王秋菊,刘 峰,焦 峰,孙 兵,郭中原,常本超,张劲松,高中超,姜 辉
盐化草甸土和黑土型水田土壤连续深耕改土效果
王秋菊1,刘 峰2※,焦 峰3,孙 兵4,郭中原5,常本超1,张劲松1,高中超1,姜 辉2
(1. 黑龙江省农业科学院土壤肥料与资源环境研究所,哈尔滨 150086; 2. 黑龙江省农业科学院科研处,哈尔滨 150086; 3. 黑龙江八一农垦大学,大庆 163319; 4. 黑龙江省农业科学院耕作栽培研究所,哈尔滨 150086; 5. 黑龙江省庆安水利实验站,庆安 152400)
为明确深耕在不同类型水田土壤上的改土效果及对水稻产量的影响,该研究应用自主研发水田深耕犁,在黑土和盐化草甸土上开展深翻、浅翻与旋耕对比试验研究。结果表明,深耕在不同类型土壤上对水稻产量及土壤理化性质影响存在差异:1)黑土深翻区增产7.28%~8.37%,浅翻区增产6.02%~7.72%,盐化草甸土深翻区和浅翻区与旋耕相比第1年水稻产量差异不大;第2年减产9.96%~11.03%;2)翻耕促进黑土土壤养分均一化,耕作层土壤养分降低不明显,土层间养分含量差异变小,盐化草甸土深耕后造成表层养分浓度降低,0~20 cm土层浅翻区和深翻区土壤有机质与对照相比分别下降4.57和6.68 g/kg,全氮分别下降0.24和0.29 g/kg,碱解氮0~10 cm土层分别比对照降低2.31和11.52 mg/kg,pH值明显增加,0~30cm土层交换性Na+浓度增加;3)与对照相比,浅翻和深翻降低了黑土下层土固相比率、容重,提高土壤通气、透水性,>10~20 cm土层土壤固相比率比对照分别降低4.23%和3.23%,土壤容重下降0.09 g/cm3和0.08 g/cm3,通气系数分别提高3.04倍和3.42倍,透水系数提高1.71倍和1.14倍;>20~30 cm土层深翻区土壤固相比率降低1.86%,通气系数和饱和透水系数比对照提高0.86倍和1.87倍;盐化草甸土浅翻区和深翻区均有增加下层土固相率和容重,降低通气、透水性的趋势。盐化草甸土水田不适合深耕,黑土型水田土壤深耕可改善土壤理化性质,提高水稻产量。
土壤;作物;物理性质;水田;深耕;化学性质;产量
黑龙江省是中国粳稻主产区,水稻种植地区主要分布在沿江地带和低平原地区[1],由于种稻时间短,水田土壤没有完全发育成水稻土,仍保持原土类特征。在基础整地方面多以旋耕灭茬为主,辅以春季水整地,耕作深度长期维持在8~12 cm[2-4],耕作层薄,犁底层浅,制约水稻根系伸展,根系固持土壤能力下降,后期易倒伏[5],影响水稻生长、产量和品质[6-7]。另据日本长期肥料试验统计结果,水稻产量对地力的依存度明显高于同是禾本科作物的小麦[8-9],因此提高水田土壤肥力对于保障水稻高产稳产意义重大。但是水田耕作层薄,土壤养分容量低,自然肥力发挥受到制约,生产上常通过增施化学肥料维系水稻高产[10-12]。不仅浪费肥料,也污染环境。三江平原洪河农场在白浆土上试验得出结果,水田耕深由10 cm增加到15 cm,产量提高约10%;日本统计调查表明,高产稻田的耕作层厚度多在16~18 cm,有的超过20 cm[13],水稻产量高低与耕层厚度密切相关。目前,关于黑龙江省不同类型水田土壤适宜耕深尚缺乏明确的研究结论。为明确深耕在不同类型土壤上的效果,本研究选择了黑龙江省广泛分布的黑土型水田和盐化草甸土水田土壤,在每类土壤上开展深耕对比试验研究,明确深耕在不同类型水田土壤上的改土效果及对水稻产量的影响,探讨不同类型土壤适宜的耕层厚度,为深耕技术应用与推广提供理论支撑与技术参考。
供试土壤分别为黑土和盐化草甸土,供试黑土试验地点位于黑龙江省庆安县水利实验站水田试验区(东经127°47′,北纬47°15′);供试盐化草甸土试验地点位于黑龙江省哈尔滨市道外区民主乡示范园区(东经127°08′,北纬45°47′)水田试验区。2种土壤种植水稻年限均在10 a以上。2个试验点试验前均多年采取秋季旋耕整地、翌春泡田-水整地的耕作方式;历年施肥量,庆安试验点纯氮、磷、钾合计约300 kg/hm2,民主试验约325 kg/hm2。供试土壤基本性质如表1,庆安试验点土壤肥力高于民主试验点。
表1 供试土壤基本特性
注:土壤质地分级采用国际分类法。
Note: International classification is used for soil texture classification.
