由f(θ)=a+θ(b-a),(0≤θ≤1)是θ的增函数,这样就从代数方面得到了均值不等式.
2 均值不等式的拓展及其应用
从上面的分析,易得均值不等式的拓展式:对正数a与b,有
![](https://img.fx361.cc/images/2023/0309/c041adea70052bf262ff4d4fc0583bd4026bad65.webp)
![](https://img.fx361.cc/images/2023/0309/7bcf824c3704df2cdc0f37f73e2a3d8b46aec60b.webp)
(1)
![](https://img.fx361.cc/images/2023/0309/005959ec0473c205efaaea304e3ca1616aa9a955.webp)
证明 当a=b时上式显然成立.
不妨设b>a,由f(θ)=a+θ(b-a),θ∈[0,1]的性质3)来证明.
![](https://img.fx361.cc/images/2023/0309/e2a8c66eb1cc84dc3ccc2d046f51b2cdfe114afa.webp)
![](https://img.fx361.cc/images/2023/0309/744b9f2bc8be11b98fd8715ff87bc37a85746a3a.webp)
![](https://img.fx361.cc/images/2023/0309/306bd23d05d6389ab483bda7c782ede2e79e3959.webp)
![](https://img.fx361.cc/images/2023/0309/ad3d665c49e95302a5328fe001aaaab7a77dea22.webp)
例2 设0≤θ≤1.对于已知正数a,b,证明:a+θ(b-a)≥a1-θbθ.
证明 令h(a)=a+θ(b-a)-a1-θbθ,则
h'(a)=1-θ-(1-θ)a-θbθ
由h'(a)=1-θ-(1-θ)a-θbθ=0
得a=b,又
h"(a)=θ(1-θ)a-1-θbθ
显然,h"(a)=θ(1-θ)a-1-θbθ>0,故当a=b时h(a)取得最小值h(b)=0 .
∴h(a)≥h(b)=0
即a+θ(b-a)≥a1-θbθ
![](https://img.fx361.cc/images/2023/0309/510ed6680e46d974a46e4d4a93c081be90965146.webp)
例3 设正数m,k满足m≥2k.对于已知正数a,b,证明:
是k的增函数,且
![](https://img.fx361.cc/images/2023/0309/4cabf2e7e6efd481fe2fb401743c55beae21fe62.webp)
![](https://img.fx361.cc/images/2023/0309/4426e40f36b5a0ccbdf0a82313dd2be3680cdea4.webp)
![](https://img.fx361.cc/images/2023/0309/19f0fce55356a15fe3b03456f349faf16d89c67a.webp)
![](https://img.fx361.cc/images/2023/0309/f17928bd9d3fdd72b0dd8aa368bca53f3ee77f45.webp)
![](https://img.fx361.cc/images/2023/0309/4cabf2e7e6efd481fe2fb401743c55beae21fe62.webp)
实际上,任选表格中的几个均值,把它们相加后除以均值的个数,其商也是分布在两正数a,b之间的正数,即对于不全为零的自然数ni,i=1,2,…,6 .形如
是两正数a,b的均值.
3 结语
两个正数均值的几何模型把常见的几个均值进行了简洁直观的排序,便于记忆和理解,而且可以得到a和b之间的新均值.由此产生的函数式
f(θ)=a+θ(b-a)(b≥a,θ∈[0,1])
表示了两个正数的均值与这两个正数a和b之间的本质联系.另外,我们也发现
![](https://img.fx361.cc/images/2023/0309/510ed6680e46d974a46e4d4a93c081be90965146.webp)
也同样表示了两个正数的均值与这两个正数a和b之间的本质联系.
[1]余元希,田万海等.初等代数研究(下册)[M].北京:高等教育出版社,1988.
[2]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004.
[3]黄华平,胡松林.一个常见不等式的推广及其应用[J].湖北师范学院学报(自然科学版),2012,32(3):96~100.
All kinds of mean values on two positive numbers
XU Wang-bin,CHEN Jing-hua
(School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China)
In this paper, a new geometric model on several average values for two positive numbers is obtained. A proof on mean value inequalities between two positive numbers is also given. Besides this, an expansion on them is still exhibited to illustrate the superioty of applications.
positive number;mean value;geometric model
2016—06—14
徐望斌(1965— ),男,湖北天门人,副教授,主要从事中学数学的教学研究.
O174
A
2096-3149(2017)01- 0093-04
10.3969/j.issn.2096-3149.2017.01.019