李想,刘艳霞,夏范讲,蔡刘体,张恒,石俊雄
1 贵州省烟草科学研究院,贵阳 550000;2 中国烟草总公司贵州省公司,贵州贵阳 550000
烟草根际促生菌(PGPR )的筛选、鉴定及促生机理研究
李想1,刘艳霞1,夏范讲2,蔡刘体1,张恒1,石俊雄1
1 贵州省烟草科学研究院,贵阳 550000;2 中国烟草总公司贵州省公司,贵州贵阳 550000
筛选并鉴定了贵州烟区烟草根际促生菌(PGPR)菌株。测定PGPR产激素能力、定殖能力以及对烟草苗期促生作用,以具备多项促生能力为筛选标准,确定目标PGPR,再通过16S rDNA、平板对峙以及PCR技术对目标PGPR进行属鉴定、抗病能力测定。通过筛选获得的7株目标PGPR均能产生脱落酸、细胞分裂素、赤霉素和生长素。烟苗盆栽试验表明7株PGPR均具有促生效果,其中LX-7处理的烟苗鲜重和根系活力最大;大田移栽30d后,LX-7根际定殖数量可维持107cfu/g根,显著高于其它菌株;抑菌试验证实LX-4、LX-5和LX-7具有广谱抗菌作用。综合考量,LX-4、LX-5和LX-7具有显著的促生效果,经16S rDNA鉴定分别为枯草芽孢杆菌、地衣芽孢杆菌和解淀粉芽孢杆菌。
烟草根际促生菌;筛选鉴定;促生能力;16SrDNA;促生基因
根际促生菌(PGPR)的种类繁多, 主要集中于细菌的20 多个属,部分放线菌以及真菌也具有促生作用[1]。PGPR对植物的生长促进可分为直接和间接作用[2],直接促生的机理包括提高作物氮素吸收能力[3]、改善根系溶磷能力[4]、产铁载体[5]以及产生植物激素类物质[6]等,间接促生机理主要体现在对病原菌拮抗能力[7]。PGPR不仅能促进植物生长降低化肥的使用量,还可一定程度减少农药的施用,起到“减肥、减药”的作用[8],植物根际促生菌的研究越来越受到关注[9]。目前有关PGPR的研究与应用主要集中在水稻[10]、小麦[11]、高粱[12]、玉米[13]等重要粮食作物上,烟草根际促生菌研究主要集中在病害生防方面[14],对促生减肥方面研究甚少[15],烟草PGPR能否有效地发挥促生抗病功能,很大程度上取决于菌群在植物根际的存活与增殖能力。从贵州不同植烟区域土壤样品中筛选鉴定了具有多种促生机制的PGPR 菌株,并进行了抗病能力测定,以期为构建高效广适促生菌群提供菌株资源。
从贵州省典型植烟生态区域(道真、天柱、威宁、兴义和贵定5县)采集根际土壤共26份[16]。采用稀释平板涂布法从土壤样品中分离、纯化PGPR菌株。所用培养基为牛肉膏蛋白胨培养基(牛肉膏 5.0 g,氯化钠5.0 g,蛋白胨10 g,琼脂20 g,蒸馏水1000 mL,pH 7.0~7.2,121 ℃灭菌20 min)。平板共分离PGPR菌株99株,综合其菌落形态和生长速度差异初步筛选出20株菌株,并对其进行纯化[17]。
PGPR的产NH3[18]、产HCN[19]、产铁载体[20]以及溶磷解钾能力[4]采用相关文献方法测定。采用Elisa定量检测试剂盒(GENMED SCIENTIFICS INC.U.S.A)[21]测定根际促生菌的牛肉膏蛋白胨液体培养基培养液中生长素、脱落酸、分裂素、赤霉素含量。烟苗根际PGPR数量采用牛肉膏蛋白胨培养基平板计数法测定,方法是称取育苗钵中的烟苗根系1 g加9 mL无菌水,28 ℃恒温摇床振荡20 min,采用系列稀释法涂布平板,置25℃~30 ℃培养箱中暗培养24h~72 h计数[22]。
将PGPR进行牛肉膏蛋白胨液体发酵扩繁,当培养液中菌株数量达到108cfu/mL时,在3000 rpm、4℃下离心3 min,用灭菌去离子水重悬微生物。以2 %接种量接种育苗钵(体积为250mL)基质(灭过菌)中,拌匀后将烟苗(K326)移栽于育苗钵中,以接灭菌去离子水为对照,每处理重复5钵。定期观察烟苗生长情况,并测定烟苗的鲜重、根系活力和叶绿素含量。采用WinRhizo根系分析系统测定根系形态指标,使用根系扫描仪(型号为EPSON1680)及其配套的WinRhizo Pro 5.0 根系分析软件测定根系指标[23]。
将筛选得到的 LX4、LX5和LX7在液体培养基中培养至对数期,按冻融法提取细菌基因组DNA,进行16S r DNA鉴定[24]。
对真菌性病害采用在土豆葡萄糖琼脂培养基(PDA:1000 mL含200 g土豆浸提物,50 g葡萄糖,pH 自然,琼脂粉20 g)平板中心位置接种直径5 mm7d龄的菌块,在距离菌块2 cm处分别用灭菌牙签点接目标PGPR,28 ℃恒温培养培养7d,以不接PGPR只接病原菌的平板作为对照,观察病原菌的生长是否受到抑制[25]。对细菌性病害将目标PGPR点接在改良后的牛肉膏蛋白胨平板上,病原细菌摇成菌悬液,然后均匀喷在平板上。在30 ℃恒温培养48~72 h后,观察PGPR周围是否有抑菌圈。
