穴位埋线对缺血再灌注损伤高脂血症合并2型糖尿病大鼠心肌保护作用的机制研究

2017-11-01 05:46王一茗张新昕束彦页
中国全科医学 2017年30期
关键词:透射电镜超微结构内质网

王一茗,张新昕,束彦页

·论著·

·中医·中西医结合研究·

穴位埋线对缺血再灌注损伤高脂血症合并2型糖尿病大鼠心肌保护作用的机制研究

王一茗1*,张新昕2,束彦页1

目的探讨穴位埋线对缺血再灌注损伤高脂血症合并2型糖尿病(ZDF)大鼠心肌保护作用的机制,为临床治疗提供理论依据。方法2015年1月—2016年5月选取ZDF大鼠24只,随机分为对照组、缺血再灌注组、缺血预处理组和穴位埋线组,每组6只。适应性饲养1周后第7天,对照组直接开胸取材,其余3组均结扎冠状动脉左前降支,建立缺血再灌注损伤模型。缺血再灌注组缺血30 min,再灌注60 min;缺血预处理组缺血5 min、再灌注5 min,重复3次,之后操作同缺血再灌注组;穴位埋线组在适应性饲养1周后第1天,“内关”“膻中”“心俞”穴进行穴位埋线,之后操作同缺血再灌注组。采用透射电镜观察各组ZDF大鼠心肌组织超微结构及自噬水平,Western blotting法检测心肌内质网应激相关蛋白葡萄糖调节蛋白78(GRP78)、自噬相关蛋白Beclin-1水平,酶联免疫吸附实验(ELISA)法检测髓过氧化物酶(MPO)、丙二醛(MDA)水平。结果透射电镜下对照组线粒体和心肌细胞形态结构正常,未见明显自噬体;缺血再灌注组线粒体和心肌细胞肿胀明显,细胞膜破裂、内容物泄漏,仅见空泡或空腔及少量自噬泡;缺血预处理组、穴位埋线组与缺血再灌注组相比,心肌细胞超微结构损伤较轻,且自噬泡数量明显增多;缺血再灌注组心肌细胞超微结构破坏最为严重,且未见明显自噬泡。缺血再灌注组、缺血预处理组、穴位埋线组GRP78、Beclin-1、MPO、MDA水平高于对照组(P<0.05);缺血预处理组、穴位埋线组GRP78、Beclin-1水平高于缺血再灌注组,但MPO、MDA水平低于缺血再灌注组(P<0.05)。结论穴位埋线可能通过促进GRP78、Beclin-1水平升高,进而起到对再灌注损伤心肌的保护作用。

再灌注损伤;大鼠;内质网应激;自噬;缺血预处理,心肌;穴位埋线

王一茗,张新昕,束彦页.穴位埋线对缺血再灌注损伤高脂血症合并2型糖尿病大鼠心肌保护作用的机制研究[J].中国全科医学,2017,20(30):3776-3780.[www.chinagp.net]

WANG Y M,ZHANG X X,SHU Y Y.Mechanism of catgut implantation at acupoints for the protection of myocardium from ischemia-reperfusion injury in hyperlipidemia rats with type 2 diabetes mellitus[J].Chinese General Practice,2017,20(30):3776-3780.

心肌梗死为全球范围内患者的主要致死原因之一,心肌急性且持续性的缺血缺氧,会严重损伤心肌。心肌梗死面积的大小关系患者的预后,及时有效的再灌注、恢复心肌血供、缩小梗死面积,是心肌梗死的治疗目标。然而,再灌注过程十分复杂,常伴随一些适应性调控机制的作用,如内质网应激(ERS)及自噬等,是学者们一直关注的焦点[1]。

ERS是自噬的重要调控通路[2-3]。ERS与自噬作为细胞对损伤刺激的适应性反应,维持着细胞内环境稳态。ERS时未折叠蛋白反应激活自噬,而自噬则通过降解错误折叠或未折叠的蛋白来减轻内质网负荷,从而抑制ERS的过度激活[1]。

