陈月梅+曹南开+屠鹏飞+姜勇
[摘要] 利用开放的硅胶、ODS和Sephadex LH-20柱色谱及半制备型高效液相等色谱方法对豆叶九里香Murraya euchrestifolia中的化学成分进行分离纯化,结合理化性质和MS,NMR 等波谱学数据对化学结构进行解析。结果从豆叶九里香95%乙醇提取物的二氯甲烷部位共分离并鉴定了18个化合物,分别为sakuranetin (1),eriodictyol-7,4′-dimethyl ether (2),isosakuranetin (3),5-hydroxy-7,4′-dimethoxyflavanone (4),eriodictyol-7-methyl ether (5),lichexanthon (6),5,6,7-trimethoxycoumarin (7),5-hydroxy-6,8-dimethoxycoumarin (8),8-hydroxy-6-methoxy-3-n-pentylisocoumarin (9),ethyl caffeate (10),4-hydroxy-3,5-dimethoxycinnamic acid ethyl ester (11),methyl 3-(5′-hydroxyprenyl)-coumarate (12),(E)-coniferol (13),β-hydroxypropiovanillone (14),3-hydroxy-7,8-didehydro-β-ionone (15),3β-hydroxy-5α, 6α-epoxy-7-megastigmen-9-one (16),grasshopper ketone (17),4-hydroxy-3,5-dimethoxybenzaldehyde (18),其中化合物1~ 15和18为首次从九里香属植物中分离得到,16和17为首次从该植物中分离得到。
[关键词] 豆叶九里香; 化学成分; 黄酮类; 香豆素; 苯丙素
[Abstract] The open silica gel, ODS, and Sephadex LH-20 column chromatography, along with the semi-preparative HPLC was used to isolate and purify the chemical constituents from Murraya euchrestifolia. The structures of the isolates were elucidated by their physiochemical properties, NMR, and MS spectroscopic data, as well as comparison with literature data. Eighteen compounds were isolated from the CH2Cl2 fraction of the 95% aqueous EtOH extract of M. euchrestifolia, and their structures were identified as sakuranetin (1), eriodictyol-7,4′-dimethyl ether (2), isosakuranetin (3), 5-hydroxy-7,4′-dimethoxyflavanone (4), eriodictyol-7-methyl ether (5), lichexanthon (6), 5,6,7-trimethoxycoumarin (7), 5-hydroxy-6,8-dimethoxycoumarin (8), 8-hydroxy-6-methoxy-3-n-pentylisocoumarin (9), ethyl caffeate (10), 4-hydroxy-3,5- dimethoxycinnamic acid ethyl ester (11), methyl 3-(5′-hydroxyprenyl)-coumarate (12), (E)-coniferol (13), β-hydroxypropiovanillone (14), 3-hydroxy-7,8-didehydro-β-ionone (15), 3β-hydroxy-5α, 6α-epoxy-7-megastigmen-9-one (16), grasshopper ketone (17), and 4-hydroxy-3,5-dimethoxybenzaldehyde (18). Compounds 1-15 and 18 were first obtained from the plants of Murraya genus, and compounds 16 and 17 were isolated from M. euchrestifolia for the first time.
