抗潜能的微生物防除列当具有对作物无害、对农田环境无污染、微生物易于在土壤中定殖等众多优势。然而, 目前关于此类微生物防除列当的研究仍十分缺乏。本文在综述了国内外应用微生物防除列当的研究进展及微生物防除列当机理的同时, 分析了农作物病害生防微生物防除列当杂草的可行性并对本团队目前取得的成果进行了概述, 旨在为应用微生物防除列当的研究工作提供指导和借鉴。
目前, 全球受列当危害的农作物面积尚无确切数据[13], 但据报道早在1991年仅地中海和亚洲西部区域受列当危害的农田面积就高达1 600万hm2[14]。列当危害严重的地区会造成作物减产80%甚至绝收[13,15]。全球每年由列当杂草造成的经济损失高达数十亿美元[2]。列当种类繁多, 对农作物危害严重的主要为向日葵列当(Wallr.)、瓜列当(Pers.或Pers.)、锯齿列当(Forsk.)、分枝列当(L.)、弯管列当(Loefl.)和小列当(Sm.)等。
目前, 防除列当的措施主要包括人工拔除、化学防除、农艺措施、培育抗性品种和昆虫防除等。人工拔除在一定程度上能够防止列当种子的蔓延及土壤中列当种子数量的增加[3], 但该方法只适用于受列当危害程度较小的地块或采用其他防除措施后仍然剩余的少量列当的防除[16]。化学防除具有操作简单、成本低廉等优点, 是防除列当中比较常用的方法。喷施草甘膦[4]、氯磺隆、醚苯磺隆[17]、仲丁灵乳油[18]和甲咪唑烟酸[19]等多种化学药剂均对列当有一定防除效果。然而, 化学农药对列当的选择性差, 在防除列当的同时往往对寄主作物也会造成损害[20], 且存在污染农田环境、易使列当产生抗药性等缺点。轮作[21-22]、施肥[20]、深耕[23]、调整播期[24]和土壤暴晒[25]等农艺措施在一定程度上也能够减轻列当危害, 但防除效果不理想、费时费力是上述措施的主要缺陷。培育抗性新品种也是防除列当的重要措施之一, 但育种年限长、抗性品种抗性的减弱或消失是限制该方法推广应用的重要原因。此外, 据报道, 潜叶蝇(Kalt.)和小爪象(spp.)的幼虫通过在列当种皮内蚕食幼嫩的列当种子, 从而破坏新列当种子的产生[8]。由于土壤耕作会破坏土壤中潜叶蝇和小爪象蛹的正常发育, 化学农药和自然界中的天敌也会危害到上述两种昆虫的数量, 而列当产生的种子数量庞大, 因此, 仅靠昆虫防治难以有效防除列当。
利用微生物防除列当杂草的研究日益增多。目前, 已被报道的具有防除列当潜能的微生物包括镰刀菌(spp.)、根瘤菌(spp.)、洋葱曲霉(Thom & Church)、丛枝菌根真菌和假单胞菌(spp.)等。这些防除列当的微生物主要分为列当病原菌、寄主植物共生菌和其他微生物。
利用列当病原菌防除列当杂草的研究较早, 这类病原菌多为一些镰刀菌。Thomas等[26]报道将1株尖孢镰刀菌[fsp.(Appel & Wollenw.) Bilay]的分生孢子培养液接种于出土向日葵列当上, 列当的死亡率达85%。Nemat Alla等[10]试验表明尖孢镰刀菌(Schl.) Foxy Ⅰ和Foxy Ⅱ的孢子悬浮液可显著降低锯齿列当和分枝列当的萌发率及寄生率。而这两种菌的固态颗粒制剂也能够降低列当的生物量、寄生率, 提高列当的发病率。其他镰刀菌包括弯角镰刀菌(Wollenw. & Reink.)、厚垣镰刀菌(Wollenw. & Reink.)[27]和轮状镰刀菌(Nirenb.)[28]等也均具有防除列当的潜能。除镰刀菌外, 其他一些列当的病原菌也具有类似防除列当的潜能。Zermane等[29]从发病列当地下部分离到的荧光假单胞菌(.Flügge) Bf7-9菌株在盆栽试验中可使锯齿列当的出苗率减少64%。此外,s Preuss.[30]和洋葱曲霉[31]也具有类似防除列当的功能。
许多列当病原真菌在防除列当的同时也会使寄主或其他作物发病, 如轮状镰刀菌具有防除列当的功能[32], 但同时也是玉米穗腐病的病原菌[33]。因此, 利用此类病原菌防除列当会对寄主或其他农作物造成危害。此外, 列当在出土前对寄主已经造成严重危害, 而列当病原菌大多直接喷施于已经出土的列当植株上, 故利用列当病原菌不能从根本上防除列当。
另一类研究较多的列当生防微生物为寄主植物的共生菌, 主要包括根瘤菌和丛枝菌根真菌。Mabrouk等[11]试验发现接种根瘤菌P. SOM和P. 1236可以显著降低豌豆(L.)根部锯齿列当的萌发率, 增加附着于豌豆根部列当块茎的坏死率, 从而降低锯齿列当的出苗率。Bouraoui等[34]研究发现接种根瘤菌Mat可以显著减轻Poir.对蚕豆(L.)造成的产量损失。Fernández-Aparicio等[35]试验表明接种丛枝菌根真菌摩西球囊霉(Gerdemann & Trappe)和根内球囊霉(Schenck & Smith)后, 显著降低了豌豆根系浸提液诱导锯齿列当、分枝列当和小列当种子的萌发率。Louarn等[12]也报道丛枝菌根真菌中的根内根生囊霉(Schenck. & Sm.)和玫瑰巨孢囊霉(Nicol.)的孢子浸提液均能够降低向日葵列当种子的萌发率。