针灸预处理可发挥内源性保护作用,从而减轻因缺血再灌注对心肌造成的损伤[4-5]。自噬可保护再灌注损伤心肌[6]。ERS与自噬关系密切,存在交互效应。本研究通过制备心肌缺血再灌注损伤模型,观察ERS通路相关蛋白-葡萄糖调节蛋白78(GRP78)及自噬相关蛋白Beclin-1的表达情况,探讨穴位埋线对缺血再灌注损伤心肌的保护作用。

1 材料与方法

1.1 主要试剂 Beclin-1、GRP78(Abcam公司);髓过氧化物酶(MPO)、丙二醛 (MDA)试剂盒(DECQ上海慧颖生物科技公司),其余试剂(如Tris-base、Tween-20、Western专用脱脂奶粉、过硫酸铵粉、甘氨酸G7126、SDS粉末、甲醇、甲叉双丙烯酰胺、TEMED、Western bloting及缺血预处理裂解液、PMSF、20XTBS、PVDF膜等)购自Sigma公司,实验动物由北京维通利华实验动物技术有限公司提供〔动物许可证编号SCXK(京)2012-0001〕。

1.2 实验分组及模型制备 研究时间:2015年1月—2016年5月。

SPF级雄性高脂血症合并2型糖尿病(ZDF)大鼠24只,8周龄,体质量220~230 g,在SPF级实验环境适应性饲养1周,使用符合国家标准及有生产许可的诱导饲料Purina#5008,饮用无菌过滤水,空气净化度10 000级,氨浓度<14 mg/m2,相对湿度40%,温度22~25 ℃,噪声低于50 dB。本实验符合《实验动物管理条例》。将ZDF大鼠随机分为对照组、缺血再灌注组、缺血预处理组和穴位埋线组,每组6只。

本文创新点:

(1)首次深入观察穴位埋线法对高脂血症合并2型糖尿病(ZDF)大鼠心肌缺血再灌注损伤的影响及内质网应激(ERS)-自噬机制;(2)选用ZDF大鼠作为实验动物更接近临床实际。

适应性饲养1周后第7天,对照组不做任何处置,直接开胸取材;其余3组制备缺血再灌注损伤模型:10%水合氯醛(0.4 ml/100 g)腹腔注射,仰卧位固定,剪毛后气管插管,连接小动物呼吸机,开胸并暴露心脏,剪开心包,冠状动脉左前降支位于心耳下缘约0.15 cm,绕左前降支穿线,线两端同时穿过聚乙烯小管形成闭环,监测导联变化,S-T段发生显著(超过0.1 mv为显著)抬高为缺血成功,S-T段下降1/2以上为再灌注成功。缺血再灌注组:缺血30 min,再灌注60 min。缺血预处理组:缺血5 min、再灌注5 min,反复3次,之后操作同缺血再灌注组。穴位埋线组:适应性饲养1周后第1天对“内关”“膻中”及“心俞”进行穴位埋线,之后操作同缺血再灌注组。各组造模成功后取心肌组织-80 ℃保存备用。

1.3 实验方法

1.3.1 透射电镜观察心肌组织超微结构及自噬水平 沿肌纤维走向取左心室前壁心肌,将标本切成(1×1×1)mm3大小。经预固定、再固定、逐级脱水、包埋、切片等步骤,透射电镜下观察心肌组织超微结构及自噬水平。

