Meta分析生物质炭对中国主粮作物痕量温室气体排放的影响

2017-11-01 22:51孙滨峰王效科王海勇张利钧张梦汝
农业工程学报 2017年19期
关键词:氧化亚氮主粮甲烷

赵 红,孙滨峰,逯 非,王效科,张 国,王海勇,张利钧,张梦汝



Meta分析生物质炭对中国主粮作物痕量温室气体排放的影响

赵 红1,孙滨峰2,逯 非3※,王效科3,张 国3,王海勇1,张利钧1,张梦汝1

(1. 济南市环境研究院环境规划研究所,济南 250102;2. 江西省农业科学院农业工程研究所,南昌 330200; 3. 中国科学院生态环境研究中心,城市与区域生态国家重点实验室,北京100085)

该文采用Meta分析方法定量分析生物质炭输入对中国主粮作物痕量温室气体的影响,研究可为农田痕量温室气体减排提供有效的途径。结果表明相对于不施加生物质炭,生物质炭输入对甲烷吸收/排放并无显著影响,而甲烷排放在不同耕作和施氮情况下发生显著变化。旋耕和不施氮情况下施加生物质炭分别显著提高稻田甲烷排放达30%和46%,而在翻耕和施氮的情况下施加生物质炭可减少稻田甲烷排放达9%和10%。生物质炭输入分别可显著减少主粮作物氧化亚氮、全球增温潜势(global warming potential, GWP)及温室气体排放强度(greenhouse gas intensity, GHGI)达41%、18%及25%。不同土地利用类型、耕作类型、生物质炭施用量及生物质炭类型均可显著影响农田氧化亚氮、GWP和GWPI。合理的管理主粮作物生物质输入可为减少温室气体排放做出贡献,建议生物质炭与施氮和翻耕2种农作措施相结合,施加小于10 t/hm2及碳氮比(C/N)低于80的生物质炭,以利于主粮作物综合温室效应的减排。

温室气体;甲烷;氮;生物质炭;Meta分析;全球增温潜势

0 引 言

全球气候变化已成为不可争议的事实,目前中国是温室气体排放大国,《巴黎协议》上中国表现出在应对气候变化问题上应尽的责任[1]。农业土地活动是最重要的温室气体排放源之一,农业源温室气体排放量占人类活动温室气体排放量的14%[2],农业的二氧化碳排放几乎均被净初级生产力及植物的吸收所抵消,其全球增温潜势所占比例低于1%,而农业甲烷和氧化亚氮的排放分别占人类活动排放的52%和84%[3],所以有效地控制农业中痕量温室气体的排放可为温室气体减排做出巨大贡献。

生物质炭是由植物生物质在完全或部分缺氧的情况下经热解炭化产生的一类高度芳香化难熔性固态物质[4]。潘根兴等[5]对比了5种农业秸秆利用的循环性与产业化潜力,发现农田秸秆热裂解处理可最大程度利用能源、养分和秸秆有机质。由于生物质炭含碳量高、难于分解、比表面积大、疏松多孔等特性,生物质炭对于减少土壤硬度、促进土壤微生物的发育、补充土壤养分及增产方面已有报道[5-6],而生物质炭对痕量温室气体排放的影响目前还未取得一致的结论。旱地土壤是甲烷的汇,部分田间试验的结果表明旱地土壤施加生物质炭后对甲烷的吸收没有显著影响[4],而有些试验结果证实施加生物质炭后对甲烷的吸收有促进作用[7-8];稻田是甲烷的主要排放源之一,一些研究证实生物质炭输入可减少稻田的甲烷排放[9-10],而另一些研究的结果与其相反[11];相似地,农田生物质炭的输入对氧化亚氮排放的影响也表现出较大的变异性[7-12]。目前对生物质炭影响农田温室气体排放的田间试验数据报道较多,但综合定量考虑生物质炭对温室气体的影响还鲜有报道。

Meta分析是综合分析变异数据并得到一致结论的工具[13],可有效解决单组试验不能解决的问题,目前已有文章采用Meta分析方法研究农作措施对农田痕量温室气体排放的研究[14]。本文通过收集目前已发表的生物质炭对主粮作物温室气体排放影响的文章数据,采用Meta分析方法定量研究不同生物质炭施加的情况对主粮作物温室气体及其综合排放效应的影响,以期探求生物质炭减排的有效措施。