除上述两类微生物外, 其他一些微生物也具有防除列当的潜能。El-Kassas等[36]试验发现分离自蚕豆根部土壤中的疣孢漆斑霉(Alb. & Schwein.)能够抑制锯齿列当种子的萌发; Gonsior等[37]研究表明土壤根际细菌假单胞菌能够减少分枝列当对大麻(L.)和烟草(L.)的寄生; Zermane等[29]报道接种分离自蚕豆根际土壤中的荧光假单胞菌Bf7- 9使锯齿列当和的出土率分别降低了64%和76%。此外, 萎缩芽孢杆菌(Nakamura)QUBC16和枯草芽孢杆菌[(Ehrenberg) Cohn]QUBC18对瓜列当和弯管列当芽管的生长也具有显著的抑制作用[38]; 巴西固氮螺菌(Tarrand, Krieg & Döbereiner)也能够抑制瓜列当种子的萌发[39]。
微生物防除列当主要通过直接影响列当的萌发和生长或通过提高寄主植物自身对列当的抗性间接对列当产生影响来实现。微生物防除列当的机理主要包括抑制列当种子萌发、阻碍列当正常生长、增强寄主对列当抗性和降解诱导列当种子萌发的化合物。
抑制列当种子萌发是微生物防除列当的主要途径之一。Louarn等[12]试验表明丛枝菌根真菌能够抑制向日葵列当种子的萌发; Müller-Stöver等[30]研究发现能够使锯齿列当种子的萌发率降低80%; Thomas等[26]报道尖孢镰刀菌也具有抑制向日葵列当种子萌发的能力。微生物抑制寄生植物种子萌发多是由于产生了一些能够抑制寄生植物种子萌发的代谢产物。Miché等[40]的试验结果表明巴西固氮螺菌能够抑制GR24诱导的独脚金[(Del.) Benth.]的萌发可能是由于前者产生的一些小的亲脂性化合物发挥了作用; 疣孢漆斑霉对锯齿列当的防除机理之一是其产生的单端孢霉烯和疣孢菌素抑制了锯齿列当种子的萌发[36]。目前, 已被证实能够抑制列当种子萌发的微生物代谢产物包括疣孢菌素A、羟基甲基氧双环庚烯酮、球香豆榴素A、没食子酸和cytochalasans等[41-42]。
除抑制列当种子萌发外, 阻碍已经萌发的列当生长也是减轻列当危害的机理之一。据报道, 一些谷物的代谢产物Benzoxazolinones、L-色氨酸和香豆酸能够显著抑制锯齿列当芽管的伸长[43]。荧光假单胞菌、萎缩芽孢杆菌QUBC16和枯草芽孢杆菌QUBC18也具有抑制瓜列当和弯管列当芽管伸长的功能[38]。而一些微生物的代谢产物如球香豆榴素、cytochalasans和cyclohexene epoxide类化合物也能够显著抑制列当芽管的伸长[41]。
有些微生物还通过使已经萌发的列当发生畸形或病变来影响列当正常寄生和生长。Mabrouk等[42]发现经cytochalasans处理后的列当芽管出现异状突起, 由球香豆榴素A处理后的列当芽管也出现坏死现象。列当病原菌发挥防除作用的机理均是通过使列当植株发生病变从而阻碍列当的正常生长发育。列当生防菌轮状镰刀菌产生的萎蔫酸能够使列当植株发病死亡[28], 而尖孢镰刀菌产生的两种代谢产物萎蔫酸和9,10-脱氢镰刀菌酸能够使萌发后的列当种子死亡并使出土的列当植株萎蔫[44]。
除直接抑制和干扰列当的正常生长外, 微生物还可以通过增强寄主植物对列当的抗性来防除列当。Gonsior等[37]报道根际细菌假单胞菌对列当的防除作用可能基于该菌诱导列当寄主对列当产生了免疫反应。
列当形成吸器后需要刺穿寄主植物的根系细胞, 才能与寄主的维管组织连接, 进而进行养分和水分的传输。木质素和氧化酚类的合成有助于增强细胞结构, 而多酚氧化酶(PPO)的活力与这两类化合物的合成有关[45]。Brahmi等[46]研究表明, 抗列当的鹰嘴豆(Linn.)品种在受侵染时, 其体内PPO活力提高; 而根瘤菌诱导豌豆产生抗锯齿列当的能力也与豌豆根系中PPO活力提高有关[45,47]。
过氧化物酶(POD)能够通过聚合多糖和多酚类物质来产生闭合维管组织的凝胶类物质, 从而加固植物的细胞壁[48]。此外, POD还与木质素的形成有关[49], 而植物细胞壁的加固有助于植物抵抗外界不良环境胁迫[50]。已有研究表明, 植物抗列当的能力与POD活力的提高有关[45-46,51]。Akimova等[52]研究表明, 接种根瘤菌后豌豆体内POD活力提高; Demirbaş等[53]报道向日葵(L.)的抗列当品种在受向日葵列当侵染时, 其体内POD活力提高; Mabrouk等[11]试验表明接种根瘤菌P. SOM和P. 1236在降低锯齿列当萌发率和寄生率的同时也提高了豌豆根系POD的活力。
苯丙氨酸解氨酶(PAL)被认为是启动植物体内苯丙氨酸合成途径的关键酶, 与木质素、植保素、软木脂、植物抗毒素(酚类和黄酮类物质)和水杨酸的生物合成有关, 这些物质的合成也有助于加固细胞结构或增强植物系统获得性抗性[54]。Goldwasser等[55]试验表明抗瓜列当的野豌豆(Popany)品种体内酚类物质和木质素含量均高于瓜列当的易感品种, 说明诱导氨基丙酸类合成途径可能是寄主抗列当的机理之一。已有研究表明根瘤菌在防除锯齿列当的同时也提高了豌豆根系的PAL活力[11]。
Boari等[56]试验表明尖孢镰刀菌具有防除列当的能力, 同时也具有降解列当萌发诱导物5-脱氧独角金醇和4-脱氧列当醇的能力。鉴于这些真菌中有些能够定殖于某些植物的根区土壤中, 表明这类微生物可能具有通过降低寄主根系周围独脚金内酯的浓度从而来减少列当的寄生的潜能。
一些对植物有益的微生物也具有防除列当的能力, 包括根瘤菌[11]、丛枝菌根真菌[12]和假单胞菌[29]等。促进植物生长或抑制植物病原菌生长的微生物被报道能够用于防除列当。根瘤菌(P. SOM和P. 1236)被报道同时兼具促进豌豆生长和降低锯齿列当寄生率的功能[11]。其他微生物如摩西球囊霉[35]、荧光假单胞菌和芽孢杆菌[29,38]等也均兼具防除植物病害和列当的能力。