试验设如下3个处理:
1)旋耕区(CK):水稻收获后,采用旋耕机(山东潍坊象力机械有限公司生产,型号:GAN200)进行旋耕处理,耕深8~10 cm;
2)浅翻区:水稻收获后,采用五铧犁翻耕作业,耕深15~18 cm;
3)深翻区:采用自主研制的水田深耕犁作业,耕深23~25 cm。水田深耕犁如图1所示。为提高土垡翻扣效果,该犁的犁头比常规的五铧犁大,最大耕翻深度可达到30 cm;犁头尺寸如图2所示。
图1 水田深耕犁
图2 犁体结构与尺寸
2014年水稻收获后处理试验区,秋季翻耕后经过冬季的冻融交替过程,第2年春季水田进水前旋耕1遍;2015年秋在上年试验区上进行同样处理。
本研究在黑土和盐化草甸土上均采用大田对比的研究方法,每个处理面积1 000 m2。2个地点的施肥方法和施肥水平与往年一致,具体如下:N肥施用比例按照基肥∶返青肥∶穗肥=4∶3∶3,K肥按照基肥∶穗肥=3∶2比例施用,P肥按照基肥一次性施入,基肥在春季旋耕前撒入土壤表面,然后用旋耕机混拌到土壤中,第一次追肥在水稻插秧7 d后水稻返青期表施氮素(民主试验点2015年5月27日、2016年5月30日施返青肥;庆安试验点2015年5月29日、2016年5月30日施返青肥),第2次追肥在水稻拔节期施用氮肥和钾肥(民主试验点2015年6月25日、2016年6月27日施肥,庆安试验点2015年6月26日、2016年5月28日施肥);庆安试验点水稻全生育期施肥量纯N:150 kg/hm2,纯P2O5:70 kg/hm2,纯K2O:75 kg/hm2,民主试验点施肥量按照纯N:165 kg/hm2,纯P2O5:90 kg/hm2,纯K2O:60 kg/hm2施用;灌溉模式在水稻分蘖期和孕穗期、灌浆期一直保持有水层,其他时期均采用浅-湿-干间歇灌溉模式;供试水稻品种:庆安试验田为龙庆稻3号,民主试验田为龙稻5。育苗采用旱育稀植大棚育苗技术,水稻秧龄达三叶一心时进行机械插秧,插秧密度为,行距30 cm、株距13.2 cm。
土壤取样方法:2个地点均于2015年秋季进行取样。化学样品取样,耕层土壤化学样品0~10 cm和>10~20 cm土层土壤每个处理按S型取样5点,混合后按四分法留500 g左右土样带回实验室备用,>20~30 cm土层土样在取原状土时直接取化学样品。物理指标测定土壤取样参照《土壌および作物の診断基準》一书及相关文献[14-15],土壤物理性质具有比较大的稳定性,空间异质性小,测定土壤物理性质的原状土采样,要从上述化学样品采样的各点中选择一个点进行剖面挖取,挖一个60 cm×60 cm×60 cm土壤剖面,用100 mL的环刀分层取原状土样和化学分析样品进行物理指标分析,取样层次为0~10、>10~20、>20~30 cm,每个层次取3个平行样,取后的环刀用胶带密封后带回实验室备用。取原状土同时,取土壤化学样品,
化学指标分析方法:土壤pH值采用美国产原位土壤pH计测定,测定位置分别为5、15、25 cm 3层土壤,在挖取的剖面不同位置和方向,测5次,取平均值;碱解氮采用扩散吸收法测定;全氮采用半微量凯氏定氮法[16];土壤有机质采用重铬酸钾外加热法测定;阳离子代换量采用EDTA-乙酸胺盐交换法[17]。
物理指标测定方法:用土壤DIK-1130土壤三相测定仪测定土壤三相比;土壤容重采用环刀法测定、土壤含水量采用烘干法测定;土壤饱和导水率采用DIK-4012土壤透水性测定仪测定;土壤通气系数采用DIK-5001土壤透气性测定仪测定[18];土壤粒级组成采用MS-2000激光粒度仪测定,参照杨金玲等提出的校正系数校正[19]。
植株取样及调查:在水稻成熟期,每个处理按照对角线法选择3个点,在每个点中选择10株有代表性水稻植株进行室内考种调查产量性状,水稻籽实收获采用久保田水稻联合收割机进行全区实收,测定产量,并按照水稻籽实含水量为14.5%折合计算水稻单位面积产量。