[Key words] Murraya euchrestifolia; chemical constituents; flavonoids; coumarins; phenylpropanoids
豆葉九里香为芸香科九里香属植物豆叶九里香Murraya euchrestifolia Hayata的干燥枝叶,主要分布在台湾、广东、海南、广西等地[1]。民间用其枝叶入药,有祛风活血、消炎止痛作用[2]。抗菌实验表明,豆叶九里香挥发油有较强的广谱抗菌作用,广西北流县医药研究所用豆叶九里香油做成外用油膏治疗感冒,取得了较满意的结果[2]。前期化学研究表明,豆叶九里香主要含咔唑类生物碱类[3-5],其他化学成分报道较少。为进一步阐明豆叶九里香的化学成分,本课题组对豆叶九里香95%乙醇提取物的二氯甲烷萃取部位进行了化学成分研究,共分离鉴定了18个化合物,包括6个黄酮,3个香豆素,5个苯丙素,以及4个其他类化合物,其中化合物1 ~ 15和18为首次从九里香属植物中分离得到,16和17为首次从该植物中分离得到。
1 材料
Varian 500 MHz型核磁共振仪(美国 Varian 公司);Agilent 6320 Ion Trap LC- MS 质谱仪(美国Agilent公司);安捷伦1260半制备型高效液相色谱仪(美国 Agilent 公司);半制备HPLC 色谱柱为Agilent Eclipse XDB-C18柱(9.4 mm × 250 mm,5μm);柱色谱用硅胶(100~200目和200~300目)和薄层色谱用硅胶(GF254)均为青岛海洋化工厂产品;Sephadex LH-20(瑞典Pharmacia 公司);RP-C18柱色谱填料(50 μm,德国Merck 公司);MCI GEL CHP 20P(75~150 μm,日本三菱化学公司);提取分离用石油醚、乙酸乙酯、甲醇、氯仿、丙酮、异丙醇、乙醇为北京化工厂产品,均为分析纯;色谱纯乙腈(天津彪士奇试剂公司);实验用水为蒸馏水和Milli Q超纯水;氘代溶剂CDCl3,CD3COCD3(北京金鸥翔科贸有限公司,Sigma-Aldrich 公司分装品)。
豆叶九里香于2016 年5 月采自广西靖西县三合翁,由北京大学医学部天然药物学系屠鹏飞教授鉴定为芸香科九里香属植物豆叶九里香M. euchrestifolia的干燥枝叶。标本(No. DYJLX201605)保存于北京大学中医药现代研究中心标本库。
2 提取与分离
豆叶九里香的干燥嫩枝叶10 kg,以10倍量95%乙醇回流提取3次,每次 2 h。合并提取液,减压回收溶剂,得总浸膏450 g。将浸膏悬浮于水中,依次用二氯甲烷、乙酸乙酯、正丁醇萃取3次,分别回收溶剂,得到二氯甲烷部位150 g、乙酸乙酯部位25 g、正丁醇部位78 g。
二氯甲烷萃取物(150 g)首先使用硅胶柱色谱(100~200目)进行粗分,采用石油醚-丙酮(10∶1,8∶1,5∶1,3∶1和 1∶1)5个梯度洗脱系统,每个梯度洗脱3个柱体积,通过TLC检测终止色谱,合并流份,回收溶剂,最终得到6个流分(Frs. 1~6)。Fr. 2经Sephadex LH-20柱色谱,二氯甲烷-甲醇(1∶1)洗脱得到5个亚流分Frs. 2a~2e。Fr. 2c 经硅胶柱色谱(石油醚-丙酮,90∶10~0∶100)和半制备液相色谱(乙腈-水,80∶20,3 mL·min-1)纯化得6 (4.6 mg),9 (6.5 mg)和18 (7.2 mg)。Fr. 3经Sephadex LH- 20柱色谱,以二氯甲烷-甲醇(1∶1)洗脱得到6个流分(Frs. 3a~3f)。Fr. 3b经ODS 柱色谱分离,依次用50%,70%,90%甲醇梯度洗脱,合并相同组分,得到流分Frs. 3b-1~3b-5,其中Fr. 3b-2与Fr. 3b-4分别经半制备液相色谱(流动相为乙腈-水,比例分别为80∶20和60∶40,3 mL·min-1)分离得到化合物4 (2.1 mg)和7 (6.1 mg)。Fr. 4经Sephadex LH- 20柱色谱,二氯甲烷-甲醇(1∶1)洗脱得到Frs. 4a~4e。Fr. 4c经ODS 柱色谱(甲醇-水,50∶50~100∶0)和半制备液相色谱(乙腈-水,80∶20,3 mL·min-1)纯化得1 (3.9 mg),2 (3.1 mg) 和15 (3.5 mg)。Fr. 4d经ODS 柱色谱(甲醇-水,50∶50~100∶0)和半制备液相色谱(乙腈-水,47∶53,3 mL·min-1)纯化得3 (4.2 mg)。