试验数据采用Microsoft Excel 2003处理,显著性分析采用SPSS Base Ver.13.0统计软件 (SPSS, IL,Chicago, USA)进行, LSD、Duncan 新复极差进行多重比较(P≤0.05)。
分别测定20株细菌的5项促生指标(产NH3、产HCN、产铁载体、溶磷能力、解钾能力),结果见表1, 由表1可以看出:T1-2、A1-5、B4-5和B5-8不具备产NH3能力,占测定菌株的20%;A1-5、LX-2、B3-1、LX6、B5-8不具备产HCN能力,占测定菌株的25%;LX1、B2-4、B5-5、B5-8、LX4、LX5和LX7共7株菌株可以产铁载体,占测定菌株的35%;在溶磷能力方面B2-4、B3-1、LX4、LX5、LX7和LY-1表现好于其它菌株;在解钾能力上 B2-4、B3-4、LX6、LX4、LX5、LX7和 LY-1表现好于其它菌株。综合各项指标,初步筛选B2-4、B3-1、LX4、LX5、B3-6、LX7、LY-1作为促生目标菌株。
表1 细菌体外促生能力Tab. 1 Plant promotion ability of rhizobacteria
续表1
从图1可以看出,筛选到的7株促生菌均能产生脱落酸、细胞分裂素、赤霉素和生长素,产生的赤霉素总量显著高于细胞分裂素;其中LX4的脱落酸含量与LY-1无显著差异,但显著高于其它菌株,是LX5产生的脱落酸的7.38倍;LX4菌株产生的细胞分裂素最多,显著高于其它菌株, B3-1、B3-6和LX7之间无显著差异;LX4分泌的赤霉素显著高于其它菌株,其次为LX7,再次为LX5,分别比LX7和LX5多13.67%和31.18%;LX5分泌的生长素显著高于其它菌株,其次为LX7,再次为LX4,分别比LX7和LX4多31.08%和45.04%。
图1 促生菌产生植物激素的含量Fig. 1 Content of phytohormone produced by plant-promoting bacteria
起始接种量为1×108cfu/mL,移栽10d检测PGPR菌株在烟草根表的定殖数量,B3-1菌体数量下降最为明显,降幅显著高于其它菌株(表2),其次为B2-4,其余5株促生菌均可维持在107cfu/g根;移栽20d后,LX4和LX7的数量在107cfu/g根以上,而其它菌株的数量有所下降,LX5、LX6和LY-1下降到106cfu/g根。移栽30d后,LX7的数量显著高于其它菌株,仍然维持在107cfu/g根,而LX4和LX5的数量在106cfu/g根,其它菌株的定殖数量下降明显,可见LX7、LX4和LX5在烟草根系具有较高的定殖能力。
表2 目标PGPR在烟草根系的定殖能力Tab. 2 Colonized ability of target PGPR in rhizosphere soils
如图2所示,筛选的7个促生菌株对烟苗的促生效果各有不同。
图2 7种促生菌株对烤烟烟苗的促生效果Fig. 2 Promotion effect of 7 plant-promoting bacteria on seedlings of fl ue-cured toabcco
如表3所示,所有PGPR处理的烟苗鲜重均比对照显著增加,分别增加13.78%(B2-4)、27.89%(B3-1)、52.04%(LX4)、57.99%(LX5)、41.68%(B3-6)、69.35%(LX7)、39.58%(LY-1);LX7处理的根系活力最高,与LX4和LX5处理之间无显著差异,显著高于其它高处理;与对照相比,LX4、LX5和LX-7处理的根系活力显著增加,分别增加84.8%、83.1%和91.0%。同时,LX5处理叶绿素含量最高,与LX4、LX7处理的之间无差异,显著高于对照,是对照的1.74倍。
LX5、LX-7和LX4促生菌株处理烟苗的根总长之间无显著差异(图3),但显著高于其它处理,分别比对照处理增加33.56%、29.21%和24.87%;LX5和LX7处理的烟苗根直径无显著差异,但显著高于其它处理,比对照处理分别高出12.22%和8.89%;LX5、LX7和LX4处理的烟苗根面积无显著差异,但显著高于其它处理,分别比对照处理增加66.49%、60.31%和54.12%;LX5、LX7和LX4处理的烟苗根体积无显著差异,但显著高于其它处理,分别是对照处理的1.99、1.97和1.95倍;LX4、LX5和LX7处理的平均促生效果分别在根总长、根直径、根面积和根体积上比对照处理增加29.21%、8.49%、60.3%和96.94%(图3)。