用Microsoft Excel及 DPS 6.85处理数据及试验数据的相关性分析。
连续2年产量调查结果如表2所示。黑土深翻区和浅翻区均比对照表现增产,其中深翻区增产7.28%~8.37%,浅翻区增产6.02%~7.72%,从产量性状看,主要表现为水稻有效穗数和穗粒数增加、空瘪率降低。在盐化草甸土上2年试验结果,第1年深翻区和浅翻区产量与对照无明显差异;第2年减产9.96%~11.03%,从产量性状看,水稻有效穗数降低是导致水稻产量降低的主要因子。
表2 深耕对水稻产量影响
注:“—”表示该指标未测定。下同。
Note: “—”indicates that the index has not been measured. The same as below.
表3是2015年水稻收获后土壤化学性质调查结果。从表3看出,黑土对照区的土壤有机质、碱解氮、阳离子代换量由表层向下呈降低趋势。深翻促进土壤养分均一化,不同土层间养分浓度差异变小;深翻区下层土养分比对照略有增加,但未导致耕层养分降低。盐化草甸土土壤有机质、全氮、碱解氮由表层向下呈明显降低趋势。浅翻区和深翻区由于下层瘠薄土层混入表层导致耕层土壤肥力降低,浅翻和深翻区0~20 cm土层土壤有机质与对照相比分别下降4.57和6.68 g/kg(0~10 cm土层和>10~20 cm土层平均降低值),全氮分别下降0.24和0.29g/kg,碱解氮0~10 cm土层分别比对照降低2.31和11.52 mg/kg。对照区土壤pH值和交换性Na+在剖面上分布均呈上低下高趋势,深翻和浅翻后,由于将下层高pH值土壤翻到表层,导致0~30 cm土层交换性Na+浓度增加和0~10 cm土层pH值明显增加。盐化草甸土深翻后造成表层土壤养分浓度降低、pH值增加,可能是导致水稻初期生育不良、分蘖降低、有效穗数低的主要原因。
从表4看出,黑土对照区0~10 cm土壤固相率为56.21%,下层土增加到62.57%~64.28%;浅翻和深翻降低了下层土壤固相比率,其中>10~20 cm土层比对照分别降低4.23%和3.23%;深翻区>20~30 cm土层比对照降低1.86%。土壤通气系数和饱和透水系数也随翻耕深度增加明显提高,其中浅翻区>10~20 cm土层分别比对照提高3.04倍和1.71倍,深翻区分别提高3.42倍和1.14倍;>20~30 cm土层深耕区分别比对照提高0.86倍和1.87倍。>10~20 cm土层土壤容重浅翻区和深翻区分别比对照下降0.09和0.08g/cm3,>20~30 cm土层深翻区下降0.03g/cm3。
深耕对盐化草甸土三相变化影响与黑土不同,浅翻和深翻均有增加下层土固相率和容重,降低通气、透水性的趋势。产生这种现象的原因,可能是由于盐化草甸土土壤颗粒分散,呈单粒状态,翻耕后水整地打浆过程中,一些直径较小的颗粒下移淀浆,导致土壤孔隙阻塞通透性降低所致,尚有待深入研究。另外,在盐化草甸土20~30 cm土层,旋耕的容重较低,可能是机械作业误差大,给取样造成一定影响,导致个别数据异常现象。
表3 深耕对土壤化学性质的影响
表4 深翻对土壤物理性质的影响
黑龙江水田多采用旋耕整地技术,耕翻深度仅10 cm左右。长期的单一旋耕导致耕层越来越薄,水稻根系的生长空间变小,根系垂直生长受阻,固持能力下降,水稻生育后期易发生倒伏现象[5]。在旱田改种水田初期,由于没有形成犁底层,可能对水稻生长无明显影响,随着水稻种植年限增加和犁底层的形成,耕层变浅的问题就越来越凸显[20]。针对上述问题分别在不同类型土壤上开展增加耕深的试验研究,以探讨在不同土壤上的适合耕作模式。研究结果表明,适当加深耕层是改善水田土壤环境、提高土壤肥力的有效措施,但在不同土壤上深耕的效果完全不同,甚至相反。