Fr. 5经Sephadex LH- 20柱色谱分离,得6个流分Frs. 5a~5f。Fr. 5b再经MCI柱色谱(甲醇-水,50∶50~100∶0)和半制备液相色谱(乙腈-水,45∶55,3 mL·min-1)纯化得5 (6.8 mg),8 (2.2 mg),10 (7.8 mg),11 (5.7 mg),16 (4.5 mg)。Fr. 5c经ODS 柱色谱(甲醇-水,50∶50~100∶0)和半制备液相色谱(乙腈-水,42∶58,3 mL·min-1)纯化得12 (2.1 mg),13 (10.2 mg),14 (8.3 mg)和17 (5.7 mg)。
3 结构鉴定
化合物1 黄色粉末;[α]25D-8° (c 0.05,MeOH);ESI-MS m/z 285[M – H]-。1H-NMR (CDCl3,500 MHz) δ:2.78 (1H,dd,J=17.1,3.1 Hz,H-3eq),3.09 (1H,dd,J=17.1,13.2 Hz,H-3ax),3.80 (3H,s,7-OCH3),5.35 (1H,m,H-2),6.04 (1H,d,J=2.1 Hz,H-8),6.07 (1H,d,J=2.1 Hz,H-6),6.88 (2H,d,J=8.2 Hz,H-3′,5′),7.32 (2H,d,J=8.2 Hz,H-2′,6′),12.02 (1H,s,5-OH);13C-NMR (CDCl3,125 MHz)δ:43.3 (C-3),55.8 (-OCH3),79.1 (C-2),94.4 (C-6),95.3 (C-8),103.3 (C-10),115.8 (C-3′,5′),128.1 (C-2′,6′),130.6 (C-1′),156.4 (C-4′),163.1 (C-5),164.2 (C-9),168.2 (C-7),196.3 (C-4)。以上數据与文献[6]对比,鉴定化合物1为sakuranetin。
化合物2 黄色粉末;[α]25D-13° (c 0.12,MeOH);ESI-MS m/z 315[M-H]-。1H-NMR (CDCl3,500 MHz) δ:2.79 (1H,dd,J=17.2,3.1 Hz,H-3eq),3.08 (1H,dd,J=17.2,12.9 Hz,H-3ax),3.81 (3H,s,7-OCH3),3.92 (3H,s,4′-OCH3),5.33 (1H,dd,J=12.9,3.1 Hz,H-2),6.05 (1H,d,J=2.1 Hz,H-8),6.07 (1H,d,J=2.1 Hz,H-6),6.88 (1H,d,J=8.2 Hz,H-5′),6.93 (1H,dd,J=8.2,2.1 Hz,H-6′),7.05 (1H,d,J=2.1 Hz,H-2′),12.02 (1H,s,5-OH);13C-NMR (CDCl3,125 MHz) δ:43.4 (C-3),55.8 (7-OCH3),56.2 (4′-OCH3),79.1 (C-2),94.4 (C-6),95.3 (C-8),103.3 (C-10),110.8 (C-5′),112.8 (C-2′),118.3 (C-6′),131.7 (C-1′),146.1 (C-3′),147.1 (C-4′),163.0 (C-9),164.3 (C-5),168.1 (C-7),196.3 (C-4)。以上数据与文献[7]对比,鉴定化合物2为eriodictyol-7,4′-dimethyl ether。
化合物3 黄色粉末;[α]25D-44° (c 0.20,MeOH);ESI-MS m/z 285[M-H]-。1H-NMR (CDCl3,500 MHz) δ:2.77 (1H,dd,J=17.0,2.9 Hz,H-3eq),3.08 (1H,m,H-3ax),3.82 (3H,s,4′-OCH3),5.32 (1H,dd,J=12.6,2.9 Hz,H-2),5.97 (1H,s,J=2.1 Hz,H-8),6.07 (1H,d,J=2.1 Hz,H-6),6.88 (2H,d,J=8.2 Hz,H-3′,5′),7.32 (2H,d,J=8.2 Hz,H-2′,6′),12.02 (1H,s,5-OH);13C-NMR (CDCl3,125 MHz)δ:43.3 (C-3),55.8 (-OCH3),79.1 (C-2),94.4 (C-6),95.3 (C-8),103.3 (C-10),115.8 (C-3′,5′),128.1 (C-2′,6′),130.6 (C-1′),156.4 (C-4′),163.1 (C-5),164.2 (C-9),168.2 (C-7),196.3 (C-4)。以上數据与文献[8]对比,鉴定化合物3为isosakuranetin。