1.3.2 Western blotting法检测GRP78、Beclin-1水平 分别于各组心肌组织滴入其体积3倍量的组织裂解液,0 ℃研磨成组织匀浆,静置10 min;经低温(4 ℃)15 000 r/min离心10 min(离心半径10 cm);滴入蛋白上样缓冲液后,置于沸水中5 min。用BCA法定量蛋白浓度。滴入相同剂量2×SDS上样缓冲液,95 ℃静置5 min。孔板每孔加40 μg胞质蛋白,用12%十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,低温恒压转膜,用5%脱脂奶粉25 ℃下封膜后静置2 h,加入兔抗鼠抗(1∶500)或内参GAPDH(1∶800)一抗,4 ℃静置12 h后洗膜,用辣根过氧化酶标记的羊抗兔Ig G (1∶5 000) 25 ℃静置1 h;经漂洗后电化学发光法(ECL)常规显影。用Gelpro4.0凝胶光密度分析软件进行分析,以目的条带灰度/内参条带灰度比值表示GRP78、Beclin-1水平。

1.3.3 酶联免疫吸附实验(ELISA)法检测MPO、MDA水平 各组ZDF大鼠再灌注60 min后,用含有EDTA抗凝剂采血管采血2 ml,3 000 r/min离心10 min(离心半径10 cm),收集分离血清后静置于-20 ℃冰箱,测定ZDF大鼠MPO、MDA水平。

2 结果

2.1 心肌组织超微结构 透射电镜下对照组线粒体和心肌细胞形态结构正常,未见明显自噬体(见图1A);缺血再灌注组线粒体肿胀明显,嵴突紊乱、断裂甚至消失,心肌细胞明显水肿,肌丝断裂、溶解,肌小节明暗带模糊不清,细胞器结构破坏,胞质内可见许多大小不等的空泡或空腔及少量自噬泡,细胞膜破裂,细胞内容物泄漏(见图1B);缺血预处理组、穴位埋线组与缺血再灌注组相比,心肌细胞超微结构损伤较轻,且自噬泡数量明显增多;缺血再灌注组心肌细胞超微结构破坏较缺血预处理组严重,且未见明显自噬泡(图1C、D)。

2.2 4组ZDF大鼠GRP78、Beclin-1水平比较 4组ZDF大鼠GRP78、Beclin-1水平比较,差异有统计学意义(P<0.05)。缺血再灌注组、缺血预处理组、穴位埋线组GRP78、Beclin-1水平高于对照组,差异有统计学意义(P<0.05);缺血预处理组、穴位埋线组 GRP78、Beclin-1水平高于缺血再灌注组,差异有统计学意义(P<0.05,见表1、图2)。

Table1 Comparison of the levels of GRP78 and Beclin-1 among the 4 groups of ZDF rats

组别只数GRP78Beclin-1对照组60.47±0.020.77±0.04缺血再灌注组60.74±0.04a0.97±0.02a缺血预处理组60.73±0.01ab1.28±0.02ab穴位埋线组61.74±0.05ab1.29±0.05abF值816.709150.053P值<0.001<0.001

注:GRP78=葡萄糖调节蛋白78;与对照组比较,aP<0.05;与缺血再灌注组比较,bP<0.05

注:GRP78=葡萄糖调节蛋白78

图2 4组ZDF大鼠GRP78、Beclin-1表达

Figure2 Expression levels of GRP78 and Beclin-1 among 4 groups of ZDF rats

2.3 4组ZDF大鼠MPO、MDA水平比较 4组ZDF大鼠MPO、MDA水平比较,差异有统计学意义(P<0.05)。对照组MPO、MDA水平低于缺血再灌注组、缺血预处理组、穴位埋线组,差异有统计学意义(P<0.05);缺血预处理组、穴位埋线组 MPO、MDA水平低于缺血再灌注组,差异有统计学意义(P<0.05,见表2)。

注:图A为对照组,图B为缺血再灌注组,图C为缺血预处理组,图D为穴位埋线组

图1 各组ZDF大鼠心肌组织透射电镜显示结果(×8 200)

Figure1 Results of examination of myocardium in the 4 groups of ZDF rats by transmission electron microscope

