基于STM32的单相正弦波逆变器设计

2017-12-08 03:42李加升李稳国
关键词:全桥正弦波过流

李加升,李稳国,宋 歌

(湖南城市学院 信息与电子工程学院,湖南 益阳 413000)

基于STM32的单相正弦波逆变器设计

李加升,李稳国,宋 歌

(湖南城市学院 信息与电子工程学院,湖南 益阳 413000)

考虑当前光伏发电、风力发电等新能源逆变入网的需要,在比较了现有逆变器的基础上,针对低压小功率的逆变,设计了一种基于STM32的单相正弦波逆变器. 该逆变器主要由控制模块、全桥式逆变模块、同步BOOST电路、信号采集与调理模块、信息显示模块、欠压过流保护模块等构成.逆变器采用SPWM正弦脉宽调制,经过IR2104产生两路反相的SPWM波,驱动4个开关管IRF540工作,并利用STM32完成电流/电压采样、调试和液晶显示的数据处理.经实际测式,该逆变器获得了较高的转换效率,较低的输出电压/电流误差.

全桥逆变;同步BOOST;SPWM控制

在光伏发电、风力发电等新电源被广泛应用的今天,逆变技术的研究被广泛关注,而低压小功率的逆变电源是电子设备必不可少的部分.随着电力电子技术的发展和对电气设备在性能上的要求,以及不同应用领域对电源的技术要求,各行业对逆变电源的要求也在不断提高.在许多的电子设备中,要求逆变电源系统可靠性高、稳定度好、调节特性优良,而且体积小、重量轻[1-2].而控制信号产生电路是逆变器的核心,其性能优劣将直接影响整个逆变器的好坏.正弦波脉宽调制(SPWM)是逆变电路的核心技术,目前SPWM的产生方法有很多种,最基本的方法就是利用分立元件,采用模拟、数字混合电路产生SPWM[3-4].文献[5]提出了一种用数、模硬件电路产生SPWM的方法,此方法硬件电路复杂;文献[6]采用SPWM专用芯片SA828系列与微处理器直接连接生成SPWM,此方法生成的SPWM波形参数受专用芯片限制;文献[7]利用FPGA来生成SPWM波,虽然生成的SPWM波质量性能较好,可以灵活改变输出波形参数,但成本也相对较高.本文采用ARM公司的32位单片机STM32作为主控芯片对单相正弦波逆变器进行了设计.

1 总体设计方案

基于STM32的单相正弦波逆变器方框图见图1.系统主要由STM32主控模块、驱动模块、同步BOOST模块、全桥逆变模块、信息采集模块、欠压过流保护模块及键盘显示模块组成,同步BOOST电路和全桥逆变模块组成系统的主电路.系统由单片机产生一路PWM,经驱动模块功率放大后,变为两路反相带死区的PWM,控制同步BUCK中的两个开关管,实现直流电输出升压.

图1 逆变器系统总体设计框图

全桥逆变电路由单片机产生的2路反相SPWM波,经过驱动模块后生成的4路SPWM波信号控制.SPWM波控制逆变电路4个开关管的通断,将升压后的直流电转换为交流电[8].系统采用互感采样将交流输出电压电流反馈给单片机进行PID调节,实现稳压功能.将交流电压信号经过过零比较器后得到同频率的方波,再由单片机进行频率采样显示在液晶屏上,并可通过按键设定交流电输出频率,与采样频率比较后,进行PID调节,实现频率可调.通过控制欠压过流保护模块中的继电器通断,可以实现欠压过流保护.

控制模块由STM32芯片及外围电路构成的最小系统,主要用于信号的采集和发出控制信号;数据采样模块以ADS1115芯片为核心,电压互感器和电流互感器采集输出端电压电流并通过BOOST输出[9];由过零比较器为主要核心构成的定时器捕获模块是为了得到交流输出频率和功率因子;同步BOOST电路使用开关管取代BOOST电路的续流二极管,并用两路反相的PWM驱动;全桥逆变模块通过单片机产生SPWM波控制4个开关管构成全桥式滤波电路,可提高效率;LCD12864模块显示电源的相关主要参数;过流欠压保护模块用于增强电路的安全性,通过检测电源的电压电流,从而控制继电器对整个电路进行保护.