首先,黑土深耕利于提高水稻产量。黑土是肥力较高的土壤,土壤养分丰富,上下层差异小[21-22],在黑土型水田上,深翻使土壤养分在各层含量趋于一致,提高整个土体的供肥水平;同时具有提高土壤通气、透水性、降低容重效果,与旱田研究结果一致[23-24]。但综合考虑到机械深耕所增加的作业成本以及深耕后土体松软影响机械的可进入性,在黑土型水田土壤上耕作深度为15~20 cm较为适宜。其次,盐化草甸土质地粘重,排水不畅,无明显犁底层,土壤pH值高,上下土层之间养分差异大[25-26];耕翻过深不仅导致耕层土壤肥力降低;也将pH值高的碱化层翻到耕层内,造成耕层Na+增加、pH上升,危害水稻生长[27-28]。本研究认为,盐化草甸土深翻后水稻初期生育不良、分蘖率降低。连续2年测产结果,与对照区比较,深翻和浅翻区第1年水稻减产不明显,第2年表现明显减产。说明连续深翻会导致水稻减产。水稻产量降低与盐化草甸土耕层肥力降低、pH值上升有关,可能也与土体中Na+浓度增加有关,有待于进一步研究。盐化草甸土土壤分散度高,不适合土壤团粒的形成[29],深耕可能会导致一些微小的土壤颗粒在整地打浆过程中随水下移、淀浆,阻塞土壤孔隙,降低土壤通透性,土体环境变劣。以往研究盐碱土种稻技术中,多注重田间水分管理,并根据盐分运行原理[30-31],提出了以水洗盐、以水压盐、以水排盐的一系列盐碱土种稻的水分管理技术[32-33],试验点采用的是稻田灌溉模式是浅-湿-干灌溉模式,未设计排水的洗盐的排水出路,可能也是造成深耕后土体盐分积累的原因。从本研究结果看出,盐化草甸土适宜的耕作深度为10~15 cm。关于深耕导致减产的深层原因尚需要深入探讨和研究。研究区土壤物理性质具有比较大的稳定性,空间异质性小,故本文原状土取样方法参照文献[14]挖取一个剖面,取样缺少重复可能会对研究结果产生一定的误差,今后对土壤原状土田间取样过程和方法会适当进行改进,增加取样位点。由于本研究是机械作业,大田试验没有小区重复,可能是本研究的一个遗憾,由于田间机械作业没有小区人为控制的精确,可能会给试验带来一定误差,给试验结果的准确性带来一定影响,但并不影响试验结果的大体规律,试验结果更能反映生产实际情况。
1)深耕在不同土壤上对水稻产量影响存在差异。黑土深翻区和浅翻区与对照相比表现增产,深翻区增产7.28%~8.37%,浅翻区增产6.02%~7.72%;在盐化草甸土上第1年深翻区和浅翻区增产均不明显;第2年减产9.96%~11.03%。
2)深耕在不同类型土壤上对土壤养分影响存在差异。黑土深耕后耕作层土壤有机质、碱解氮没有明显下降,各土层土壤肥力较为一致。盐化草甸土浅翻和深翻区由于下层瘠薄土层混入表层导致耕层土壤肥力降低,0~30 cm土层交换性Na+浓度增加和0~10 cm土层pH值明显增加。
3)深耕对不同类型土壤垂直结构影响存在差异。黑土浅翻和深翻降低了下层土固相率,提高了土壤通气系数和透水系数,10~20 cm土层土壤固相比率比对照分别降低4.23%和3.23%,通气系数分别提高3.04倍和3.42倍,透水系数分别提高1.71倍和1.14倍;深翻区土壤固相比率>20~30 cm土层比对照降低1.86%;土壤通气系数和饱和透水系数分别比对照提高0.86倍和1.87倍;土壤容重>10~20 cm土层浅翻区和深翻区分别比对照下降0.09和0.08 g/cm3。盐化草甸土浅翻区和深翻区均有增加下层土固相率和容重,降低通气、透水性的趋势,使土壤物理性质没有得到改善。
[1] 黑龙江省统计局,国家统计局黑龙江调查总队编. 黑龙江统计年鉴[M]. 中国统计出版社,2015.
[2] 麻海春,魏延雪. 寒地水田耕作方式探讨[J]. 农民致富之友,2016(6):0144-0145.