化合物4 黄色粉末;[α]25D-28° (c 0.05,MeOH);ESI-MS m/z 299[M-H]-。1H-NMR (CDCl3,500 MHz)δ:2.79 (1H,dd,J=17.2,2.9 Hz,H-3eq),3.11 (1H,dd,J=17.2,13.4 Hz,H-3ax),3.81 (3H,s,7-OCH3),3.84 (3H,s,4′-OCH3),5.37 (1H,dd,J=13.4,2.9 Hz,H-2),6.05 (1H,d,J=2.1 Hz,H-8),6.07 (1H,d,J=2.1 Hz,H-6),6.96 (2H,d,J=8.6 Hz,H-3′,5′),7.38 (2H,d,J=8.6 Hz,H-2′,6′),12.03 (1H,s,OH-5);13C-NMR (CDCl3,125 MHz)δ:43.2 (C-3),55.4 (4′-OCH3),55.7 (7-OCH3),79.0 (C-2),94.3 (C-6),95.1 (C-8),103.3 (C-10),114.2 (C-3′,5′),128.5 (C-2′,6′),130.4 (C-1′),160.1 (C-4′),162.9 (C-5),164.2 (C-9),168.0 (C-7),196.1 (C-4)。以上数据与文献[9]对比,鉴定化合物4为5-hydroxy-7,4′-dimethoxyflavanone。
化合物5 黄色粉末;[α]25D-12° (c 0.13,MeOH);ESI-MS m/z 301[M-H]-。1H-NMR (CD3COCD3,500 MHz)δ:2.76 (1H,dd,J=17.2,3.0 Hz,H-3eq),3.16 (1H,dd,J=17.2,12.6 Hz,H-3ax),3.85 (3H,s,-OCH3),5.42 (1H,dd,J=12.6,3.0 Hz,H-2),6.03 (1H,d,J=2.3 Hz,H-8),6.05 (1H,d,J=2.3 Hz,H-6),6.87 (2H,s,H-5′,6′),7.04 (1H,s,H-2′),12.13 (1H,s,-OH);13C-NMR (CD3COCD3,125 MHz)δ:43.6 (C-3),56.2 (-OCH3),80.1 (C-2),94.6 (C-8),95.4 (C-6),103.8 (C-10),114.8 (C-2′),116.1 (C-5′),119.3 (C-6′),131.5 (C-1′),146.0 (C-3′),146.4 (C-4′),164.2 (C-9),165.0 (C-5),169.0 (C-7),197.6 (C-4)。以上数据与文献[10]对比,鉴定化合物5为eriodictyol-7-methyl ether。
化合物6 黄色粉末,ESI-MS m/z 285[M-H]-。1H-NMR (CDCl3,500 MHz)δ:2.85 (3H,s,8-CH3),3.87 (3H,s,3-OCH3),3.89 (3H,s,6-OCH3),6.30 (1H,d,J=2.1 Hz,H-2),6.33 (1H,d,J=2.1 Hz,H-4),6.66 (1H,d,J=2.1 Hz,H-7),6.68 (1H,d,J=2.1 Hz,H-5),13.38 (1H,s,1-OH);13C-NMR (CDCl3,125 MHz)δ:23.6 (8-CH3),55.8 (3-OCH3),55.8 (6-OCH3),92.2 (C-4),96.9 (C-2),98.8 (C-5),104.3 (C-9a),113.1 (C-8a),115.6 (C-7),143.6 (C-8),157.1 (C-4a),159.6 (C-10a),163.9 (C-1),163.9 (C-6),165.9 (C-3),182.5 (C-9)。以上数据与文献[11]对比,鉴定化合物6为lichexanthone。