土壤中存在多种对植物土传病害有防治作用的微生物。这些微生物主要通过与病原菌争夺养分、水分, 抑制病原菌生长, 增强植物自身抗性来发挥防治土传病害的作用[57]。张淑梅等[58]报道枯草芽孢杆菌能够增强植物自身的抗病性; Bailey等[59]研究表明木霉菌产生的木聚糖酶具有增强植物抗病性的能力。寄主植物对列当的抗性机理与植物对病原菌的抗性机理十分类似。由于植物土传病害和列当均首先通过侵染植物的根系进而在地下对植物造成危害, 因此具有防治植物土传病害的微生物可能也具有防除列当的潜能。此外, 与其他非土壤中微生物相比, 用来源于土壤中的微生物防除列当杂草能够在列当生长早期阶段发挥作用, 不会对土壤及环境造成污染且可以在土壤中生长繁殖并持续发挥作用[23]。
本团队前期试验以筛选自健康土壤的上万株微生物资源库中对多种作物病害尤其是土传病害病原菌有拮抗作用的放线菌和真菌为材料, 从中筛选出强烈抑制向日葵列当种子萌发的放线菌(淡紫褐链霉菌,Sveshnikova)和真菌(灰黄青霉,Dierckx)各1株。在盆栽试验中, 淡紫褐链霉菌显著减少了向日葵列当的出土数量和生物量, 促进了寄主向日葵的生长并增加了向日葵的产量[60]。灰黄青霉的发酵液对向日葵列当和瓜列当种子的萌发均有强烈抑制作用, 本团队通过进一步研究发现灰黄青霉产生的次级代谢产物展青霉素能够抑制列当种子的萌发。产生展青霉素是灰黄青霉发挥抑制列当种子萌发作用的重要原因[61]。此外, 施加从土传拮抗微生物中筛选出的拮抗放线菌剂, 既降低了瓜列当出土数量又增加了加工番茄(Miller)的产量。2016年在新疆生产建设兵团第二师二十七团加工番茄田间试验中, 施加我们筛选出的农作物病害土传拮抗微生物, 显著降低了当季瓜列当的寄生数量, 表现在列当出土数量显著减少(列当出土数量与对照相比降低了68.7%), 从而减轻了当季列当对加工番茄的危害, 最终使得加工番茄增产57.0%。2017年采用同样的方式处理, 我们观察到在育苗阶段施加拮抗放线菌剂对加工番茄幼苗有显著促生作用。具体试验结果将于2017年试验结束后另行报道。筛选出的微生物对于瓜列当的防除作用在申报国家发明专利的同时, 已经由位于陕西省三原县的博秦生物工程有限公司完成工厂化菌剂生产, 初步具备大面积推广应用的条件。
列当杂草已经严重制约许多地区农业的发展, 寻找有效的防除途径迫在眉睫。由于列当与寄主关系密切且具有特殊的生活史, 传统措施难以达到理想防除效果。目前, 尚无既能有效防除列当又不对寄主造成危害且便于大规模推广应用的措施。在众多防除措施中, 农作物病害土传拮抗微生物具有明显的优势。在今后的研究中, 建议加强以下几个方面的研究:
1)扩大筛选范围, 从农作物病害土传拮抗微生物中筛选列当的潜在生防菌株。农作物病害土传拮抗微生物中存在具有防除列当杂草功能的菌株, 但目前仍缺乏农作物病害土传拮抗微生物尤其是放线菌防除列当的报道。具有防治植物土传病害功能的土壤微生物很多, 从这类微生物中继续筛选列当的生防菌株有望找到有效防除列当杂草的微生物。
2)加强农作物病害土传拮抗微生物防除列当机理的研究。目前, 拮抗微生物防除列当的机理尚不十分明确。土壤中微生物与植物生长关系密切。拮抗微生物是通过直接对列当产生作用还是通过影响寄主的生长或根系分泌物来间接防除列当尚不得而知。研究拮抗微生物防除列当的机理有助于将拮抗微生物应用于实际农田生产中列当的防除。
3)强化拮抗微生物与其他列当防除措施结合防除列当杂草的研究。单一措施防除列当往往难以达到理想的防除效果, 采用将拮抗微生物与其他措施结合的方式防除列当的效果可能优于单一列当防除措施。
[1] Joel D M, Hershenhorn J, Eizenberg H, et al. Biology and Management of Weedy Root Parasites[M]. Horticultural Reviews-westport Then New York, 2007, 33: 267
[2] Abang M M, Bayaa B, Abu-Irmaileh B, et al. A participatory farming system approach for sustainable broomrape (spp.) management in the Near East and North Africa[J]Crop Protection, 2007, 26(12): 1723‒1732
[3] 庞俊峰, 马德宁, 王德寿, 等. 向日葵列当生物学特性及抗列当向日葵分子育种研究进展[J]. 生物技术进展, 2012, 2(6): 391‒396 Pang J F, Ma D N, Wang D S, et al. The biological characteristics of sunflower broomrape and research progress on anti-broomrape molecular breeding[J]. Current Biotechnology, 2012, 2(6): 391‒396
[4] Cochavi A, Rubin B, Smirnov E, et al. Factors affecting Egyptian Broomrape () control in carrot[J]. Weed Science, 2016, 64(2): 321‒330