[3] 杨正梅. 我国水田保护性耕作技术研究进展[J]. 安徽农业科学,2007,35(25):7797-7798.
Yang Zhengmei. Research progress on paddy-field conservation tillage technology in China[J]. Journal of Anhui Agri.Sci, 2007, 35(25): 7797-7798. (in Chinese with English abstract)
[4] 董力洪,药林桃,曹晓琳,等. 南方双季稻区水田机械化保护性耕作试验[J]. 广东农业科学,2015(24):17-21.
Dong Lihong, Yao Lintao, Cao Xiaolin, et al. Experimental study on paddy field mechanized conservation tillage in double-cropping areas in southern China[J]. Guangdong Agricultural Sciences, 2015, 42(24): 17-21. (in Chinese with English abstract)
[5] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学,2011,44(1):36-46.
Yang Jianchang. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011, 44(1): 36-46. (in Chinese with English abstract)
[6] 陈达刚,周新桥,李丽君,等. 华南主栽高产籼稻根系形态特征及其与产量构成的关系[J]. 作物学报,2013,39(10):1899-1908. Chen Dagang, Zhou Xinqiao, Li Lijun, et al. Relationship between root morphological characteristics and yield components of major commercialrice in South China[J]. Acta Agronomica Sinica, 2013, 39(10): 1899-1908. (in Chinese with English abstract)
[7] 褚光,周群,薛亚光,等. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响[J].作物学报,2014,40(7):1245-1258.
Chu Guang, Zhou Qun, Xue Yaguang, et al. Effects of cultivation patterns on root morph-physiological traits and above ground development ofHybrid rice cultivar Changyou5[J]. Acta Agronomica Sinica, 2014, 40(7): 1245-1258. (in Chinese with English abstract)
[8] 久馬一剛.土とはなんだろうか[M]. 京都:京都大学学術出版会,2013.2.20.
[9] De Datta S K.Principles and practices of rice production [M]. New York: John Wiley and Sons, 1981.
[10] 严洁,邓良基,黄剑. 保护性耕作对土壤理化性质和作物产量的影响[J]. 中国农机化,2005(2):31-34.