1 材料与方法

1.1 数据来源

本文收集的已发表的文献均源于2016年12月之前,外文文献主要来自于Web of ScienceTM,中文文献主要来自中国知网数据库(CNKI)和万方数据库。文献收集的关键词包括“生物质炭(biochar)、黑炭(black cabron)、甲烷(methane)、氧化亚氮(nitrous oxide)、温室气体(greenhouse gas)”,共收集相关文献100余篇。

1.2 数据选取

文献资料遴选的具体标准如下:1)以不施生物质炭为对照组,施加生物质炭为试验组;2)要求收集的文章中包括甲烷吸收或排放数据,氧化亚氮排放数据及产量数据;3)田间试验;4)收集温室气体数据要求收集单季累计排放值(稻田指水稻移栽到成熟这一阶段);5)收集的产量数据要求单季年产量数据;6)确保收集的温室气体和产量数据测定方式可信;7)农田数据只收集小麦、水稻和玉米3种主粮作物,因为它们是中国最主要的粮食作物并且耕地面积占全国农田总面积的71%。

最后,生物质炭对甲烷和氧化亚氮排放影响的研究共收集了有效数据134对,其中生物质炭对甲烷吸收、甲烷排放和氧化亚氮排放影响的有效数据分别为29对、37对和68对。本文收集的数据主要源于以下参考文献(表1)。

1.3 Meta分析

本文选择生态学中常用的反应比ln()估算生物质炭施加对温室气体排放的影响强度[28]。

相对于不施生物质炭,主粮作物痕量温室气体排放受生物质炭的影响可进一步通过以下分组进行解释:1)耕作类型(翻耕,旋耕);2)不同施肥状态(施氮,不施氮);3)不同土地类型(水田,旱田);4)不同生物质炭施用量(<10、10~20、>20 t/ hm2);5)不同类型黑炭(小麦黑炭,玉米黑炭,其他黑炭:包括竹炭、生活垃圾炭等)。

由于大部分已发表的文章中没有给出权重值,本文的研究采用非权重Meta分析的方法[14,30],采用Meta分析软件包(METAWIN 2.1.3.4)来估算相对于不施生物质炭,施加生物质炭引起的效应值定量变化(Sinauer Associates, Inc., Sunderland,MA,USA)。效应值的计算采用重复样技术叠加计算4 999次,效应值的置信区间采用靴带法计算[28],如果效应值的95%置信区间不与0重合,那么则认为效应值显著[31]。本文采用随机效应分析来比较不同组间的差异,如果组间效应异质性检验值对应的值小于0.05,那么则认为其组间有显著差异。分析组间差异的同时,组内的异质性检验也进行了分析,文章中的分组组内无(>0.05)显著差异。

1.4 相关参数的计算

全球增温潜势(global warming potential,GWP)常被用来估计不同温室气体对气候系统的潜在效应,本文用GWP来评价生物质炭的施用对甲烷和氧化亚氮排放的综合影响。100 a的时间尺度下,甲烷和氧化亚氮的增温潜势分别是二氧化碳的25倍和298倍[32]。

温室气体排放强度(greenhouse gas intensity,GHGI)就是在农业生态系统每生产1 kg粮食产量的温室气体排放量,是GWP除以作物产量所得的值[33]。

2 结果与分析

2.1 施加生物质炭对主粮作物GWP的影响

从全国68对数据结果来看,相对于不施加生物质炭,生物质炭的施加平均可降低中国主粮作物GWP达18%(95%置信区间8%~27%),且不同生物质炭的施用情况对GWP产生显著影响(表2)。其中旱田施加生物质炭后GWP的降低水平极显著高于水田(<0.01)(图1a);少量施加生物质炭(<10 t/hm2)的GWP的减排水平高于大量施加生物质炭(>10 t/hm2)(图1b);翻耕情况下施加生物质炭可显著降低中国农田GWP达19%,而旋耕情况下施加生物质炭则增加GWP12%(图1c);另外,不同生物质炭类型中,GWP的减排水平为其他黑炭(41%)及玉米黑炭(20%)高于小麦黑炭(13%)(图1d)。

