王蒙蒙,马拥军,2
(1.西南科技大学四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地,四川 绵阳 621010;2.西南科技大学分析测试中心,四川 绵阳 621010)
花状α-Co(OH)2的制备及其对高氯酸铵热分解的催化作用
王蒙蒙1,马拥军1,2
(1.西南科技大学四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地,四川 绵阳 621010;2.西南科技大学分析测试中心,四川 绵阳 621010)
以六水氯化钴、氢氧化钠及氨水为原料,在室温且不使用表面活性剂的条件下制备了纳米花状α-Co(OH)2球形颗粒;用X射线衍射仪(XRD)、红外光谱仪(FT-IR)和场发射扫描电子显微镜(FESEM)表征了α-Co(OH)2纳米花的组分、结构和形貌,用差示扫描量热仪( DSC) 研究了α-Co(OH)2纳米花对高氯酸铵(AP) 热分解性能的影响。结果表明,α-Co(OH)2为球形颗粒,粒径大小均一,是由纳米片组成的花状结构,纳米花的直径为300~400nm;当α-Co(OH)2纳米花质量分数为3%时,AP的分解温度为281℃,与纯AP相比提前了158℃,放热量达1502J/g,表明α-Co(OH)2纳米花对AP的热分解具有优异的催化作用。
纳米材料; α-Co(OH)2; 高氯酸铵;AP; 热分解; 催化作用
高氯酸铵(AP) 具有相容性好、气体生成量高、吸湿性小和成本低等优点,是复合推进剂、改性双基推进剂和NEPE推进剂中最常用的氧化剂。因而提高AP的热分解性能成为研究固体推进剂燃烧性能的一个重要方向。改变热分解温度、增加实际放热量是提高AP热分解性能的主要研究内容。其主要方法是添加各种催化剂,其中纳米级过渡金属(如Co[1,2]、Cu[3]、Ni[4])及氧化物(如 Fe2O3[5,6]、NiO[7]、Mn3O4[8-9]、Co3O4[10]等)由于其特殊的电子结构及半导体性能,已经作为AP的热分解催化剂被广泛研究。相对来说,氢氧化物作为催化剂用于催化AP的研究较少,WenJing Zhang[11]等发现加入质量分数为5%的纳米Al(OH)3·Cr(OH)3,可使AP的低温和高温分解峰温分别降低33℃和119℃。Xiaodan Zheng等[12]合成了直径为70nm的Cu(OH)2·2Cr(OH)3纳米粒子,当这种纳米粒子的质量分数为2%、5%和10%时,可把AP的分解峰温分别提前75、85和137℃,且认为Cr(OH)3可以促进NH3的氧化,较Cr2O3具有明显的优势。
基于以上认识,过渡金属氢氧化物由于羟基的存在可能对AP的热分解具有较大的影响。本研究采用钴盐与NaOH、NH3·H2O溶液混合的方法在室温下制备了纳米花状α-Co(OH)2,并探究了其对AP热分解的催化作用。
1.1 试剂与仪器
六水氯化钴(CoCl2·6H2O)、氢氧化钠、氨水,成都市科龙化工试剂厂;高氯酸铵,阿拉丁试剂公司。以上试剂均为分析纯。
X′pert PRO型多晶X射线衍射仪,荷兰帕纳科公司;Spectrum One 型红外光谱仪,美国立高立仪器公司;ULTRA 55场发射扫描电子显微镜,德国蔡司公司;TGA/DSC 1同步热分析仪,美国TA仪器公司。
1.2 样品制备
称取2.975g的CoCl2·6H2O溶解于50mL的水中,分别滴加0.04mol的氨水溶液和0.0015mol的NaOH溶液,磁力搅拌20min后,在室温下静置得到沉淀物,通过高速离心分离,并用去离子水和无水乙醇洗涤3~4次,最后经真空干燥得到绿色粉末,即纳米花状α-Co(OH)2。
采用机械研磨法制备α-Co(OH)2和AP混合样品。将质量分数为 1%、3%、5%、10%和15%的α-Co(OH)2与AP 放到玛瑙研钵中研磨使二者混合均匀,最终得到不同比例的α-Co(OH)2和AP混合样品。
1.3 性能测试
采用X射线衍射仪(XRD,常规测试:扫描范围3°~80°,扫描步长0.0334225)、红外光谱仪(4000~400cm-1)和场发射扫描电子显微镜( FESEM,EHT=15kV,WD=7.6mm)表征样品结构。
采用差示扫描量热仪(DSC),)测试样品的热性能。N2气氛,温度范围为室温~500℃,升温速率10℃/min,加盖。
2.1 XRD和FT-IR表征
图1为纳米花状α-Co(OH)2的XRD和FT-IR图谱。
2.2 SEM分析
图2为花状α-Co(OH)2的扫描电镜照片。从图2(a)可以看出,α-Co(OH)2的形状为球形颗粒,粒径大小比较均一。由图2(b)可以看出,所合成的α-Co(OH)2呈纳米片状,纳米片再组装成为花状结构,纳米花的直径约为300~400nm。
2.3 花状α-Co(OH)2对AP热分解的催化作用
图3为纯AP以及含纳米花状α-Co(OH)2(质量分数分别为1%、3%、5%、10%和15%)的AP的DSC-TG曲线。由图 3(a)可看出,随着催化剂加入量由0增加到10%,AP完全分解的温度有逐渐提前的趋势。由图3(b)可知,纯AP的热分解可分为3个过程:246℃时,AP发生晶型转变,由斜方晶系转变为立方晶系;319℃时,AP部分分解并生成中间产物,是AP的低温分解阶段; 439℃是AP的高温分解峰,AP完全分解为挥发性产物,放热量为475.5J/g,这与文献对应[9, 18]。当加入质量分数1%、3%和5%纳米花状α-Co(OH)2作为催化剂后,AP的晶型转化温度分别为245、246和245℃,可见花状α-Co(OH)2的加入量对AP的晶型转变过程没有明显的影响,但AP的低温分解峰和高温分解峰重合,放热更加集中,分解峰温度分别是287、285和286℃,与纯AP相比,AP的分解峰温度分别提前了152、158和153℃。当α-Co(OH)2的质量分数达到10%时, AP的高、低温分解峰重合,温度为251℃,与AP的转晶温度过于接近,使得AP的转晶峰不明显。但是当催化剂的质量分数增加至15%时,AP的分解峰温为282℃,与催化剂质量分数为10%时相比滞后了31℃。通过Gibbs-Thomson方程计算了AP热分解的放热量,当纳米花状α-Co(OH)2质量分数为1%、3%、5% 、10%和15%时,AP热分解的放热量分别为1510、1502、1118、1196和1000J/g。说明纳米花状α-Co(OH)2对AP热分解具有优异的催化作用。