表3 不同PGPR对苗期烤烟的影响Tab. 3 Effect of different PGPR on fl ue-cured tobacco seedlings
图3 7种促生菌株对烟苗根系发育的影响Fig. 3 Effect of 7 plant-promoting bacteria on root growth
16S rDNA基因序列测序结果表明,LX4、LX5、LX7分别为:枯草芽孢杆菌(Bacillussubtilis)、地衣芽孢杆菌(Bacilluslicheniformis)和解淀粉芽孢杆菌(Bacillusamyloliquefaciens)(图4)。
图4 促生菌株LX4、LX5和LX7的系统发育树Fig. 4 Diagram of LX4, LX5 and LX7
LX4、LX5和LX7对试验用病原菌都有抑制作用(表4),具有防控多种土传病害的潜力。
表4 LX4、LX5和LX7对土传病原菌的拮抗作用Tab. 4 Antagonistic effect of LX4, LX5 and LX7
在5项促生指标(产NH3、产HCN、产铁载体、溶磷能力、解钾能力)中,经过初筛的20株PGPR均具有多项促生指标,同时采用原位筛选保证了20株PGPR具备田间应用条件。但是否可以用于实际生产还需要进一步通过模拟试验验证。LX4、LX5和LX7的各项能力在20株PGPR中促生能力表现突出(表1),LX7产HCN的能力最强,可能在抗病能力上具有显著的效果,同时也有研究表明细菌产生铁载体对病原真菌具有一定的拮抗作用[26],本研究中的20株PGPR具有产铁载体能力的比较少,结合产HCN和产铁载体能力,LX7可作为贵州生态条件下烟草病害生防菌来进行探究和利用。
PGPR产生适量的植物激素可以促进作物生长,而过量的激素反而会抑制植物生长[27],比如PGPR产生的脱落酸可以诱导作物产生抗干旱胁迫能力,减轻干旱对作物的氧化伤害[28],但同时由于脱落酸和分裂素都有共同的前体物质[29],因此脱落酸数量增多也会导致细胞分裂素减少,进而影响作物的生长。本研究发现LX4产生脱落酸显著大于其它菌株(图1),但同时产生的细胞分裂素、赤霉素和生长素也是最高的,LX4分泌的激素功能到底是促生或是抑制,取决于产物的浓度以及烟草的忍受力,因此通过烟草苗期试验发现LX7、LX4和LX5处理的烟苗鲜重无显著差异,比对照增加52.04%~69.35%,LX4的根系活力以及根系指标的促生效果基本与LX7和LX5相当,说明LX4尽管产生脱落酸以及赤霉素很高,但对烟草促生效果显著,这与Porcel等的研究结果相类似[30]。
LX4、LX5和LX7经鉴定分别为枯草芽孢杆菌(Bacillus subtilis)、 地 衣 芽 孢 杆 菌(Bacillus licheniformis)和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。本研究筛选得到的3株促生菌属均有促生和防病作用的报道,Bacillus subtilis BEB-13bs作为PGPR可以提高西红柿的产量和品质[31],Ramos等研究发现接种Bacillus licheniformis后可以显著改善欧洲赤杨的根系和地上部生物量[32],同时Bacillus amyloliquefaciens可以很好的定殖在玉米根际,同时形成生物膜进行生物防控[33]。
LX7、LX4和LX5对大多数的病原菌均具有一定的拮抗作用,这3株促生菌在根际定殖的数量在30d后仍然维持在106cfu/g根以上,说明该3株PGPR具有生防菌的潜力[34]、。本文筛选到LX4可以分泌植物类激素,促进植物生长, LX7在烟苗根际定殖能力强,还可以产生HCN,可作为生防菌,综上所述LX4、LX5和LX7可以作为贵州烟草促生有机肥的功能菌株,具有较好的应用潜力。
[1]Zaidi A, Ahmad E, Khan M S, et al. Role of plant growth promoting rhizobacteria in sustainable production of vegetables: Current perspective [J]. Scientia Horticulturae,2015, 193: 231-239.