注:图中圆形和横线分别代表平均值和95%置信区间,括号内的数值及百分比分别代表数据对数和百分比变化。下同。

表2 生物质炭施加对主粮作物痕量温室气体排放影响的组间异质性分析

Note:**,<0.01;*,<0.05;–,>0.05。

2.2 施加生物质炭对主粮作物甲烷排放的影响

从全国31对数据结果来看,相对于不施加生物质炭,生物质炭的施加对旱田甲烷排放的影响为14%(95%置信区间–10%~28%),但差异不显著。

总体来看,施加生物质炭对稻田中甲烷的排放没有显著影响,但在不同耕作和不同施肥状况中显示出极显著组间差异(表2)。其中旋耕情况下施加生物质炭可显著增加稻田甲烷排放达30%,而常规翻耕情况下施加生物质炭可降低稻田甲烷排放达9%(图2a)。生物质炭的输入在施氮肥和不施氮肥条件下对甲烷的排放有显著的区别,根据图2b,不施氮肥时,单独施加生物质炭可增加稻田甲烷排放达46%(95%置信区间14%~80%),而施加氮肥时,生物质炭的施加可显著减少稻田甲烷排放10%(95%置信区间2%~22%)。

图2 生物质炭施加对稻田甲烷排放的影响

2.3 施加生物质炭对主粮作物氧化亚氮排放的影响

从全国68对数据结果来看,相对于不施加生物质炭,生物质炭的施加平均可降低主粮作物氧化亚氮排放达41%(95%置信区间31%~51%),并且在不同土地利用类型、生物质炭施用量及黑炭类型分组间产生显著差异(表2)。旱田施加生物质炭后氧化亚氮的排放平均降低44%,而稻田的减排潜力为24%(图3a);少量施加生物质炭(<10 t/hm2)的氧化亚氮减排水平(52%)高于大量施加生物质炭(>10 t/ hm2)(图3b);不同生物质炭类型中,其他黑炭(包括竹炭、水稻秸秆炭等)和玉米黑炭的氧化亚氮的减排水平较高,而小麦黑炭的减排水平只有33%(图3c)。

2.4 施加生物质炭对主粮作物GWPI的影响

根据文章收集的数据,生物质炭输入平均可增加主粮产量达7%(95%置信区间4%~10%),平均可降低中国主粮作物GWPI达25%(95%置信区间18%~23%)。生物质炭对组间GWPI的影响与GWP的结果相似,其中旱田施加生物质炭后GWPI的降低水平极显著高于稻田(<0.01)(图4a);少量施加生物质炭(<10 t/ hm2)的GWPI的减排水平最高(图4b);翻耕情况下施加生物质炭对GWPI的减排潜力(22%)高于旋耕(1%)(图4c);不同生物质炭类型中,GWIP的减排水平中其他黑炭为47%,玉米黑炭为26%,小麦黑炭为20%(图4d)。

图3 生物质炭施加对氧化亚氮排放的影响

图4 生物质炭施加对温室气体排放强度(GWPI)的影响

3 讨 论

3.1 生物质炭的施加对痕量温室气体排放的影响

总体而言,生物质炭的施加对旱田和稻田甲烷吸收/排放的影响不显著,而生物质炭的稻田甲烷排放的影响主要视耕作情况和施肥状态而定。

从全国数据的Meta结果来看,生物质炭的施加平均可降低中国主粮作物氧化亚氮排放达41%,这与诸多大田试验的结果相似[9,21],主要可归纳为以下2个方面:1)生物炭固定氧化亚氮产生源。生物质炭的多孔特性和较大的比表面积(收集数据生物质炭的比表面积介于8.92~6 200 m2/g)可增加对硝态氮及铵态氮的吸附,减少了产氧化亚氮的基质[34];生物质炭较高的碳氮比(C/N)导致微生物在有机质矿化过程中缺氮,从而吸收土壤有效氮,加强对土壤氮素的临时固持作用[35]。2)生物质炭改变土壤反硝化作用。由于生物质炭多孔的特性,生物质炭输入土壤后改善了土壤的通气条件,从而一定程度上抑制产氧化亚氮的反硝化作用;由于生物质炭增加土壤pH[21]及易分解碳[36],增加反硝化中氧化亚氮还原酶的活性,从而增加氧化亚氮向氮气的转化[37]。