综上所述,当添加质量分数为1%、3%、5%、10%和15%的纳米花状α-Co(OH)2时,AP的分解峰温分别达到了287、285、286、251和282℃,与文献[19-23]报道的Co3O4对AP的催化作用相比,催化性能有了进一步的提高。
分析可能的催化机理为:AP的热分解是固-气多相反应,包括低温和高温两个分解阶段,存在分解和升华竞争过程,反应方程式如下[24]:
NH3(g)+HClO4(g)
(1) 以六水氯化钴和氢氧化钠以及氨水为原料,在室温下制备了纳米花状α-Co(OH)2球形颗粒,其微观形貌是由纳米片组装成的花状结构,纳米花直径300~400 nm,粒径大小比较均一。
(2)纳米花状α-Co(OH)2对AP的热分解具有良好的催化作用,当其质量分数为1%、3%、5%和10%时,使AP的低温热分解过程消失,高温热分解峰分别提前至287、285、286和251℃,较纯AP的高温热分解峰分别提前了152、158、153和188℃。
[1] Duan H, LIN X, Liu G, et al. Synthesis of Co nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate[J]. Chinese Journal of Chemical Engineering, 2008, 16(2): 325-328.
[2] Xu X, Zhao Y, Li J, et al. Hydrothermal synthesis of cobalt particles with hierarchy structure and physicochemical properties[J]. Materials Research Bulletin, 2015, 72: 7-12.
[3] Chaturvedi S, Dave P N. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate[J]. Journal of Saudi Chemical Society, 2013, 17(2): 135-149.
[4] Duan H, Lin X, Liu G, et al. Synthesis of Ni nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate[J]. Journal of Materials Processing Technology, 2008, 208(1): 494-498.
[5] Zhou Z, Tian S, Zeng D, et al. MOX (M= Zn, Co, Fe)/AP shell-core nanocomposites for self-catalytical decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds, 2012, 513: 213-219.
[6] 邓竞科, 陈人杰, 李国平,等. AP/SiO2/Fe2O3纳米复合材料的制备与表征[J]. 火炸药学报, 2013, 35(6): 51-54. DENG Jing-ke, CHEN Ren-jie, LI guo-ping, et al. Preparation and characterization of AP/SiO2/Fe2O3nanocomposite[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2013, 35(6): 51-54.
[7] Sharma J K, Srivastava P, Singh G, et al. Biosynthesized NiO nanoparticles: potential catalyst for ammonium perchlorate and composite solid propellants[J]. Ceramics International, 2015, 41(1): 1573-1578.
[8] Fan Y, Zhang X, Liu Y, et al. One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors[J]. Materials Letters, 2013, 95: 153-156.
[9] 李露明,李兆乾,马拥军,等. Mn3O4微球的制备及其对高氯酸铵热分解的催化作用[J]. 含能材料, 2014, 22(6): 758-761. LI Lu-ming, LI Zhao-qian, MA Yong-jun, et al. Preparation of Mn3O4microspheres and their catalytic effects upon thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials, 2014,22(6):758-761.
[10] Kang M, Zhou H. Facile synthesis and structural characterization of Co3O4nanocubes[J].AIMS Biophysics,2015,2(1):16-27.
[11] Zhang W J, Li P, Xu H B, et al. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3·Cr(OH)3nanoparticles[J]. Journal of hazardous materials, 2014, 268: 273-280.