[2]Arruda L, Beneduzi A, Martins A, et al. Screening of rhizobacteria isolated from maize (zea mays l.) in rio grande do sul state (south brazil) and analysis of their potential to improve plant growth [J]. Applied Soil Ecology, 2013, 63:15-22.
[3]Taulé C, Mareque C, Barlocco C, et al. The contribution of nitrogen fixation to sugarcane (saccharum officinarum l.), and the identi fi cation and characterization of part of the associated diazotrophic bacterial community [J]. Plant and Soil, 2012, 356(1): 35-49.
[4]Wu F, Wan J H C, Wu S, et al. E ff ects of earthworms and plant growth-promoting rhizobacteria (pgpr) on availability of nitrogen, phosphorus, and potassium in soil [J]. J. Plant Nutr. Soil Sci, 2012, 175: 423-433.
[5]Kurabachew H, Wydra K. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by ralstonia solanacearum [J]. Biological Control, 2013, 67(1): 75-83.
[6]Piromyou P, Buranabanyat B, Tantasawat P, et al. E ff ect of plant growth promoting rhizobacteria (pgpr) inoculation on microbial community structure in rhizosphere of forage corn cultivated in thailand [J]. European Journal of Soil Biology, 2011, 47(1): 44-54.
[7]Kheirandish Z, Harighi B. Evaluation of bacterial antagonists of ralstonia solanacearum, causal agent of bacterial wilt of potato [J]. Biological Control, 2015, 86:14-19.
[8]Erturk Y, Ercisli S, Cakmakci R. Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation [J]. Journal of Plant Nutrition, 2012, 35: 817-826.
[9]Bhattacharyya P N, Jha D K. Plant growth-promoting rhizobacteria (pgpr): Emergence in agriculture [J]. World Journal of Microbiology & Biotechnology, 2012, 28: 1327-1350.
[10]Habibi S, Djedidi S, Prongjunthuek K, et al. Physiological and genetic characterization of rice nitrogen fixer pgpr isolated from rhizosphere soils of di ff erent crops [J]. Plant and Soil, 2014, 379(1): 51-66.
[11]Zhang J, Liu J, Meng L, et al. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate [J]. The Journal of Microbiology, 2012, 50:191-198.
[12]Praveen Kumar G, Kishore N, Leo Daniel Amalraj E, et al.Evaluation of fl uorescent pseudomonas spp. With single and multiple pgpr traits for plant growth promotion of sorghum in combination with am fungi [J]. Plant Gowth Regulation,2012, 67: 133-140.
[13]Gholami A, Biyari A, Gholipoor M, et al. Growth promotion of maize (zea mays l.) by plant-growth-promoting rhizobacteria under fi eld conditions [J]. Communications in Soil Science and Plant Analysis, 2012, 43: 1263-1272.
[14]Wang S, Wu H, Qiao J, et al. Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by bacillus spp [J]. Journal of Microbiology and Biotechnology, 2009, 19: 1250-1258.