由此可见,生物质炭输入减少GWP主要是由于抑制了氧化亚氮的排放。通过GWPI,本文发现生物质炭的施加可有效提高农田产量,因此,生物质炭施加后应会对农田有固碳效益,当进一步考虑二氧化碳、甲烷和氧化亚氮3种温室气体时,生物质炭的减排效果可能比当前只考虑2种痕量温室气体的减排效果更大。

3.2 不同情况下生物质炭的施加对痕量温室气体排放的影响

稻田甲烷的排放量取决于甲烷产生、氧化及向大气传输这3个过程相互作用的结果,生物质炭中的易分解碳是甲烷的产生源,连续淹水的情况下能够促进甲烷的产生[38]。旋耕对土壤的扰动较小,旋耕情况下施加生物质炭会将大部分生物质炭转移到耕层0~5 cm左右,生物质炭输入而产生的甲烷还未完全被氧化已传输到大气中去,而翻耕能够有效地提高土壤的通透性,翻耕与生物质炭的结合将有效地提高稻田土壤的氧气含量,从而从减少甲烷的产生,另外翻耕会将大部分生物质炭转移到耕层10~20 cm,植物根际、水与大气的接触面均能有效地氧化甲烷。因此,翻耕与生物质炭的结合会抑制稻田甲烷的排放。

本文通过对全国多组田间试验数据结果的分析,发现生物质炭的输入在施氮肥和不施氮肥条件下对甲烷的排放有明显的区别。不施氮肥条件下施加生物质炭可显著增加稻田甲烷排放,主要是由于生物质炭中的易分解碳为甲烷的产生提供基质[37],而施氮情况下输入生物质炭会抑制甲烷排放,主要是由于生物质炭和氮肥均能提高稻田土壤中易分解碳的形成,根据Sun等[14]的解释,甲烷氧化菌视甲烷为唯一的碳源和能量源,当土壤中存在大量易分解碳时,甲烷氧化菌的活性和数量大幅提高[39],导致甲烷在未排放之前被氧化,可见生物质炭与氮肥的配施可有效减少稻田甲烷的排放。

本文的研究结果显示旱田施加生物质炭后氧化亚氮的减排潜力显著高于稻田,这可能是由于旱田中不饱和的水分条件更能抑制氧化亚氮的排放[38]。另外,不施氮情况下增加甲烷的排放也可能是导致稻田的减排潜力相对较低的原因。

目前中国生物质炭在大田的施用量介于3~40 t/hm2之间,其中生物质炭施用量在<10 t/ hm2的范围内其氧化亚氮和GWP的减排潜力普遍较强,而生物质炭量在10~40 t/ hm2的减排潜力相对较低,这可能是由于中国主粮作物土壤的理化性质、种植制度及气候条件等变化差异较大,目前从全国来看并无生物质炭输入量与GWP减排潜力呈显著相关的文章。基于本文所收集的产量数据、作物稻谷比[40]及生物质材料35%的生物质炭转化率[41],可估算出目前中国主粮作物秸秆每年约有2~8 t/hm2转化为生物质炭,其范围可达到最优的痕量温室气体减排效果,因此本文不建议额外超量施用生物质炭。

生物质炭的种类繁多,本文收集的生物质炭主要包括小麦秸秆生物质炭、玉米秸秆生物质炭、竹炭、水稻谷壳炭、水稻秸秆炭等,不同种类的生物质炭由于其化学组分不同,导致其对温室气体排放的影响也有显著差异[40]。通过一元线性回归分析发现生物质炭的C/N与GWP和GWPI呈正相关(图5),当生物质炭的C/N低于80时,GWP和GWPI的减排效果较为显著。说明施加持有较高C/N的生物质炭可增加温室气体的综和排放效应,而施加C/N低于80的生物质炭可促进GWP和GWPI的减排。

图5 生物质炭的C/N与GWP和GWPI反应比的相关关系

4 结 论

本文通过收集生物质炭对痕量温室气体排放影响的文章数据,采用Meta分析方法对不同生物质炭施加情况下主粮作物温室气体排放的变化进行了研究,并得出以下结论:

1)总体来讲,相对于不施加生物质炭,生物质炭输入可有效降低中国主粮作物氧化亚氮排放(41%)、GWP(18%)及GWPI(25%),而对甲烷吸收/排放并无显著影响;

2)生物质炭在翻耕和施加氮肥的情况下会显著降低稻田甲烷的排放,而在不施氮情况下施加生物质炭可显著提高甲烷排放达46%;

3)生物质炭在小于10 t/hm2、旱田及翻耕情况下输入相比大于10 t/hm2、稻田及旋耕的减排效果更为显著,降低生物质炭的C/N可有效减排GWP和GWPI。最后为保证主粮作物痕量温室气体的有效减排,建议结合翻耕及施氮处理,并将田间秸秆直接进行生物质炭化,无需额外输入生物质炭即可达到最优痕量温室气体减排效果。

[1] Iyer G C, Edmonds J A, Fawcett A A, et al. The contribution of Paris to limit global warming to 2 ℃[J]. Environmental Research Letters, 2015, 10: 125002.

[2] Bouwman A F, Boumans L J M. Emissions of N2O and NO from fertilized fields: Summary of available measurement data[J]. Global Biogeochemistry Cycles, 2002, 16(4), 1-6.

[3] Smith P, Martino D, Cai Z, et al, Agriculture[M]//Metz B, Davidson OR, Bosch PR, et al. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, USA: Cambridge University Press, 2007: 497–540.

[4] Wu Fengping, Jia Zhikuan, Wang Sunguo, et al. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil[J]. Biology and Fertility of Soils, 2013, 49(5): 555-565.

[5] 潘根兴,张阿凤,邹建文,等. 农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J]. 生态与农村环境学报,2010,26(4): 394-400. Pan Genxing, Zhang Afeng, Zou Jianwen, et al. Biochar from agro-byproducts used as amendment to croplands: An option for low carbon agriculture[J]. Journal of Ecology and Rural Environment, 2010, 26(4): 394-400. (in Chinese with English abstract)

[6] Liu Xiaoyu, Zhang Afeng, Ji Chunying, et al. Biochar’s effect on crop productivity and the dependence on experimental conditions: A meta-analysis of literature data[J]. Plant and Soil, 2013, 373(1/2): 583-594.

[7] Karhu K, Mattila T, Bergström I, et al. Biochar addition to agricultural soil increased CH4uptake and water holding capacity: Results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011, 140(1): 309-313.

[8] 刘玉明. 生物质炭应用于黄淮海平原低产农作旱地增产低碳效果探讨[D]. 南京:南京农业大学,2012. Liu Yuming. Effects of Biochar on Increasing Yield and Decreasing Carbon Intensity in Low Fertility Soils from the Central China Plain[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)

[9] 秦晓波,李玉娥,李健陵,等. 生物质炭添加对华南双季稻田碳排放强度的影响[J]. 农业工程学报,2015,31(5):226-234. Qin Xiaobo, Li Yu’e, Li Jianling, et al. Impact of biochar amendment on carbon emissions intensity in double rice field in South China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 226-234.(in Chinese with English abstract)

[10] 蒋晨,麻培侠,胡保国,等.生物质炭还田对稻田甲烷的减排效果[J].农业工程学报,2013,29(15):184-191. Jiang Chen, Ma Peixia, Hu Baoguo, et a1.Effect of biochar returning to paddy field on CH4emission reduction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 184—191.(in Chinese with English abstract)

[11] Knoblauch C, Maarifat A A, Pfeiffer E M, et al. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils[J]. Soil Biology and Biochemistry, 2011, 43(9): 1768-1778.

[12] 张阿凤. 秸秆生物质炭对农田温室气体排放及作物生产力的效应研究[D]. 南京:南京农业大学,2012. Zhang Afeng. A study on Effect of Biochar Amendment on Greenhouse Gases Emissions and Crop Productivity Agriculture[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)

[13] Gurevitch J, Hedges L V. Statistical issues in ecological meta-analyses[J]. Ecology, 1999, 80(4), 1142-1149.

[14] Sun Binfeng, Zhao Hong, Lü Yizhong, et al. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands[J]. Journal of Integrative Agriculture, 2016, 15(2): 440-450.