[12] Zheng X, Li P, Zheng S, et al. Thermal decomposition of ammonium perchlorate in the presence of Cu(OH)2·2Cr(OH)3nanoparticles[J]. Powder Technology, 2014, 268: 446-451.
[13] Gupta V, Gupta S, Miura N. Al-substituted α-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors[J]. Journal of Power Sources, 2008, 177(2): 685-689.
[14] Gao Z, Yang W, Yan Y, et al. Synthesis and exfoliation of layered α-Co(OH)2nanosheets and their electrochemical performance for supercapacitors[J]. European Journal of Inorganic Chemistry,2013(27): 4832-4838.
[15] Tang J, Liu D, Zheng Y, et al. Effect of Zn-substitution on cycling performance of α-Co (OH)2nanosheet electrode for supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(8): 2585-2591.
[16] Cai L C,Li J,Huang J B. Electrochemical capacitance performance of one-dimensional nano-alpha-Co(OH)2employing cobalt-cholate supramolecular nanofibers self-template method[J].Jolurnal of Inorganic Materials, 2013, 28(7): 739-744.
[17] Cheng J P, Liu L, Zhang J, et al. Influences of anion exchange and phase transformation on the supercapacitive properties of α-Co(OH)2[J]. Journal of Electroanalytical Chemistry, 2014, 722: 23-31.
[18] 郑远川,李兆乾,徐娟,等.四氧化三钴_碳化蝶翅的制备及催化高氯酸铵分解的性能[J].含能材料,2016,24(3):256-260. ZHENG Yuan-chuan, LI Zhao-qian, XU Juan,et al. Cobalt oxide @ carbonized wings composite: preparation and catalytic performance for decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials, 2016, 24(3): 256-260.
[19] Li L, Sun X, Qiu X, et al. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate[J]. Inorganic chemistry, 2008, 47(19): 8839-8846.
[20] Jin L N, Liu Q, Sun W Y. Shape-controlled synthesis of Co3O4nanostructures derived from coordination polymer precursors and their application to the thermal decomposition of ammonium perchlorate[J]. Cryst EngComm, 2012, 14(22): 7721-7726.
[21] Zou M, Jiang X, Lu L, et al. Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate[J]. Journal of Hazardous Materials, 2012, 225: 124-130.
[22] Jin L N, Wang J G, Qian X Y, et al. Catalytic activity of Co3O4nanomaterials with different morphologies for the thermal decomposition of ammonium perchlorate[J]. Journal of Nanomaterials, 2015, 2015: 9.
[23] Xu H, Wu J X, Chen Y, et al. Synthesis and catalytic performance of Co3O4particles with octahedral crystal shape[J]. Ionics, 2015, 21(5): 1495-1500.
[24] 李彦荣,祝世杰,刘学,等.高氯酸铵热分解机理研究进展[J].化学推进剂与高分子材料,2015,13(1):32-37. LI Yan-rong, ZHU Shi-jie, LIU Xue, et al. Research progress in thermal decomposition mechanism of ammonium perchlorate[J].Chemical Propellants & Polymeric Materials, 2015,13(1):32-37.
[25] Yuan Y, Jiang W, Wang Y, et al. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2014, 303: 354-359.
Synthesis of Flower-like α-Co(OH)2and Their Catalytic Effect for the Thermal Decomposition of Ammonium Perchlorate
WANG Meng-meng1,MA Yong-jun1,2
(1.State Key Laboratory Cultivation Base for Composites and Functional Materials, Southwest University of Science and Technology, Mianyang Sichuan 621010, China; 2.Analytical and Testing Center, Southwest University of Science and Technology, Mianyang Sichuan 621010, China)
Flower-like α-Co(OH)2spherical nanoparticles were synthesized using cobalt chloride hexahydrate, sodium hydrooxide and ammonia water as raw materials at room temperature under the condition of no surfactant. The component, morphology and structure of α-Co(OH)2nanoparticles were characterized with X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FESEM). The effect of flower-like α-Co(OH)2nanoparticles on the thermal decomposition of ammonium perchlorate (AP) was studied by using differential scanning calorimeter (DSC).The results show that α-Co(OH)2particles, which is a flower shaped structure composed of nanosheets, are spherical, its particle size is relatively uniform, and the diameter of the nanometer flower is 300-400nm. When the addition amount of α-Co(OH)2is 3%(mass fraction),the decomposition temperature of AP is 281℃, decreases by 158℃ compared with pure AP, and the decomposition heat is 1502J/g, showing that flower-like α-Co(OH)2has an excellent catalytic effect for thermal decomposition of AP.
nanometer material; α-Co(OH)2; ammonium perchlorate;AP; thermal decomposition; catalytic effect
10.14077/j.issn.1007-7812.2017.03.004
2016-12-30;
2017-02-23
王蒙蒙( 1990-), 女, 硕士研究生, 从事碳纳米材料研究。E-mail:1635573756@qq.com
马拥军( 1972-),男,副研究员,从事纳米材料和含能材料研究。E-mail:mayongjun@swust.edu.cn
TJ55; TB33
A
1007-7812(2017)03-0027-04