化合物7 白色粉末,ESI-MS m/z 236[M-H]-。1H-NMR (CDCl3,500 MHz)δ:3.85 (3H,s,7-OCH3),3.92 (3H,s,6-OCH3),4.02 (3H,s,5-OCH3),6.23 (1H,d,J=9.6 Hz,H-3),6.61 (1H,s,H-8),7.92 (1H,d,J=9.6 Hz,H-4);13C-NMR (CDCl3,125 MHz)δ:56.5 (6-OCH3),61.4 (7-OCH3),62.0 (5-OCH3),95.7 (C-8),107.1 (C-10),112.6 (C-3),138.3 (C-6),139.0 (C-4),149.4 (C-9),151.6 (C-5),157.3 (C-7),161.4 (C-2)。以上数据与文献[12]对比,鉴定化合物7为5,6,7-trimethoxycoumarin。
化合物8 白色粉末,ESI-MS m/z 221[M-H]-。1H-NMR (CDCl3,500 MHz)δ:3.90 (3H,s,6-OCH3),3.92 (3H,s,8-OCH3),6.22 (1H,d,J=9.6 Hz,H-3),6.45 (1H,s,H-7),7.96 (1H,d,J=9.6 Hz,H-4);13C-NMR (CDCl3,125 MHz)δ:56.4 (8-OCH3),61.5 (6-OCH3),92.5 (C-7),102.7 (C-10),111.9 (C-3),131.7 (C-6),138.7 (C-4),145.8 (C-5),151.9 (C-9),155.8 (C-8),161.6 (C-2)。以上数据与文献[13]对比,鉴定化合物8为5-hydroxy-6,8-dimethoxycoumarin。
化合物9 棕色粉末,ESI-MS m/z 261[M-H]-。1H-NMR (CDCl3,500 MHz)δ:0.90 (3H,t,J=6.8 Hz,H-5′),1.35 (4 H,m,H-3′,4′),1.68 (2 H,m,H-2′),2.48 (2 H,t,J=7.6 Hz,H-1′),3.86 (3 H,s,6-OCH3),6.17 (1 H,s,H-4),6.30 (1 H,d,J=2.3 Hz,H-7),6.45 (1 H,d,J=2.3 Hz,H-5),11.12 (1 H,s,8-OH);13C-NMR (CDCl3,125 MHz)δ:14.1 (C-5′),22.5 (C-4′),26.6 (C-2′),31.3 (C-3′),33.4 (C-1′),55.8 (6-OCH3),100.1 (C-8a),100.3 (C-5),101.2 (C-7),104.0 (C-4),139.6 (C-4a),158.2 (C-3),163.8 (C-8),166.6 (C-6),166.9 (C-1)。以上数据与文献[14]对比,鉴定化合物9为8-hydroxy-6-methoxy-3-n-pentylisocoumarin。
化合物10 白色粉末,ESI-MS m/z 207[M-H]-。1H-NMR (CDCl3,500 MHz)δ:1.33 (3H,t,J=7.0 Hz,H-11),4.25 (2H,q,J=7.0 Hz,H-10),5.68 (1H,br s,-OH),6.26 (1H,d,J=16.0 Hz,H-8),6.87 (1H,d,J=8.3 Hz,H-5),7.01 (1H,d,J=8.3 Hz,H-6),7.08 (1H,s,H-2),7.57 (1H,d,J=16.0 Hz,H-7);13C-NMR (CDCl3,125 MHz)δ:14.5 (C-11),60.7 (C-10),114.5 (C-2),115.7 (C-5),116.1 (C-8),122.6 (C-6),127.9 (C-1),143.9 (C-3),144.7 (C-7),146.2 (C-4),167.7 (C-9)。以上數据与文献[15]对比,鉴定化合物10为ethyl caffeate。
化合物11 棕色粉末,ESI-MS m/z 251[M-H]-。1H-NMR (CDCl3,500 MHz)δ:1.33 (3H,t,J=7.0 Hz,H-11),3.91 (6H,s,3-OCH3,5-OCH3),4.26 (2H,q,J=7.0 Hz,H-10),6.30 (1H,d,J=15.8 Hz,H-8),6.77 (2H,s,H-2,H-6),7.59 (1H,d,J=15.8 Hz,H-7);13C-NMR (CDCl3,125 MHz)δ:14.5 (C-11),56.5 (3-OCH3,5-OCH3),60.5 (C-10),105.2 (C-2,C-6),116.2 (C-8),126.1 (C-1),137.2 (C-4),145.0 (C-7),147.3 (C-3,C-5),167.3 (C-9)。以上数据与文献[16]对比,鉴定化合物11为4-hydroxy-3,5-dimethoxycinnamic acid ethyl ester。