Yan Jie, Deng Liangji, Huang Jian. Effect of conservation tillage on soil physicochemical properties and crop yields[J]. Journal of Chinese Agricultural Mechanization, 2005(2): 31-34. (in Chinese with English abstract)
[11] 白伟,孙占祥,郑家明,等. 辽西地区土壤耕层及养分状况调查分析[J]. 土壤,2011,43(5):714-719.
Bai Wei, Sun Zhanxiang, Deng Jiaming, et al. Soil plough layers and soil nutrients in western Liaoning[J]. Soils, 2011, 43(5): 714-719. (in Chinese with English abstract)
[12] 黄晶,高菊生,张杨珠,等. 长期不同施肥下水稻产量及土壤有机质和氮素养分的变化特征[J].应用生态学报,2013,24(7):1889-1894.
Huang Jing, Gao Jusheng, Zhang Yangzhu, et al. Change characteristics of rice yield and soil organic matter and nitrogen contents under various long-term fertilization regimes[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1889-1894. (in Chinese with English abstract)
[13] 川口桂三郎编,汲惠吉,孙虹霞,孙昌其,译. 水田土壤学[M]. 北京:农业出版社,1985.
[14]北海道道立中央農業試験場編集.土壌および作物栄養の診断基準[M].札幌:北海道農政部印,1992.
[15] Meng Qinying, Ken Araya, Guang Xinpan, et al. Soil layer displacing plough-part 3: Black and Brown soils[J]. Engineering in Agriculture, Environment and Food, 2016(9): 79-83.
[16] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2005:30-165.
[17] 鲁如坤. 土壤农业化学分析[M]. 北京:中国农业科技出版社,1999.
[18] 翁德衡. 土壤物理性测定法[M]. 重庆:科学技术文献出版社重庆分社,1979.
[19] 杨金玲,张甘霖,李德成,等. 激光法与湿筛-吸管法测定土壤颗粒组成的转换及质地的确定[J]. 土壤学报,2009,46(5):772-780.
Yang Jinling, Zhang Ganlin, Li Decheng, et al. Relationships of soil particle size distribution between sieve-pipette and laser diffraction methods[J]. Acta Pedologica Sinica, 2009, 46(5): 772-780. (in Chinese with English abstract)
[20] Zhao S C, He P, Qiu S J, et al. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China[J]. Field Crops Research, 2014, 169: 116-122.
[21] 康日峰,任意,吴会军,等. 26年来东北黑土区土壤养分演变特征[J]. 中国农业科学,2016,49(11):2113-2125.
Kang Rifeng, Ren Yi, Wu Huijun, et al. Changes in the nutrients and fertility of black soil over 26 years in northeast China[J]. Scientia Agricultura Sinica, 2016, 49(11): 2113-2125. (in Chinese with English abstract)
[22] 黑龙江省土地管理局,黑龙江省土壤普查办公室. 黑龙江土壤[M]. 北京:农业出版社,1992.
[23] 王秋菊,刘峰,高中超,等. 黑土立体休闲技术改土增产效果[J]. 农业工程学报,2017,33(6):100-106.
Wang Qiuju, Liu Feng, Gao Zhongchao, et al. Effect of improving black soil and crop yield by using soil layer up-down fallow technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 100-106. (in Chinese with English abstract)
[24] 王秋菊,焦峰,刘峰,等. 黑土稻田连续深耕改善土壤理化性质提高水稻产量大田试验[J]. 农业工程学报,2017,33(9):126-132.
Wang Qiuju, Jiao Feng, Liu Feng, et al. Black-soil paddy field experiment on improving soil physical and chemical properties and increasing rice yield by continuous deep ploughing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 126-132. (in Chinese with English abstract)
[25] Malcolm E, Sumner R N.Sodic soils distribution, properties, management and environmental consequences[M]. New York: Oxford University Press, 1998.
[26] 罗新正,孙广友. 松嫩平原含盐碱斑的重度盐化草甸土种稻脱盐过程[J]. 生态环境,2004,13(1):47-50.