Table2 Comparison of levels of MPO and MDA among the 4 groups of ZDF rats

组别只数MPO(U/g)MDA(μmol/g)对照组62.34±0.111.98±0.26缺血再灌注组618.35±0.38a4.34±0.46a缺血预处理组65.64±0.15ab2.89±0.34ab穴位埋线组66.97±0.35ab3.23±0.88abF值1905.7338.520P值<0.0010.007

注:MPO=髓过氧化物酶,MDA=丙二醛;与对照组比较,aP<0.05;与缺血再灌注组比较,bP<0.05

3 讨论

ERS是应激发生时在细胞中的最初反应[7],是某种原因所致的细胞内质网稳态失衡,并引起生理功能紊乱的一种亚细胞器上的病理过程[8]。目前研究已证实,ERS参与多种心血管疾病的病理生理过程,并发挥着非常重要的作用,其在细胞内介导保护性反应和凋亡反应[9],而GRP78是其介导这两种反应的关键信号因子。在一定程度上,GRP78水平反应了细胞ERS保护性反应水平[10]。Beclin-1作为细胞自噬的关键调控因子,其是形成自噬体不可或缺的因素,通过与配体结合来调节细胞内自噬活性[11]。

ERS可通过多条信号通路调节自噬,与维持内质网正常功能关系密切[12-14]。ERS诱导细胞发生自噬[15-21],而自噬可减轻内质网负担,这可能与细胞抗凋亡的代偿机制有关[22]。ERS时未折叠蛋白反应激活自噬,而自噬通过降解错误折叠或未折叠蛋白,减轻内质网负荷,抑制过度激活的ERS;但过度激活的ERS-自噬又会造成细胞损伤的加重,甚至导致细胞死亡。

临床将透射电镜观察自噬体囊泡作为判定自噬的金标准[23-25]。本研究制备ZDF大鼠心肌缺血再灌注损伤模型,透射电镜观察示:除对照组外,其余3组ZDF大鼠心肌组织均表现出不同程度的梗死以及梗死后的缺血坏死,提示心肌缺血再灌注损伤模型成功建立;与缺血再灌注组相比,缺血预处理 组及穴位埋线组的心肌超微结构损伤较轻,且自噬泡数量增多;穴位埋线组与缺血预处理组的损伤相对较轻,提示穴位埋线与缺血预处理具有近似的心肌保护作用。

心肌缺血再灌注期间,缺血预处理组及穴位埋线组GRP78、Beclin-1水平明显高于缺血再灌注组,提示缺血预处理组和穴位埋线组可通过调控ERS-自噬通路对细胞凋亡发挥抑制作用,从而对损伤心肌起到保护作用。

MPO、MDA是反映机体氧化应激情况的重要指标[26-27]。本实验结果显示,缺血再灌注组MPO、MDA水平明显升高,说明缺血区发生炎性反应,自由基增多,进而诱导心肌组织损伤加剧。而缺血预处理组及穴位埋线组的MPO、MDA水平虽高于对照组,但较缺血再灌注组明显降低,说明两种预处理手段均可减轻缺血再灌注损伤。

本研究采用经典的中医外治法——穴位埋线,通过可吸收缝合线的持久性刺激与穴位功效相结合,具有实用性及易操作等优点。俞募配穴是治疗心脏疾病的常用配穴,可调畅气机、宽胸理气。膻中穴是心包的募穴,八会穴之一;心俞穴是心经背俞穴;内关穴是心包经的络穴,也是八脉交会穴之一,与心经相通,因而也常配合应用。无菌操作下,将可吸收缝合线(聚乙醇酸PGA缝线)剪成1 cm左右,放入0.7×30 TWLB一次性无菌注射针针头中。确定刺入上述穴位前,用爱尔碘局部皮肤常规消毒,一次性无菌注射针刺入穴位后用特制平头针将缝合线推入穴位中,缝合线埋入穴位后迅速出针并用无菌棉球按压止血。该法既简便易行,又弥补针灸治疗结束后疗效衰减的不足,在治疗慢性疾病方面优势突出。