[15] 王豹祥, 李富欣, 张朝辉, 等. 应用pgpr 菌肥减少烤烟生产化肥的施用量 [J]. 土壤学报, 2011, 48(7): 813-822.Wang Baoxiang, Li Fuxin, Zhang Chaohui, Wu Fengguang,Xi Shuya, Zhu Bao, Cao Yubo, Liu Tianxiang, Qiu Liyou.Effect of application of PGPR on chemical fertilizer application tate for flue-cued tobacco.Acta Pedologica Sinica.2011, 48 (7): 813-822.
[16]Carlsen S C K, Pedersen H A, Spliid N H, et al. Fate in soil of fl avonoids released from white clover (trifolium repens l.)[J]. Appl Environ Soil Sci, 2012, 2012: 1-10.
[17]Usha Rani M, Arundhathi., Reddy G. Screening of rhizobacteria containing plant growth promoting (pgpr)traits in rhizosphere soils and their role in enhancing growth of pigeon pea [J]. African Journal of Biotechnology, 2012,11: 8085-8091.
[18] 康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌的筛选及鉴定 [J]. 微生物学报, 2010, 50(7): 853-861.KANG Yijun, CHENG Jie, MEI Lijuan, et al. Screening and identi fi cation of plant growth-promotingrhizobacteria.Acta Microbiologica Sinica.2010, 50 (7): 853-861.
[19]Subramanian J, Satyan K. Isolation and selection of fl uorescent pseudomonads based on multiple plant growth promotion traits and siderotyping [J]. Chilean journal of agricultural research, 2014, 74: 319-325.
[20]Jasim B, Benny R, Sabu R, et al. Metabolite and mechanistic basis of antifungal property exhibited by endophytic bacillus amyloliquefaciens bmb 1 [J]. Applied Biochemistry and Biotechnology, 2016, 179(5): 830-845.
[21]Lequin R M. Enzyme immunoassay (eia)/enzyme-linked immunosorbent assay (elisa) [J]. Clinical Chemistry, 2005,51(12): 2415-2418.
[22]Liu Y, Li X, Cai K, et al. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms [J].Applied Soil Ecology, 2015, 93: 78-87.
[23]王亚男, 程立娟, 周启星. 鸢尾对石油烃污染土壤的修复以及根系代谢分析[J]. 环境科学, 2016, 37(4): 1531-1538.WANG Yanan, CHENG Lijuan, ZHOU Qixing.Phytoremediation of petroleum contaminated soils withIris pseudacorusL. andthe metabolic analysis in roots. Chinese Journal of Environmental Science. 2016, 37(4): 1531-1538.
[24]Zhang H, Yu Z, Huang Q, et al. Isolation, identi fi cation and characterization of phytoplankton-lytic bacterium ch-22 against microcystis aeruginosa [J]. Limnologica, 2011, 41:70-77.
[25]Dinesh R, Anandaraj M, Kumar A, et al. Isolation,characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger [J]. Microbiological Research, 2015, 173: 34-43.
[26] 荣良燕, 姚拓, 赵桂琴, 等. 产铁载体pgpr菌筛选及其对病原菌的拮抗作用 [J]. 植物保护, 2011, 37(1): 59-64.RONG Liangyan, YAO Tuo, ZHAO Guiqin, et al.Screening of siderophore-producing PGPR bacteria andtheir antagonism against the pathogens[J]. Plant Protection. 2011,37 (1): 59-64
[27]Persello-Cartieaux F, Nussaume L, Robaglia C. Tales from the underground: Molecular plant-rhizobacteria interactions[J]. Plant,Cell and Environment, 2003, 26: 186-199.
[28]Kohler J, Hernández J A. Pgpr and am fungi modify alleviation biochemical mechanisms in water stressed plants[J]. Functional Plant Biology, 2008, 35: 141-151.
[29] 康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌作用机制研究进展 [J]. 应用生态学报, 2010, 21(1): 232-238.Kang Yijun, Cheng Jie, Mei Lijuan, Hu Jian, Piao Zhe, Yin Shixue. Action mechanisms of plant growth-promoting rhizobacter ia (PGPR) : A review. Chinese Journal of Applied Ecology. 2010, 21 (1): 232-238
[30]Porcel R, Zamarreño Á M, García-Mina J M, et al.Involvement of plant endogenous aba in bacillus megaterium pgpr activity in tomato plants [J]. BMC Plant Biology, 2014, 14(1): 1-12.