Luo Xinzheng,Sun Guangyou.Desalinization process through cultivating rice in heavy salinized meadow soil containing saline-alkaline patches[J]. Ecology and Environment, 2004, 13(1): 47-50. (in Chinese with English abstract)
[27] 燕新红. 不同改良方法对碱化草甸土理化性状的影响[D]. 哈尔滨:东北农业大学,2012.
Yan Xinhong. Effect of Different Improvement Measures on Physicochemical Characteristics[D]. Harbin: Northeast Agricultural University, 2012. (in Chinese with English abstract)
[28] 赵兰坡,冯君,王宇,等. 松嫩平原盐碱地种稻开发的理论与技术问题[J]. 吉林农业大学学报,2012,34(3):237-241.
Zhao Lanpo, Feng Jun, Wang Yu, et al. Theoretical and technological problems in the development of planting paddy in saline-alkali land of Songnen Plain[J]. Journal of Jilin Agricultural University, 2012, 34(3): 237-241. (in Chinese with English abstract)
[29] 刘胜楠. 种稻对苏打盐碱土有机碳及微团聚体含量与组成的影响[D]. 长春:吉林农业大学,2016.
Liu Shengnan. The Effects of Growing Rice on the Quantity and Composition of Soil Organic Matter and Soil Micro-aggregate in Soda Saline-alkaline Soil[D]. Chang Chun, Jilin Agriculture University, 2016. (in Chinese with English abstract)
[30] 赵兰坡,冯君,王宇,等. 不同利用方式的苏打盐渍土剖面盐分组成及分布特征[J]. 土壤学报,2011,48(5):904-911.
Zhao Lanpo, Feng Jun, Wang Yu,et al. Composition and distribution of soil salts in profiles of saline-sodic soil under different land use patterns[J]. Acta Pedologica Sinica, 2011, 48(5): 904-911. (in Chinese with English abstract)
[31] 李取生. 苏打盐碱土地区水田水盐运移模拟与预测研究[J]. 生态环境,2005,14(3):396-398.
Li Qusheng. Transportation of water and salt in paddy soils of sodic saline region[J]. Ecology and Environment, 2005, 14(3): 396-398. (in Chinese with English abstract)
[32] 张梅,王宇,赵兰坡,等. 苏打盐碱土种稻改良的水资源高效利用田间试验研究[J]. 灌溉排水学报,2014,33(1):132-134.
Zhang Mei, Wang Yu, Zhao Lanpo, et al. Experiment research of water resources utilization on soda saline-alkali soil improvement by planting rice in the field[J]. Journal of Irrigation and Drainage,2014, 33(1): 132-134. (in Chinese with English abstract)
[33] 韩贵清,周连仁. 黑龙江盐渍土改良与利[M]. 北京:中国农业出版社,2011.