本实验通过多水平、多角度对缺血再灌注损伤心肌ERS-自噬通路机制进行研究发现,穴位埋线与缺血预处理作用近似,可能是其可发挥内源性保护。对ERS-自噬通路的激活,可能是穴位埋线通过促进GRP78、Beclin-1水平升高,维持内质网正常功能并减轻其负担,以及适度调节自噬活性、抗凋亡及抑制过度ERS,从而起到对再灌注损伤心肌的保护作用。对于穴位埋线治疗心肌缺血再灌注损伤的作用机制,仍需深入研究。

作者贡献:王一茗进行研究设计与实施、资料收集整理、撰写论文并对文章负责;张新昕、束彦页进行研究实施、资料收集;王一茗进行质量控制及审校。

本文无利益冲突。

[1]王伟伟.内质网应激-自噬对脑缺血再灌注能量代谢障碍与氧化应激的影响[D].长春:吉林大学,2014.

WANG W W.Effects of endoplasmic reticulum stress and autophagy on energy metabolism and oxidative stress in cerebral ischemia reperfusion [D].Changchun:Jilin University,2014.

[2]PUPYSHEV A B.Reparative autophagy and autophagy death of cells.Functional and regulatory aspects[J].Tsitologiia,2013,56(3):179-196.

[3]LIU S,SARKAR C,DINIZO M,et al.Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death[J].Cell Death Dis,2015,6:e1582.DOI:10.1038/cddis.2014.527.

[4]FUDICKAR A,KUNATH S,VOβ D,et al.Effect of ischemic and pharmacological preconditioning of lower limb muscle tissue on tissue oxygenation measured by near infrared spectroscopy——a pilot study[J].BMC Anesthesiology,2014,14:54.DOI:10.1186/1471-2253-14-54.

[5]李上海,梁伟钧,孙炎华,等.缺血预处理对心肌缺血再灌注诱发凋亡的保护机制[J].国际心血管病杂志,2014,41(1):48-50.DOI:10.3969/j.issn.1673-6583.2014.01.016.

LI S H,LIANG W J,SUN Y H,et al.The protective mechanism of ischemic preconditioning on apoptosis induced by myocardial ischemia reperfusion[J].International Journal of Cardiovascular Diseases,2014,41(1):48-50.DOI:10.3969/j.issn.1673-6583.2014.01.016.

[6]YAN W J,DONG H L,XIONG L Z.The protective roles of autophagy in ischemic preconditioning[J].Acta Pharmacol Sin,2013,34(5):636-643.DOI:10.1038/aps.2013.18.

[7]PAHL H L.Signal transduction from the endoplasmic reticulum to the cell nucleus[J].Physiol Rev,1999,79(3):683-701.

[8]SCHRÖDER M.Endoplasmic reticulum stress responses[J].Cell Mol Life Sci,2008,65(6):862-894.DOI:10.1007/s00018-007-7383-5.

[9]GLEMBOTSKI C C.Endoplasmic reticulum stress in the heart[J].Circ Res,2007,101(10):975-984.DOI:10.1161/CIRCRESAHA.107.161273.

[10]RUTKOWSKI D T,KAUFMAN R J.That which does not kill me makes me stronger:adapting to chronic ER stress[J].Trends Biochem Sci,2007,32(10):469-476.DOI:10.1016/j.tibs.2007.09.003.

[11]MATSUNAGA K,SAITOH T,TABATA K,et al.Two Beclin 1-binding proteins,Atg14L and Rubicon,reciprocally regulate autophagy at different stages[J].Nat Cell Biol,2009,11(4):385-396.DOI:10.1038/ncb1846.

[12]DEEGAN S,KORYGA I,GLYNN S A,et al.A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy[J].Biochem Biophys Res Commun,2015,456(1):305-311.DOI:10.1016/j.bbrc.2014.11.076.