[5] Fenández-Aparicio M, Sillero J C, Rubiales D. Intercropping with cereals reduces infection byin legumes[J].Crop Protection, 2007, 26(8): 1166‒1172
[6] Trabelsi I, Yoneyama K, Abbes Z, et al. Characterization of strigolactones produced byandresistant faba bean (L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production[J]. South African Journal of Botany, 2017, 108: 15‒22
[7] Tan A. Sunflower (L.) researches in the Aegean region of Turkey[J]. Helia, 2010, 33(53): 77‒84
[8] Klein O, Kroschel J. Biological control ofspp. with, a review[J]. BioControl, 2002, 47(3): 245‒277
[9] Hristeva T, Dekalska T, Denev L. Structural and functional of biodiversity of microbial communities in the rhizosphere of plants infected with broomrapes (Orobanchaceae)[J]. Biotechnology and Biotechnological Equipment, 2013, 27(5): 4082‒4086
[10] Nemat Alla M M, Shabana Y M, Serag M M, et al. Granular formulation offor biological control of faba bean and tomato[J]. Pest Management Science, 2008, 64(12): 1237‒1249
[11] Mabrouk Y, Zourgui L, Sifi B, et al. Some compatiblestrains in peas decrease infections when parasitised by[J]. Weed Research, 2007, 47(1): 44‒53
[12] Louarn J, Carbonne F, Delavault P, et alReduced germination ofseeds in the presence of arbuscular mycorrhizal fungi or their exudates[J]PLoS One, 2012, 7(11): e49273
[13] Parker C. Observations on the current status ofandproblems worldwide[J]Pest Management Science, 2009, 65(5): 453‒459
[14] Sauerborn J. The economic importance of the phytoparasitesand[C]. Proceedings of the 5th International Symposium of Parasitic Weeds. Nairobi, Kenya, 1991: 137‒143
[15] Parker C. The parasitic weeds of the Orobanchaceae[M]. Parasitic Orobanchaceae. Springer, 2013: 313‒344
[16] Parker C. The present state of theproblem[C]. Biology and Management of. Proceedings of the third international workshop one and relatedresearch, Amsterdam, Netherlands. Royal Tropical Institute, 1994: 17‒26
[17] Ghannam I, Al-Masri M, Barakat R. The effect of herbicides on the Egyptian broomrape () in tomato fields[J]. American Journal of Plant Sciences, 2012, 3(3): 346‒352
[18] 段永辉, 张新建, 陈卫民. 48%仲丁灵乳油防除向日葵列当效果研究[J]. 现代农业科技, 2010, (11): 154‒155Duan Y H, Zhang X J, Chen W M. Study on control effect of 48% butralin EC againstLoefling[J]Modern Agricultural Science and Technology, 2010, (11): 154‒155