王秋菊,刘 峰,焦 峰,孙 兵,郭中原,常本超,张劲松,高中超,姜 辉. 盐化草甸土和黑土型水田土壤连续深耕改土效果[J]. 农业工程学报,2017,33(22):152-158. doi:10.11975/j.issn.1002-6819.2017.22.019 http://www.tcsae.org
Wang Qiuju, Liu Feng, Jiao Feng, Sun Bing, Guo Zhongyuan, Chang Benchao, Zhang Jinsong, Gao Zhongchao, Jiang Hui. Effect on improving mollisol paddy soil and saline meadow soil by continuous deep ploughing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 152-158. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.019 http://www.tcsae.org
Effect on improving mollisol paddy soil and saline meadow soil by continuous deep ploughing
Wang Qiuju1, Liu Feng2※, Jiao Feng3, Sun Bing4, Guo Zhongyuan5, Chang Benchao1, Zhang Jinsong1, Gao Zhongchao1, Jiang Hui2
(1.150086;2.150086;3.163319,; 4.,150086,; 5.152400,)
Heilongjiang province is the main production area of Japonica Rice in China. In Heilongjiang Province, rice growing areas are mainly distributed along Rivers and low plains. Due to the short time of planting rice, the development of paddy soil, which still keeps the original soil characteristics, is not completed. Rotary tillage is the main way of soil preparation in spring. Tillage depth is persistently maintained at 8-12 cm in paddy soil, which results in thin tillage layer, shallow plough bottom, and restricts rice root extension. With the decrease of soil holding capacity, rice plants prone to lodging at the later stage of growth, and rice yield and quality are affected. When the tillage layer is thin, the soil nutrient capacity is low, and the natural fertility is restricted, it is often used to increase the yield of rice by adding chemical fertilizer. The increase in the amount of fertilizer is not only a waste of fertilizer, but also pollutes the environment. The experimental results of the Honghe farm in the Sanjiang plain showed that, with the increase of paddy field tillage depth from 10 cm to 15 cm, the yield increased by about 10%. Japanese statistics showed that the thickness of the plough layer was more than 16-18 cm, some of which were more than 20 cm. The yield of rice was closely related to the thickness of topsoil. At present, there is no clear conclusion about the suitable depth of soil in different types of paddy soils in Heilongjiang Province.In order to clarify the effect of deep tillage on different types of paddy soils, the experiment , using the self-developed paddy deep plough, was carried out to study the effects of deep ploughing, shallow ploughing and rotary tillage in black soil and salinized meadow soil. Results showed that the effects of deep tillage on rice yield and soil physical and chemical properties were different. First, black soil deep ploughing treatment increased yield by 7.28%-8.37%. there was no significant difference in grain yield between the deep ploughing and rotary tillage treatment of salinized meadow soil in first years, but in the second year rice yield decreased by 9.96%-11.03%. Second, plowing promoted the homogenization of soil nutrients in black soil, and the soil nutrient content was not significantly reduced, and the difference of nutrient content between soil layers became smaller. Deep tillage caused the decrease of nutrient concentration in salinized meadow soil. The soil organic matter content of the shallow and deep ploughing treatments respectively decreased by 4.57 and 6.68 mg/kg compared with the control in 0-20 cm layer of salinized meadow soil, and total nitrogen decreased by 0.24 and 0.29 g/kg. The alkali hydrolyzable nitrogen in 0-10 cm soil layer of the kind of soil respectively decreased by 2.31 and 11.52 mg/kg, and pH value increased significantly, and the exchangeable Na+concentration increased in the 0-30 cm soil layer. Third, compared with the control, the shallow and deep ploughing decreased the solid ratio and bulk density of black soil, and increased soil aeration and water permeability. The soil solid ratio of 10-20 cm soil layer was decreased by 4.23% and 3.23%, respectively. The soil bulk density was decreased by 0.09 and 0.08 g/cm3, and the ventilation coefficient increased by 3.04 times and 3.42 times, and the permeability coefficient increased by 1.71 times and 1.14 times, respectively. The soil solid phase ratio of deep ploughing treatment in the 10-20 cm soil layer of black soil was reduced by 1.86%, and the ventilation coefficient and saturated permeability coefficient increased by 0.86 times and 1.87 times. Fourth, there was a tendency to increase the subsoil solid and bulk density and reduce the ventilation and permeability of salinized meadow soil in the shallow and deep ploughing areas. Deep tillage is not suitable for salinized meadow soil, the effect is obvious in black soil, deep tillage can improve soil physical and chemical characteristics and increasing yield.
soils; crops; physical properties; paddy soil; deep ploughing ; chemical characteristics; yield
10.11975/j.issn.1002-6819.2017.22.019
S343.2
A
1002-6819(2017)-22-0152-07
2017-01-17
2017-05-08
科技支撑计划(2015BAD23B05-03);省博士后基金(LBH-Z13189);省自然科学基金(D2015005);院创新工程(2014JQ03)
王秋菊,女,博士,副研究员,从事土壤改良研究。 Email:bqjwang@126.com
刘 峰,男,博士,研究员,从事土壤低产土壤改良研究。Email:liufengjms@163.com