[13]XU Y,YU H,QIN H,et al.Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells[J].Cancer Lett,2012,314(2):232-243.DOI:10.1016/j.canlet.2011.09.034.

[14]SENFT D,RONAI Z A.UPR,autophagy,and mitochondria crosstalk underlies the ER stress response[J].Trends Biochem Sci,2015,40(3):141-148.DOI:10.1016/j.tibs.2015.01.002.

[15]SONG L,LIU H,MA L,et al.Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasopharyngeal carcinoma cells[J].Oncol lett,2013,6(4):1031-1038.DOI:10.3892/ol.2013.1498.

[16]DEEGAN S,KORYGA I,GLYNN S A,et al.A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy[J].Biochem Biophys Res Commun,2015,456(1):305-311.DOI:10.1016/j.bbrc.2014.11.076.

[17]XU Y,YU H,QIN H,et al.Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells[J].Cancer Lett,2012,314(2):232-343.DOI:10.1016/j.canlet.2011.09.034.

[18]SAGLAR E,UNLU S,BABALIOGLU I,et al.Assessment of ER stress and autophagy induced by ionizing radiation in both radiotherapy patients and ex vivo irradiated samples[J].J Biochem Mol Toxicol,2014,28(9):413-417.DOI:10.1002/jbt.21579.

[19]HUANG H,LI X,ZHUANG Y,et al.Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage[J].J Biomed Res,2014,28(3):213-221.DOI:10.7555/JBR.28.20130105.

[20]MORIYA S,KOMATSU S,YAMASAKI K,et al.Targeting the integrated networks of aggresome formation,proteasome,and autophagy potentiates ER stress-mediated cell death in multiple myeloma cells[J].Int J Oncol,2015,46(2):474-486.DOI:10.3892/ijo.2014.2773.

[21]CHENG X,LIU H,JIANG C C,et al.Connecting endoplasmic reticulum stress to autophagy through IRE1/JNK/beclin-1 in breast cancer cells[J].Int J Mol Med,2014,34(3):772-781.DOI:10.3892/ijmm.2014.1822.

[22]DEEGAN S,SAVELJEVA S,GORMAN A M,et al.Stress-induced self-cannibalism:on the regulation of autophagy by endoplasmic reticulum stress[J].Cell Mol Life Sci,2013,70(14):2425-2441.DOI:10.1007/s00018-012-1173-4.

[23]RABINOWITZ J D,WHITE E.Autophagy and metabolism[J].Science,2010,330(6009):1344-1348.DOI:10.1126/science.1193497.

[24]NICKLIN P,BERGMAN P,ZHANG B,et al.Bidirectional transport of amino acids regulates mTOR and autophagy[J].Cell,2009,136(3):521-534.DOI:10.1016/j.cell.2008.11.044.

[25]WU Y T,TAN H L,HUANG Q,et al.Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy[J].Autophagy,2009,5(6):824-834.

[26]CHOI J Y,NEUHOUSER M L,BARNETT M J,et al.Iron intake,oxidative stress-related genes (MnSOD and MPO) and prostate cancer risk in CARET cohort[J].Carcinogenesis,2008,29(5):964-970.DOI:10.1093/carcin/bgn056.

[27]PIRINCCIOGLU A G,GÖKALP D,PIRINCCIOGLU M,et al.Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia[J].Clin Biochem,2010,43(15):1220-1224.DOI:10.1016/j.clinbiochem.2010.07.022.