[19] Aly R, Goldwasser Y, Eizenberg H, et al. Broomrape () control in sunflower () with Imazapic 1[J]. Weed Technology, 2001, 15(2): 306‒309
[20] Pérez-de-Luque A, Eizenberg H, Grenz J H, et al. Broomrape management in faba bean[J]. FieldCrops Research, 2010, 115(3): 319‒328
[21] Fernandez-Aparicio M, Sillero J C, Rubiales D. Intercropping with cereals reduces infection byin legumes[J]. Crop Protection, 2007, 26(8): 1166‒1172
[22] Ma Y Q, Jia J N, An Y. Potential of some hybrid maize lines to induce germination of sunflower broomrape[J]. Crop Science, 2013, 53(1): 260‒270
[23] Habimana S, Murthy K, Hatti V, et al. Management ofin field crops—A review[J]. Scientific Journal of Crop Science, 2013, 2(11): 144‒158
[24] Grenz J, Manschadi A, Uygur F, et al. Effects of environment and sowing date on the competition between faba bean () and the parasitic weed[J]. Field Crops Research, 2005, 93(2): 300‒313
[25] Ashrafi Z, Hassan M, Mashhadi H, et al. Applied of soil solarization for control of Egyptian broomrape () on the cucumber () in two growing seasons (in Iran)[J]. Journal of Agricultural Technology, 2009, 5(1): 201‒212
[26] Thomas H, Sauerborn J, Müller-Stöver D, et al. The potential off. sp.as a biological control agent forin sunflower[J]. Biological Control, 1998, 13(1): 41‒48
[27] Boari A, Vurro M. Evaluation ofspp. and other fungi as biological control agents of broomrape ()[J]. Biological Control, 2004,30(2): 212‒219
[28] Dor E, Hershenhorn J, Andolfi A, et al.as a new pathogen of the parasitic weedspp.[J]. Phytoparasitica, 2009, 37(4): 361‒370
[29] Zermane N, Souissi T, Kroschel J, et al. Biocontrol of broomrape (Forsk. andPoir.) byisolate Bf7-9 from the faba bean rhizosphere[J]. Biocontrol Science and Technology, 2007, 17(5): 483‒497
[30] Müller-Stöver D, Kroschel J. The potential offor biological control ofspp.[J]. Biological Control, 2005, 33(3): 301‒306
[31] Aybeke M, Şen B, Ökten S., a new potential biological control of the root parasitic weed[J]. Journal of Basic Microbiology, 2014, 54(S1): S93‒S101
[32] Dor E, Hershenhorn J. Evaluation of the pathogenicity of microorganisms isolated from Egyptian broomrape () in Israel[J]. Weed Biology and Management, 2009, 9(3): 200‒208