化合物12 黄色粉末,ESI-MS m/z 261[M-H]-。1H-NMR (CDCl3,500 MHz)δ:1.81 (3H,s,H-5′),3.41 (2H,d,J=7.4 Hz,H-1′),3.79 (3H,s,-OCH3),4.08 (2H,s,H-4′),5.26 (1H,br s,-OH),5.61 (1H,t,J=7.4 Hz,H-2′),6.29 (1H,d,J=15.9 Hz,H-8),6.78 (1H,d,J=8.5 Hz,H-5),7.30 (2H,m,H-2,H-6),7.62 (1H,d,J=15.9 Hz,H-7);13C-NMR (CDCl3,125 MHz)δ:14.0 (C-5′),28.8 (C-1′),51.7 (-OCH3),68.6 (C-4′),115.4 (C-8),116.2 (C-5),122.5 (C-2′),127.4 (C-3),127.6 (C-1),128.0 (C-6),130.3 (C-2),137.6 (C-3′),144.8 (C-7),156.1 (C-4),167.9 (C-9)。以上数据与文献[17]对比,鉴定化合物12为methyl 3-(5′-hydroxyprenyl)-coumarate。
化合物13 棕色粉末,ESI-MS m/z 179[M-H]-。1H-NMR (CDCl3,500 MHz)δ:3.88 (3H,s,-OCH3),4.29 (2H,d,J=5.8 Hz,H-9),6.21 (1H,dt,J=15.8,5.8 Hz,H-8),6.52 (1H,d,J=15.8 Hz,H-7),6.85 (1H,d,J=8.5 Hz,H-5),6.88 (1H,d,J=8.5 Hz,H-6),6.90 (1H,s,H-2);13C-NMR (CDCl3,125 MHz)δ:56.0 (-OCH3),63.9 (C-9),108.4 (C-2),114.6 (C-5),120.4 (C-6),126.2 (C-8),129.3 (C-1),131.5 (C-7),145.7 (C-4),146.8 (C-3)。以上数据与文献[18]对比,鉴定化合物13为(E)-coniferol。
化合物14 黄色粉末,ESI-MS m/z 195[M-H]-。1H-NMR (CD3COCD3,500 MHz)δ:3.15 (2H,t,J=6.2 Hz,H-8),3.91 (3H,s,-OCH3),3.92 (2H,t,J=6.2 Hz,H-9),6.92 (1H,d,J=8.2 Hz,H-5),7.56 (1H,d,J=2.0 Hz,H-2),7.59 (1H,dd,J=8.2,2.0 Hz,H-6);13C-NMR (CD3COCD3,125 MHz)δ:41.6 (C-8),56.3 (-OCH3),58.7 (C-9),111.6 (C-2),115.4 (C-5),124.0 (C-6),130.7 (C-1),148.4 (C-3),152.4 (C-4),198.2 (C-7)。以上数据与文献[19]对比,鉴定化合物14为β-hydroxypropiovanillone。
化合物15 黄色油状物;[α]25D-61° (c 0.28,MeOH);ESI-MS m/z 205[M-H]-。1H-NMR (CDCl3,500 MHz)δ:1.13 (3H,s,H-11),1.19 (3H,s,H-12),1.45 (1H,t,J=12.0 Hz,Hax-2),1.84 (1H,d,J=12.0 Hz,Heq-2),1.97 (3H,s,H-13),2.09 (1H,m,Hax-4),2.39 (3H,s,CH3-9),2.48 (1H,m,Heq-4),3.99 (1H,m,H-3);13C-NMR (CDCl3,125 MHz)δ:23.0 (C-13),28.8 (C-11),30.3 (C-12),33.0 (C-10),36.6 (C-1),41.8 (C-4),46.5 (C-2),64.5 (C-3),90.2 (C-7),93.9 (C-8),122.4 (C-6),146.7 (C-5),184.7 (C-9)。以上数据与文献[20]对比,鉴定化合物15为3-hydroxy-7,8-didehydro-β-ionone。