[15] 曲晶晶. 生物质炭稻田施用下的土壤固碳减排效应及其对水稻生产力的影响[D]. 南京:南京农业大学,2012. Qu Jingjing. Influence of Biochar Amendment on Paddy Soil Carbon Sequestration and GHGs Emissions Reduction and Rice Productivity[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)

[16] 马义虎,顾道健,刘立军,等. 玉米秸秆源有机肥对水稻产量与温室气体排放的影响[J]. 中国水稻科学,2013,27(5):520-528. Ma Yihu, Gu Daojian, Liu Lijun, et al. Effects of the organic fertilizers made from maize straw on grain yield of rice and emission of greenhouse gases from paddy fields[J]. Chinese Journal of Rice Science, 2013, 27(5): 520-528. (in Chinese with English abstract)

[17] 彭华,纪雄辉,吴家梅,等. 生物黑炭还田对晚稻CH4和N2O综合减排影响研究[J]. 生态环境学报,2011,20(11):1620-1625. Peng Hua, Ji Xionghui, Wu Jiamei, et al. Integrated effect of decreasing CH4and N2O emission by Biochar incorported to paddy field on late rice[J]. Ecology and Environmental Sciences, 2011, 20(11): 1620-1625. (in Chinese with English abstract)

[18] Shen Jianlin, Tang Hong, Liu Jieyun, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems [J]. Agriculture, Ecosystems & Environment, 2014, 188(4): 264-274.

[19] 李露,周自强,潘晓健,等. 氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响[J]. 植物营养与肥料学报,2015,21(5):1095-1103. Li Lu, Zhou Ziqiang, Pan Xiaojian, et al. Combined effects of nitrogen fertilization and biochar incorporation on methane and nitrous oxide emissions from paddy fields in rice-wheat annual rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1095-1103. (in Chinese with English abstract)

[20] 刘玉学,王耀锋,吕豪豪,等. 生物质炭化还田对稻田温室气体排放及土壤理化性质的影响[J]. 应用生态学报,2013,24(8):2166-2172. Liu Yuxue, Wang Yaofeng, Lü Haohao, et al. Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2166-2172. (in Chinese with English abstract)

[21] 李松,李海丽,方晓波,等. 生物质炭输入减少稻田痕量温室气体排放[J]. 农业工程学报,2014,30(21):234-240. Li Song, Li Haili, Fang Xiaobo, et a1. Biochar input to reduce trace greenhouse gas emission in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 234-240. (in Chinese with English abstract)

[22] 邬刚. 不同施肥模式下施用生物黑炭对雨养旱地土壤性质,玉米生长和温室气体排放影响的研究[D]. 南京:南京农业大学,2012. Wu Gang. Effect of Biochar Amendment on Soil Properties, Corn Growth and Greenhouse Gas Emissions from Rain-fed Dry Land under Different Fertilization Mode[D]. Nanjing: Nanjing Agricultural University, 2012

[23] 李晓. 施用生物质炭及炭基肥对温室气体排放, 玉米生长及土壤性质的影响[D]. 南京:南京农业大学,2013. Li Xiao. Effects of Biochar and Biochar-based Fertilizer Amendment on Greenhouse Gases Emission, Maize Growth[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract)

[24] 张斌,刘晓雨,潘根兴,等. 施用生物质炭后稻田土壤性质,水稻产量和痕量温室气体排放的变化[J]. 中国农业科学,2012,45(23):4844-4853. Zhang Bin, Liu Xiaoyu, Pan Genxing, et al. Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles[J]. Scientia Agricultura Sinica, 2012, 45(23): 4844-4853. (in Chinese with English abstract)

[25] 成功,张阿凤,王旭东,等. 运用“碳足迹”的方法评估小麦秸秆及其生物质炭添加对农田生态系统净碳汇的影响[J]. 农业环境科学学报,2016,35(3):604-612. Cheng Gong, Zhang Afeng, Wang Xudong, et al. Assessment of wheat straw and its biochar effects on carbon sink in agricultural ecosystems using "carbon footprint" method[J]. Journal of Agro-Envionment Science, 2016, 35(3): 604-612. (in Chinese with English abstract)