[33] Logrieco A, Mule G, Moretti A, et al. Toxigenicspecies and mycotoxins associated with maize ear rot in Europe[J]. European Journal of Plant Pathology, 2002, 108(7): 597‒609
[34] Bouraoui M, Abbes Z, Rouissi M, et al. Effect of rhizobia inoculation, N and P supply onparasitising faba bean (minor) under field conditions[J]. Biocontrol Science and Technology, 2016, 26(6): 776‒791
[35] Fernández-Aparicio M, Garcia-Garrido J M, Ocampo J A, et al. Colonisation of field pea roots by arbuscular mycorrhizal fungi reducesandspecies seed germination[J]. Weed Research, 2010, 50(3): 262‒268
[36] El-Kassas R, El-Din Z K, Beale M H, et al. Bioassay-led isolation ofand verrucarin A as germination inhibitors of[J]. Weed Research, 2005, 45(3): 212‒219
[37] Gonsior G, Buschmann H, Szinicz G,et al. Induced resistance—an innovative approach to manage branched broomrape () in hemp and tobacco[J]. Weed Science, 2004, 52(6): 1050‒1053
[38] Barghouthi S, Salman M. Bacterial inhibition ofandradical elongation[J]. Biocontrol Science and Technology, 2010, 20(4): 423‒435
[39] Dadon T, Nun N B, Mayer A M. A factor frominhibits germination and radicle growth of[J]. Israel Journal of Plant Sciences, 2004, 52(2): 83‒86
[40] Miché L, Bouillant M L, Rohr R, et al. Physiological and cytological studies on the inhibition ofseed germination by the plant growth-promoting bacterium[J]. European Journal of Plant Pathology, 2000, 106(4): 347‒351
[41] Cimmino A, Fernández-Aparicio M, Andolfi A, et al. Effect of fungal and plant metabolites on broomrapes (andspp.) seed germination and radicle growth[J]. Journal of Agricultural and Food Chemistry, 2014, 62(43): 10485‒10492
[42] Mabrouk Y, Simier P, Arfaoui A, et al. Induction of phenolic compounds in pea (L.) inoculated byand infected with[J]. Journal of Phytopathology, 2007,155(11-12): 728‒734
[43] Fernández-Aparicio M, Cimmino A, Evidente A, et al. Inhibition ofseed germination and radicle growth by allelochemicals identified in cereals[J]. Journal of Agricultural and Food Chemistry, 2013, 61(41): 9797‒9803
[44] Dor E, Evidente A, Amalfitano C, et al. The influence of growth conditions on biomass, toxins and pathogenicity off. sp., a potential agent for broomrape biocontrol[J].Weed Research, 2007, 47(4): 345‒352
[45] Mabrouk Y, Mejri S, Hemissi I, et al. Bioprotection mechanisms of pea plant byagainst[J]. African Journal of Microbiology Research, 2010, 4(23): 2570‒2575