化合物16 淡黄色油状物;[α]25D -45° (c 0.85,MeOH);ESI-MS m/z 223[M-H]-。1H-NMR (CDCl3,500 MHz)δ:0.96 (3H,s,H-12),1.18 (6H,s,H-11,H-13),1.27 (1H,m,H-2eq),1.64 (2H,m,H-2ax,H-4ax),2.27 (3H,s,H-10),2.38 (1H,dd,J=14.4,5.1 Hz,H-4eq),3.90 (1H,m,H-3),6.28 (1H,d,J=15.5 Hz,H-8),7.02 (1H,d,J=15.5 Hz,H-7);13C-NMR (CDCl3,125 MHz)δ:20.0 (C-13),25.1 (C-12),28.4 (C-10),29.5 (C-11),35.3 (C-1),40.7 (C-2),46.8 (C-4),64.1 (C-3),67.4 (C-5),69.6 (C-6),132.7 (C-8),142.6 (C-7),197.6 (C-9)。以上数据与文献[21]对比,鉴定化合物16为3β-hydroxy-5α,6α-epoxy-7-megastigmen-9-one。
化合物17 黄色油状物;[α]25D-15° (c 1.10,MeOH);ESI-MS m/z 223[M-H]-。1H-NMR (CDCl3,500 MHz)δ:1.14 (3H,s,H-11),1.36 (3H,s,H-12),1.41 (3H,s,H-13),2.17 (3H,s,H-10),1.35 和1.97 (2H,m,H-2),1.41和2.28 (2H,m,H-4),4.32 (1H,m,H-3),5.83 (1H,s,H-8);13C-NMR (CDCl3,125 MHz)δ:26.5 (C-10),29.2 (C-12),31.0 (C-13),31.8 (C-11),36.2 (C-1),48.8 C-4),49.0 (C-2),63.9 (C-3),72.4 (C-5),100.9 (C-8),118.8 (C-6),198.7 (C-9),209.8 (C-7)。以上数据与文献[22]对比,鉴定化合物17为grasshopper ketone。
化合物18 白色粉末,ESI-MS m/z 181[M-H]-。1H-NMR (CDCl3,500 MHz)δ:3.96 (6H,s,-OCH3 ×2),7.14 (2H,s,H-2,H-6),9.80 (1H,s,-CHO);13C-NMR (CDCl3,125 MHz)δ:56.6 (-OCH3 ×2),106.8 (C-2,C-6),128.5 (C-1),141.0 (C-4),147.5 (C-3,C-5),190.9 (-CHO)。以上數据与文献[23]对比,鉴定化合物18为4-hydroxy-3,5-dimethoxybenzaldehyde。
4 讨论
近年来,国内外对豆叶九里香的研究较多,但都主要集中于咔唑生物碱类成分的研究,对其他类成分研究较少。本研究从豆叶九里香95%乙醇提取物的二氯甲烷部位分离得到18个化合物,包括黄酮、香豆素、苯丙素及其他类型化合物,其中16个化合物均为首次从九里香属植物中分离得到。上述研究结果为系统阐明豆叶九里香的化学组成及生物活性研究提供了参考和物质基础。
[参考文献]
[1] 中国科学院中国植物志编辑委员会. 中国植物志. 第43卷[M]. 北京: 科学出版社,1997: 149.
[2] 纪晓多, 濮全龙, 杨桂芝. 豆叶九里香挥发油化学成分的研究[J]. 药学学报, 1983, 17(5): 626.
[3] Wu T S, Wang M L, Wu P L, et al. Carbazole alkaloids from the leaves of Murraya euchrestifolia[J]. Phytochemistry, 1996, 41(5): 1433.
[4] Wu T S, Wang M L, Wu P L, et al. Two carbazole alkaloids from leaves of Murraya euchrestifolia[J]. Phytochemistry, 1995, 40(6): 1817.