MechanismofCatgutImplantationatAcupointsfortheProtectionofMyocardiumfromIschemia-reperfusionInjuryinHyperlipidemiaRatswithType2DiabetesMellitus

WANGYi-ming1*,ZHANGXin-xin2,SHUYan-ye1

1.DepartmentofAcupunctureandMoxibustion,AffiliatedHospitalofJiangsuUniversity,Zhenjiang212001,China2.JiangsuUniversityHospitalWorkers,Zhenjiang212013,China

ObjectiveTo explore the mechanism of catgut implantation at acupoints for the protection of myocardium from ischemia-reperfusion injury in hyperlipidemia zucker diabetic fatty (ZDF)rats,models of type 2 diabetes mellitus,in order to provide a theoretical basis for clinical treatment.MethodsThis study was conducted during January 2015 to May 2016.Twenty-four ZDF rats were selected and randomly divided into control group,ischemia reperfusion (IR) group,ischemic pretreatment (IP) group and catgut implantation (CI) group,with 6 in each.On the 7th day after one week of adaptive feeding,myocardial tissues of the control group were taken out via thoracotomy,the other three groups were used for establishing IR models after ligation of the left anterior descending coronary artery.IR group first

myocardial ischemia treatment for 30 min,then received reperfusion for 60 min.IP group received 3 rounds of 5-min myocardial ischemia treatment and 5-min reperfusion,then received 30-min myocardial ischemia treatment and 60-min reperfusion.CI group received the same treatment given to IR group except on the first day after one week of adaptive feeding,they received catgut implantation at Neiguan,Danzhong,and Xinshu acupoints.The ultrastructure and level of autophagy of myocardium of ZDF rats were observed by transmission electron microscope.Western blotting was used to detect the levels of myocardial endoplasmic reticulum stress-related protein glucose-regulated protein 78 (GRP78) and autophagy-related protein Beclin-1.The levels of myeloperoxidase (MPO) and malondialdehyde (MDA) were measured by enzyme-linked immunosorbent assay (ELISA).ResultsTransmission electron microscope observation showed that,the control group demonstrated normal mitochondria and cardiomyocytes without many autophagysomes;IR group presented significantly swollen mitochondria and cardiomyocytes with ruptured cell membrane and leaked contents,leaving vacuoles or cavities and a small amount of autophagic vacuoles.Compared with IR group,the myocardial cell ultrastructural damage in IP and CI groups was lighter and the number of autophagic vacuoles was significantly increased.The myocardial cell ultrastructural damage in IR group was the most serious,even there were no many autophagic vacuoles.The levels of GRP78,Beclin-1,MPO and MDA were significantly lower in the control group than in the other three groups (P<0.05).IR group had lower levels of GRP78 and Beclin-1 but higher levels of MPO and MDA compared with IP and CI groups (P<0.05).ConclusionCatgut implantation at Neiguan,Danzhong,and Xinshu acupoints may play a role in the protection of myocardium from ischemia-reperfusion injury by increasing the levels of GRP78 and Beclin-1.

Reperfusion injury;Rats;Endoplasmic reticulum stress;Autophagy;Ischemic pretreatment,myocardium;Catgut implantation at acupoints

R 619.9

A

10.3969/j.issn.1007-9572.2017.00.074

2017-03-15;

2017-08-12)

(本文编辑:崔莎)

国家自然科学基金青年科学基金项目(81303037)

1.212001江苏省镇江市,江苏大学附属医院针灸科 2.212013江苏省镇江市,江苏大学职工医院

*通信作者:王一茗,主治中医师;E-mail:kingonetea@163.com

*Correspondingauthor:WANGYi-ming,AttendingTCMdoctor;E-mail:kingonetea@163.com

猜你喜欢
透射电镜超微结构内质网
鸡蛋蛋壳膜超微结构与呼吸强度的相关关系
愤怒诱导大鼠肝损伤中内质网应激相关蛋白的表达
公告
透射电镜中正空间—倒空间转换教学探讨
透射电镜的分权限开放管理与培训教学研究
材料学科透射电镜实验课程的体会
草鱼冷藏过程中肌原纤维超微结构及质构的变化
低氧运动对SD大鼠骨骼肌超微结构与LPO水平的影响
AMPK活性对HeLa细胞内质网功能稳态的影响
维生素E琥珀酸酯处理人胃癌细胞过程中自噬与内质网应激的交互作用