图2 主变换电路图

2 主要硬件电路设计及相关说明

2.1 STM32控制模块和显示电路

STM32单片机拥有512 KB的系统内可编程Flash、112个的快速I/O端口、11个定时器、实时时钟RTC、2个12位的us级的A/D转换器(16通道)、SPI串行端口,以及3种可以通过软件选择的省电模式.单片机主要起到电流电压采样、功率因数测量、信息显示以及过流欠压保护的作用,STM32最小系统部分由晶振电路、复位电路、显示电路组成.单片机最小系统需晶振电路来产生时钟频率.STM32电路采用8 MHz的晶振,CPU最高工作频率可达72 MHz.

LCD12864带中文字库的12864内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块,其分辨率为128×64,内置8 192个16*16点汉字,和128个16*8点ASCII字符集,利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面.可以显示8×4行16×16点阵的汉字,也可完成图形显示.

2.2 主变换电路

主电路由同步BOOST电路和全桥逆变电路组成,见图2.

系统通过单片机产生PWM波控制BOOST电路升压,将BOOOST输出电压输送到逆变电路,同时利用正弦脉宽调制技术产生SPWM波给逆变电路实现DC-AC.

STM32单片机产生1路PWM,经过I2104后变为两路反相带死区的PWM,控制同步BOOST电路中开关管的通断,由电感周期性充放电和后级电容滤波,使电压输出升高.利用电阻取样法将输出电压采集,反馈给单片机与设定值比较得到误差值,再根据误差值进行稳压调节.逆变部分则是由单片机产生两路反相的SPWM波,经过驱动芯片IR2104驱动后变成4路SPWM波分别驱动全桥的4个开关管,通过单片机的定时器功能每隔50 us取正弦波对应的1个占空比值,1个正弦波分为400个点,则逆变后的波形的周期T =50 us*400=20 000 us=20 ms,频率为f =1/T =50 Hz.由此可实现固定输出50 Hz的交流电.

2.3 信号采集模块

为了提高输出电压、电流控制精度,信号采集模块选用16位采样芯片ADS1115进行采样.系统首先通过电压互感器和电流互感器分别将输出电压、电流成比例缩小,再输入AD637将交流输出换算为真有效值后,由ADS1115采样后反馈给单片机.AD采样电路图见图3.

图3 AD采样电路图

2.4 欠压过流保护模块

欠压过流保护采用继电器控制电路的通断实现保护.单片机将反馈的电压值和电流值与设定值相比较,当电压低于20±0.5 V或高于28±0.5 V、电流超过1.7±0.1 A时,单片机的PA.2口发出一个电平,通过对继电器开关的控制来实现对电路的保护,通过软件控制欠压过流保护具有自恢复功能.AD及继电器保护电路图如图4所示.

图4 继电器保护电路图

3 软件设计

3.1 主程序流程及相关说明

开启总电源,系统进入初始化状态.然后,对输入电流、电压进行采样,若输出电压大于28 V或低于20 V、电流值大于1.7 A,则驱动继电器断开主回路,完成过流保护,5 s后控制继电器使电路正常工作.若电压电流值在正常范围内,则进行稳压调节,并通过液晶显示.本系统的主程序流程图如图5所示.

图5 全桥逆变电源工作流程图

4 结果测试与分析

4.1 输出电压的变化率测试

在输入直流电压Us=21.5 ~26.5 V的条件下,使用数字万用表测量交流电压输出,用示波器测量输出电压波形及频率,测量结果见表1.

表1 直流开关稳压电源输出记录表(负载电阻50 Ω) V

4.2 负载调整率的测试

负载采用50 Ω/50 W 可调滑线变阻器,在直流输入电压Us=24 V、负载为5 Ω时,调整输出交流电压为36 V,然后将负载电阻为10 Ω,测量输出电压的变化范围,具体数据参见表3,经计算最大变化范围为0.283 V.

表2 负载调整率的测试

4.3 效率测试

负载采用50 Ω/50 W,调整输出电压测出输入输出电压和电流,并计算出效率,具体数据见表3.由表3数据可知,输出效率最低时为83.1%.