[46] Brahmi I, Mabrouk Y, Brun G, et al. Phenotypical and biochemical characterisation of resistance for parasitic weed (Poir.) in radiation-mutagenised mutants of chickpea[J]. Pest Management Science, 2016, 72(12): 2330‒2338
[47] Mabrouk Y, Simier P, Delavault P, et al. Molecular and biochemical mechanisms of defence induced in pea byagainst[J]. Weed Research, 2007, 47(5): 452‒460
[48] Crews L J, McCully M E, Canny M J. Mucilage production by wounded xylem tissue of maize roots-time course and stimulus[J]. Functional Plant Biology, 2003, 30(7): 755‒766
[49] Lewis J, Barksdale T, Papavizas G. Greenhouse and field studies on the biological control of tomato fruit rot caused by[J]. Crop Protection, 1990, 9(1): 8‒14
[50] Hammerschmidt R, Nuckles E, Kuć J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to[J]. Physiological Plant Pathology, 1982, 20(1): 73‒82
[51] Pérez-de-Luque A, González-Verdejo C I, Lozano M D, et al. Protein cross-linking, peroxidase and β-1, 3-endoglucanase involved in resistance of pea against[J]. Journal of Experimental Botany, 2006, 57(6): 1461‒1469
[52] Akimova G, Sokolova M, Nechayeva L, et al. Peroxidase in the interactions between pea plants and Rhizobium[M]. Doklady Biological Sciences. Springer,2002: 364‒366
[53] Demirbaş S, Acar O. Superoxide dismutase and peroxidase activities from antioxidative enzymes inL. roots duringWallr. penetration[J]. Fresenius Environmental Bulletin, 2008, 17(8): 1038‒1044
[54] Hammond-Kosack K E, Jones J. Resistance gene- dependent plant defense responses[J]. The Plant Cell, 1996, 8(10): 1773‒1791
[55] Goldwasser Y, Hershenhorn J, Plakhine D, et al. Biochemical factors involved in vetch resistance to[J]. Physiological and Molecular Plant Pathology, 1999, 54(3): 87‒96
[56] Boari A, Ciasca B, Pineda-Martos R, et al. Parasitic weed management by using strigolactones-degrading fungi[J]. Pest Management Science, 2016, 11(72): 2043‒2047
[57] Bever J D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests[J]. New Phytologist, 2003, 157(3): 465‒473
[58] 张淑梅, 王玉霞, 赵晓宇, 等. 生物拌种剂防治大豆根腐病效果和机制[J]. 大豆科学, 2009, 28(5): 863‒868 Zhang S M, Wang Y X, Zhao X Y, et al. Efficacy and mechanism of biological seed coating agent against soybean root rot disease caused byf. sp.[J]Soybean Science, 2009, 28(5): 863‒868.