[26] 夏文斌,张旭辉,刘铭龙,等. 麦秆还田方式对旱地土壤综合温室效应的影响[J]. 土壤,2014,46(6):1010-1016. Xia Wenbin, Zhang Xuhui, Liu Minglong, et al. Effects of wheat straw return ways on integrated global warming effect from dryland soil in north China Plain[J]. Soils, 2014, 46(6): 1010-1016. (in Chinese with English abstract)

[27] 李正东,陶金沙,李恋卿,等. 生物质炭复合肥对小麦产量及温室气体排放的影响[J]. 土壤通报,2015,46(1):177-183. Li Zhengdong, Tao Jinsha, Li Lianqing, et al. Effects of biochar-based fertilizer on wheat yield and greenhouse gases emissions[J]. Chinese Journal of Soil Science,2015, 46(1): 177-183. (in Chinese with English abstract)

[28] 李超. 不同施肥处理对春玉米田N2O排放的影响及经济效益分析[D]. 北京:中国农业科学院,2013. Li Chao. Effects and Economic Benefits Analysis of Different Fertilizer Treatments on N2O Emissions from Spring Corn Field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract)

[29] 韩继明,潘根兴,刘志伟,等. 减氮条件下秸秆炭化与直接还田对旱地作物产量及综合温室效应的影响[J]. 南京农业大学学报,2016, 39(6): 986-995. Han Jiming, Pan Genxing, Liu Zhiwei, et al. Contrasting effect of straw return and its biochar on changes in crop yield and integrated global warming effects under different nitrogen levels[J]. Journal of Nanjing Agricultural University, 2016, 39(6): 986-995. (in Chinese with English abstract)

[30] Rosenberg M S, Adams D C, Gurevitch J. Metawin: Statistical Software for Meta-Analysis. Version 2. 1[M]. Sunderland, USA, Sinauer Associates, 2000.

[31] Curtis PS, Wang X. A meta-analysis of elevated CO2effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3): 299-313.

[32] IPCC. Climate change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC [M]. Cambridge, New York: Cambridge University Press, 2007.

[33] Mosier A R, Halvorson A D, Reule C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado[J]. Journal of Environmental Quality, 2006, 35(4): 1584-1598.

[34] Cornelissen G, Rutherford D W, Arp H P H, et al. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions[J]. Environmental Science & Technology, 2013, 47(14): 7704-7712.

[35] Baggs E M, Rees R M, Smith K A, et al, Nitrous oxide emission from soils after incorporating crop residues[J]. Soil Use & Management, 2000, 16(2): 82-87.

[36] Butterbach-Bahl K, Baggs EM, Dannenmann M, et al. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?[J] Biological Sciences, 2013, 368(1621): 20130122.

[37] Yanai Y, Toyota K, Okazaki M, Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J]. Soil Science & Plant Nutrition, 2007, 53(2): 181-188.

[38] Schimel J. Global change: Rice, microbes and methane[J]. Nature, 2000, 403(6768): 375-377.

[39] Liu Yuxue, Yang Min, Wu Yimin, et al. Reducing CH4and CO2emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments, 2011, 11(6): 930-939.

[40] 韩鲁佳,闫巧娟,刘向阳,等. 中国农作物秸秆资源及其利用现状[J]. 农业工程学报,2002,18(3):87-91. Han Lujia, Yan Qiaojuan, Liu Xiangyang, et al. Straw resources and theire utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 87-91.(in Chinese with English abstract)

[41] Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil: A review to guide future research[J]. CSIRO Land and Water Science Report, 2009, 5(9): 17-31.

赵 红,孙滨峰,逯 非,王效科,张 国,王海勇,张利钧,张梦汝.Meta分析生物质炭对中国主粮作物痕量温室气体排放的影响[J]. 农业工程学报,2017,33(19):10-16. doi:10.11975/j.issn.1002-6819.2017.19.002 http://www.tcsae.org

Zhao Hong, Sun Binfeng, Lu Fei, Wang Xiaoke, Zhang Guo, Wang Haiyong, Zhang Lijun, Zhang Mengru. Meta analysis on impacts of biochar on trace greenhouse gases emissions from staple crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 10-16. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.002 http://www.tcsae.org