表3 效率的测量

4.4 过流保护测试

逆变系统设计时,设计的功能是当检测到当电压低于20±0.5 V或高于28±0.5 V、电流超过1.7±0.1 A时,继电器断开,以实现保护的目的.经实际测试,当电流为1.7±0.05 A时,继电器断开,具备过流保护及自恢复功能.

5 结语

本文设计了一种基于STM32的正弦波逆变器,主要通过BOOST升压,经全桥逆变后,结合SPWM的控制转换为交流电,再进行PID调节,实现稳压功能.结合STM32和LCD12864液晶显示器,实现友好的人机交互界面.利用了过流欠压保护技术,为逆变器提供了有力的安全保障.经组装和测试后,该逆变器能够实现输入直流电压Ui=21.5~26.5 V范围时,输出频率为f0=50±0.5 Hz的交流电压U0=36±0.5 V,输出可调频率20~80 Hz,电能转换效率达83%以上,其他各项指标均达到较为满意的效果.

[1]王兆安, 刘进军. 电力电子技术[M]. 5版. 北京: 机械工业出版社, 2013.

[2]张凯, 王祥. 基于STM32的新型SPWM逆变电源[J]. 电气自动化, 2012, 34(3): 52-54.

[3]吕小涛. 基于DSP的正弦波逆变电源研究[D]. 武汉: 武汉理工大学, 2009.

[4]王小龙, 陈畅, 龚敏. 一种新型过流保护电路的设计[J]. 电子与封装, 2010, 87(7): 16-19.

[5]罗秦. 基于STM32的DC-AC电源设计与研究[D]. 天津: 天津理工大学, 2015.

[6]宗荣芳. 基于protel DXP的电路设计仿真[J]. 电子工程师,2005, 31(1): 41-47.

[7]江国栋, 徐丽萍. 基于AD型单片机的中功率升压开关稳压电源设计[J]. 南京工业职业技术学院学报, 2009, 9(2): 12-13.

[8]高玉峰, 胡旭杰, 陈涛, 等. 开关电源模块并联均流系统的研究[J]. 电子工程, 2011(02): 210-212.

[9]付运旭. 高频全桥逆变电源设计与测试[D]. 济南: 山东大学,2012.

(责任编校:蒋冬初)

Design Single-phase Sine Wave Inverter Based on the STM32

LI Jia-sheng,LI Wen-guo,SONG Ge
(College of Information and Electronic Engineering, Hunan City University, Yiyang, Hunan 413000, China)

Considering the current need of new energy sources inverter net including photovoltaic power generation and wind power, based on the comparison of the existing design of inverter and the inverter of low voltage, a single-phase sine wave inverter is proposed based on STM32, which mainly consists of control module, a full bridge inverter module, synchronous BOOST circuit, signal acquisition and control module,information display module, under-voltage and over current protection module. The system is modulated with SPWM sine pulse width, two reverse phase SPWM waves are produced with IR2104, and drive four switch transistors IRF540 to work. The STM32 completes the current and voltage sampling, debugging and the data processing of liquid crystal display. Experimental results showed that the inverter system achieved the higher conversion efficiency and the lower output voltage/current error.

full-bridge inverter; synchronous BOOST; SPWM control

TM464

A

10.3969/j.issn.1672-7304.2017.03.0012

1672–7304(2017)03–0054–04

2017-03-30

湖南省自然科学基金项目(2017JJ2023);湖南省教育厅科研项目(17C0297)

李加升(1965-),男,湖南安化人,教授,硕士,主要从事电能质量检测、信号处理、逆变电源的研究.E-mail:lijiashenga@163.com.

猜你喜欢
全桥正弦波过流
单相正弦波变频电源设计与实现
主变压器零序过流保护和间隙过流保护配合分析
不同来流条件对溢洪道过流能力的影响
采用BC5016S的纯正弦波逆变器设计及制作
核电站厂用电系统的保护定值校验
零电压开关移相全桥的死区时间计算与分析
变压器相间过流保护不正确动作原因的探讨
基于STM32的风力摆控制系统的设计
3kW电压控制型移相全桥DC-DC变换器研究与设计
开关电源全桥变换器的协同控制