[59] Bailey B, Lumsden R. Direct effects ofandon plant growth and resistance to pathogens[J]. Trichoderma and Gliocladium, 1998, 2: 185‒204
[60] Chen J, Xue Q H, McErlean C S P, et al. Biocontrol potential of the antagonistic microorganismagainst[J].BioControl, 2016, 61(6): 781‒791
[61] Chen J, Wei J, Gao J M, et al. Allelopathic inhibitory effects ofproduced patulin on the seed germination ofWallr. andPers.[J]. Allelopathy Journal, 2017, 41(1): 65‒80
Use of microorganisms in controlling parasitic root weedspp.*
CHEN Jie1,2, MA Yongqing3**, XUE Quanhong1
(1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; 2. College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; 3. State Key Laboratory of Soil Erosion and Dryland Farming, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)
Parasitic root weedspp. has already severely constrained the development of agriculture in many areas around the world and it is therefore urgent to develop effective control measures ofspp. As this parasitic root weed has a specific life cycle and is highly intimate to its host plants, it is difficult to develop an ideal control measure based on traditional practices. Up till now, there has been no measure to effectively controlspp. to make it completely harmless to host plants and easily applicable at large field scale. Among the control measures available, the use of micro-organisms has increased concerns. In this paper, national and global efforts to controlspp. by the use of micro-organisms and the mechanisms of the control measures are summarized. Until now, research on biocontrol ofspp.by the use of micro-organisms has focused on pathogens ofspp., such asspp. and symbiotic bacteria (such asspp.) of host plants. The mechanisms of the use of micro-organisms to controlspp. have involved in two ways: one is to secrete metabolites that directly inhibited the germination and growth ofspp. or to indirectly affect the germination ofspp. by the degradation of the chemical compounds which stimulated the germinationofspp.; another way is to indirectly affect the parasitic behavior and growth ofspp. by enhancing host plant resistance againstspp. Furthermore, the possibility and research advances by the use of soil-borne antagonistic micro-organisms against soil-borne plant pathogens in controlling weedyspp. have been discussed. Both soil-borne plant pathogens andspp. first infected plant roots underground and then damaged normal growth of the plants. Resistances of plants to soil-borne plant diseases were similar to those ofspp. Thus, micro-organisms that isolated from soils and controlled soil-borne plant diseases may also have the potential to control parasitic root weedspp. We screened out one actinomycete strain (Sveshnikova) and one actinomycete strain (Bhuyan B.K.) from soil-borne mic-organisms that against soil-borne plant diseases. These two strains effectively controlledWallr. andPers., respectively, in pot experiments. The application ofinoculum in field experiment reduced the epigaeous number ofand increased the yield of tomato, simultaneously. In conclusion, the use of micro-organisms to control parasitic root weedspp. is an effective measure.
spp.; Parasitic weed; Biocontrol; Micro-organisms; Soil-borne micro-organism; Soil-borne disease
Corresponding author, E-mail: mayongqing@ms.iswc.ac.cn
May 31, 2017; accepted Jul. 26, 2017
10.13930/j.cnki.cjea.170500
Q939.96
A
1671-3990(2018)01-0049-08
通信作者:马永清, 主要研究方向为寄生植物与植物化感作用。E-mail: mayongqing@ms.iswc.ac.cn 陈杰, 主要研究方向为土壤微生物。E-mail: chenjie03306@163.com
2017-05-31
2017-07-26
*This study was supported by the Science and Technology Plan for the Field of Agriculture and Social Development by the Xinjiang Production and Construction Corps (2016AC007).
*新疆生产建设兵团农业与社会发展领域科技计划项目(2016AC007)资助
陈杰, 马永清, 薛泉宏. 利用微生物防除根寄生杂草列当[J]. 中国生态农业学报, 2018, 26(1): 49-56
CHEN J, MA Y Q, XUE Q H. Use of microorganisms in controlling parasitic root weedspp.[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 49-56