[5] Ito C, Okahana N, Wu T S, et al. New carbazole alkaloids from Murraya euchrestifolia[J]. Chem Pharm Bull, 1992, 40(1): 230.
[6] Jerz G, Waibel R, Achenbach H. Cyclohexanoid protoflavanones from the stem-bark and roots of Ongokea gore [J]. Phytochemistry, 2005, 66(14): 1698.
[7] Vasconcelos J M J, Silva A M S, Cavaleiro J A S. Chromones and flavanones from Artemisia campestris subsp. maritime[J]. Phytochemistry, 1998, 49(5): 1421.
[8] Hattori H, Okuda K, Murase T, et al. Isolation, identification, and biological evaluation of HIF-1-modulating compounds from Brazilian green propolis[J]. Bioorg Med Chem, 2011, 19(18): 5392.
[9] Gu J Q, Park E J, Vigo J S, et al. Activity-guided isolation of constituents of Renealmia nicolaioides with the potential to induce the phase Ⅱ enzyme quinone reductase[J]. J Nat Prod, 2002, 65(11): 1616.
[10] Vasconcelos J M J, Silva A M S, Cavaleiro J A S. Chromones and flavanones from Artemisia campestris subsp. maritime[J]. Phytochemistry, 1998, 49(5): 1421.
[11] Brandao L F G, Alcantara G B, Matos M de F C, et al. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells[J]. Chem Pharm Bull, 2013, 61(2): 176.
[12] Saeed M A, Sabir A W. Irritant and cytotoxic coumarins from Angelica glauca Edgew roots[J]. J Asian Nat Prod Res, 2008, 10(1): 49.
[13] Kim K S, Lee S, Shin J S, et al. Arteminin, a new coumarin from Artemisia apiacea [J]. Fitoterapia, 2002, 73(3): 266.
[14] Kijjoa A, Gonzalez M J T G, Pinto M M M, et al. Constituents of Knema laurina and Knema tenuinervia ssp. setosa[J]. Planta Med, 1991, 57(6): 575.
[15] Li J R, Bai, Y J, Wang B, et al. A monoterpene glycoside from Echinacea purpurea [J]. J Chin Pharm Sci, 2003, 12(4): 181.
[16] Sathish Kumar B, Singh A, Kumar A, et al. Synthesis of neolignans as microtubule stabilisers[J]. Bioorg Med Chem, 2014, 22(4): 1342.
[17] Jakupovic J, Tan R X, Bohlmann F, et al. Prenylated coumarates from Artemisia xanthochroa [J]. Phytochemistry, 1990, 29(11): 3683.
[18] Gangar M, Ittuveetil A, Goyal S, et al. Anti selective glycolate aldol reactions of (S)-4-isopropyl-1-[(R)-1-phenylethyl]imidazolidin-2-one: application towards the asymmetric synthesis of 8-4′-oxyneolignans[J]. RSC Adv, 2016, 6(104): 102116.
[19] Lancefield C S, Ojo O S, Tran F, et al. Isolation of functionalized phenolic monomers through selective oxidation and CO bond cleavage of the β-O-4 linkages in lignin[J]. Angew Chem Int Edit, 2015, 54(1): 258.
[20] Yamano Y, Watanabe Y, Watanabe N, et al. Stereocontrolled synthesis of glucosidic damascenone precursors[J]. J Chem Soc Perkin Trans 1, 2002, (24): 2833.
[21] D′Abrosca B, DellaGreca M, Fiorentino A, et al. Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui [J]. Phytochemistry, 2004, 65(4): 497.
[22] Della Greca M, Di Marino C, Zarrelli A, et al. Isolation and phytotoxicity of apocarotenoids from Chenopodium album [J]. J Nat Prod, 2004, 67(9): 1492.
[23] Shirali A, Sriram M, Hall J J, et al. Development of synthetic methodology suitable for the radiosynthesis of combretastatin A-1 (CA1) and its corresponding prodrug CA1P[J]. J Nat Prod, 2009, 72(3): 414.
[責任编辑 丁广治]