Meta analysis on impacts of biochar on trace greenhouse gases emissions from staple crops in China

Zhao Hong1, Sun Binfeng2, Lu Fei3※, Wang Xiaoke3, Zhang Guo3, Wang Haiyong1, Zhang Lijun1, Zhang Mengru1

(1.250102,; 2.330200,; 3.100085,)

Biochar inputs have important impliations for agricultural soils, also have a significant influence on greenhouse gas emissions. This paper conducted a meta-analysis to quantitatively synthesize influence of biochar inputs on trace greenhouse gases from staple crops in China, and explored available mitigation method. The data were collected from published papers before December, 2016. The effective data were selected from the literatures including: 1) both treatments with and without biochar input; 2) methane and nitrous oxide emissions; 3) field experiment; 4) greenhouse gases from rice planting to maturity; 5) reliable measurements; 6) clear and reliable yield data; 7) wheat, rice and maize in China. A total of 134 datasets were obtained. They were classified by rice paddy field and dry land, rotary tillage and plowing tillage, different biochar amount and biochar types. The response ratio was calculated with the biochar input as the treatment and no biochar input as the control. The global warming potential and the greenhouse gas intensity were calculated. The results showed that the biochar input averagely decreased the global warming potential by 18% compared with no biochar input. The global warming potential decrease by inputting biochar in the dry land was significantly higher than that in the paddy field (<0.01). The reduction in global warming potential by inputting less than 10 t/hm2biochar was higher than that by inputting the biochar higher than 10 t/hm2. Plowing tillage could significantly reduce the GWP by 19%. The rate of change in GWP was highest in the other biochar (41%), followed by maize biochar (20%) and wheat biochar (13%). The biochar input didn’t greatly affect the methane emission in paddy field. However, the rotary tillage could significantly increase the methane emission by 30% and the inputting biochar without N application also greatly increase the methane emission. The biochar input average decreased the nitric oxides by 41% for the three staple crops. The nitrous oxides emission was decreased by 44% in the dry land, 24% in the paddy field, by 52% by inputting smaller than 10 t/hm2biochar. The nitrous oxides emissions were higher in the other biochar and maize biochar than the wheat biochar. Biochar input could increase the crop yield by 7% and decreased the greenhouse gas intensity by 25%. The decrease in the greenhouse gas intensity was higher in the dry land than the paddy field, in the smaller than 10 t/hm2biochar input than the input higher than 10 t/hm2, and in the plowing tillage than in the rotary tillage. The rate of change in greenhouse gas intensity was 47% in the other biochar input, 26% in the maize biochar, and 20% in the wheat biochar. Different soil use types, tillage managements, biochar amount and biochar types could significantly impact nitric oxide, global warming potential and greenhouse gas intensity. In addtion, biochar input combined with reasonable agricultural management could reduce greenhouse gas emissions in staple crops soils. This paper indicated that for reduction in global warming potential from staple crops, biochar should combine application with nitrogen fertilizer and plowing tillage managements, and input the biochar with less 10 t/hm2and C/N below 80, such as, field crop straw could directily carbonized.

greenhouse gases; methane; nitrogen; biochar; Meta analysis; global warming potential

10.11975/j.issn.1002-6819.2017.19.002

S161.9

A

1002-6819(2017)-19-0010-07

2016-07-06

2017-06-10

国家自然科学基金-青年基金项目(71003092);中国科学院青年创新促进会项目

赵 红,黑龙江五常人,博士,主要从事农业土壤固碳减排方面的研究。Email:zhaohuahua1985@126.com

※通信作者:逯 非,北京人,副研究员,主要从事陆地生态系统固碳方面的研究。Email:feilul@rcees.ac.cn

猜你喜欢
氧化亚氮主粮甲烷
生物炭对农田氧化亚氮排放及其影响机制的研究进展
液氧甲烷发动机
论煤炭运输之甲烷爆炸
三主粮高质量发展科技研究之路知识产权获得
XLNO型低温脱除氧化亚氮催化剂性能研究
Gas from human waste
马铃薯主粮化
马铃薯将成为我国第四大主粮
基于VB6.0的红外甲烷检测仪串行通信的实现
沼液施用对潮土氧化亚氮排放通量的影响