[31]Mena-Violante H G, Olalde-Portugal V. Alteration of tomato fruit quality by root inoculation with plant growthpromoting rhizobacteria (pgpr): Bacillus subtilis beb-13bs[J]. Scientia Horticulturae, 2007, 113(1): 103-106.
[32]Ramos B, Garcı́a J A L, Probanza A n, et al. Alterations in the rhizobacterial community associated with european alder growth when inoculated with pgpr strain bacillus licheniformis [J]. Environmental and Experimental Botany,2003, 49(1): 61-68.
[33]Zhang N, Yang D, Wang D, et al. Whole transcriptomic analysis of the plant-beneficial rhizobacterium bacillus amyloliquefaciens sqr9 during enhanced bio fi lm formation regulated by maize root exudates [J]. BMC Genomics,2015, 16(1): 1-20.
[34]Ling N, Deng K, Song Y, et al. Variation of rhizosphere bacterial community in watermelon continuous monocropping soil by long-term application of a novel bioorganic fertilizer [J]. Microbiological Research, 2014, 169(7/8):570-578.
:LI Xiang, LIU Yanxia, XIA Fanjiang, et al.Screening, identi fi cation and plant growth-promotion mechanism of tobacco plants rhizobacteria [J]. Acta Tabacaria Sinica, 2017, 23(3)
*Corresponding author.Email:iversonlyx@163.com
Screening, identi fi cation and plant growth-promotion mechanism of tobacco plants rhizobacteria
LI Xiang1, LIU Yanxia1*, XIA Fanjiang2,CAI Liuti1, ZHANG Heng1, SHI Junxiong1
1 Guizhou Academy of Tobacco Science, Guiyang 550000, China;2 Guizhou Tobacco Company, China National Tobacco Corporation,550000
Plant growth-promoting rhizobacteria was screened and identi fi ed in order to build a foundation for tobacco PGPR-bioorganic fertilizer development. Plant growth-promoting rhizobacteria in rhizosphere soils were pre-isolated by considering ammonia, HCN, and siderophores production, phosphate-solubilizing and potassium dissolving capacity. Phytohormone production, colonization and plantgrowth-promotion in seedling period were explored to screen PGPR. Target PGPR were identi fi ed by 16S rDNA sequencing. Diseaseresistance capacity and plant growth-promoting were evaluated. Twenty strains primarily selected had potential plant-growth-promotion ability. All seven re-screened PGPR strains produced abscisic acid, phytokinin, gibberellin and auxin. The population of LX-7 strain in rhizosphere soil was signi fi cantly higher than other selected strains and kept 107cfu/g soil 30 days after transplanting. The counts of LX-4 and LX-5 strains were 106cfu/g while the populations of other selected strains signi fi cantly decreased. Tobacco seedling experiment showed that seven PGPR had the ability of plant-growth-promotion. Fresh weight and root system activity of LX7 treatment were the highest among all treatments. Chlorophyll content of tobacco seedling in LX5 treatment was significantly higher than that of other treatments. Compared with control, average root length, root diameter, root area and root volume in LX4, LX5 and LX7 treatments increased by 29.21%, 8.49%, 60.3% and 96.94%. LX4, LX5 and LX7 were identified asBacillus subtilis,Bacillus licheniformisandBacillus amyloliquefaciens, respectively. These three PGPR had broad spectrum antibiotics. Three PGPR strains, LX4, LX5 and LX7, had remarkable e ff ect on plant-growth-promotion and can be employed as key bacteria in tobacco growth-promotion .
plant growth promoting rhizobacteria(PGPR); screening and identi fi cation; plant growth promoting ability; 16SrDNA; plant growth promoting gene
李想,刘艳霞,夏范讲,等. 烟草根际促生菌(PGPR)的筛选、鉴定及促生机理研究[J]. 中国烟草学报,2017, 23(3)
国家自然科学基金项目(41461068);贵州省科学技术基金项目([2013]2197、2198);中国烟草总公司贵州省公司科技项目(201410,110201402009)
李 想(1982—),博士,副研究员,主要研究方向:烟草营养与土壤养分循环管理,Email:newcool1361214@163.com
刘艳霞(1982—),Email:iversonlyx@163.com
2016-08-26;< class="emphasis_bold">网络出版日期:
日期:2017-05-16