毛晓锟 张秋霞 王国栋 陆阿明
摘要:探讨无损伤男性受试者跑步支撑期优势侧与非优势侧下肢生物力学的差异性。方法:选取普通健康无损伤男性受试者12名,采用Vicon红外高速运动捕捉系统和Kistler三维测力台对受试者跑步支撑期的运动学和动力学指标进行同步采集。结果:1)优势侧跑步支撑期髓关节最大伸和膝关节最大屈曲角度小于非优势侧(P<0.05),踝关节在矢状面两侧差异无统计学意义(P>0.05);在额状面的关节角度两侧差异均无统计学意义(P>0.05)。2)跑步支撑期,内侧地面反作用力峰值优势侧大于非优势侧,而到达峰值的时间晚于非优势侧(P<0.05),外侧地面反作用力峰值非优势侧大于优势侧,且到达峰值的时间晚于优势侧(P<0.05),垂直和前后地面反作用力峰值及到达峰值的时间两侧差异均无统计学意义(P>0.05)。载荷率两侧差异比较无统计学意义(P>0.05)。3)根据垂直地面反作用力峰值和第1载荷率计算的对称性指数显示两侧存在不对称性。结论:1)在跑步支撑期,优势侧与非优势侧矢状面内髋膝角度存在差异性,提示了在跑鞋、鞋垫及下肢矫形器等设计和临床研究中,不能仅仅选择一侧来评价跑步的整体感觉、损伤风险和康复效果。2)跑步支撑期在内外地面反作用力峰值存在的差异性、第1峰值和载荷率所表现出的偏侧性,结合膝关节屈曲角度的差异性可能会增加优势侧损伤的风险。长期积累,有可能会造成优势侧胫骨应力性骨折、足底筋膜炎及ACL的损伤。
关键词:优势侧;非优势侧;生物力学;偏侧性;损伤;跑步支撑期
中图分类号:G 804.6 文章编号:1009-783X(2017)01-0091-06 文獻标志码:A
学者们对跑步损伤的机制研究了近30年,但是其损伤的病因一直是专家和临床医生研究的难点,且近年来损伤的概率一直在增加。流行病学研究报告指出,每年有高达70%的跑步者忍受着因跑步损伤带来的痛苦。有研究对1583名老年人进行调查,结果表明膝骨性关节炎发生在右侧(优势侧)的概率高于左侧。如果损伤经常出现在一侧肢体,这可能与下肢不对称性相关,也就是说下肢偏侧性或不对称性可能是造成一侧持续损伤的重要原因之一。此外,下肢不对称性或偏侧性已被证明是影响损伤发生率的因素。为此,了解跑步时下肢优势侧和非优势侧的生物力学的偏侧性对预防和治疗下肢损伤具有重要的作用。
偏侧性是Broca首次提出的,并指出人体在左右两侧的运动组织和大脑功能不同。研究表明偏侧性10%~20%取决于遗传,80%~90%取决于后天的环境因素,性别、工作的复杂性及发育特征也扮演着重要的角色。相对于步态分析,偏侧性在其他科学领域如神经生理学和运动控制研究已久,但是偏侧效应或不对称性与跑步相关的损伤并未引起学者们的广泛关注。一些研究者只选择优势侧进行研究来代表下肢整体感觉,或是将损伤者与无损伤者进行对比_,也有的学者甚至将左右两侧的数据进行平均来比较。上述研究者并没有考虑受试者优势侧与非优势侧是否存在差异性,这在一定程度上就默认了优势侧与非优势侧肢体生物力学特征的对称性。关于无损伤者跑步过程中优势侧与非优势侧是否存在差异性,学者们对他们的优势侧与非优势侧跑步时所穿跑鞋的舒适性、受试者生物力学特征等方面的对称性或差异性进行了研究;但是上述研究得出两侧的对称性程度存在不同程度的差异性,并未达成共识。考虑到不同的性别对下肢力学影响机制的不同及无损伤男性受试者跑步支撑期下肢两侧生物力学的偏侧性鲜见研究者探讨。
鉴于此,本研究采用Vieon红外高速运动捕捉系统和Kis-tier三维测力台无损伤男性受试者跑步支撑阶段优势侧与非优势侧的运动学、动力学特征进一步对比分析,并结合与损伤相关的载荷率指标等探究两侧下肢在跑步支撑期是否存在一定的偏侧性,以期为指导运动员训练及预防运动损伤提供重要的借鉴价值。
1研究对象与方法
1.1研究对象
本研究选取普通健康无损伤者男性受试者12名,年龄(23.0±1.1)岁,身高(173.5±2.1)cm,体质量(63.9±4.7)kg。受试者在实验前进行问卷调查,并确认其在实验前24 h之内没有进行过大强度运动,在过去的1年里没有下肢损伤,没有进行过手术,身体各方面机能良好。
1.2实验仪器
本研究采用英国生产的Vicon红外高速运动捕捉系统(包括8台型号为MX13的红外摄像头、PC主机和标准配件等)采集下肢髋、膝、踝关节运动学数据,采集频率为200 Hz;根据Vi-con系统中的下肢模型(PlugInGait),将16个Marker球精确地贴在人体下肢各环节的标志点上,如图1所示。
支撑期的力学指标使用瑞士生产的Kistler三维测力台采集,如图2所示,采样频率为1000 Hz,经转换模块将Kistler力台与Vicon进行同步。
1.3实验流程
1.3.1测试方法
实验前利用跑步机进行5 min左右的热身活动,利用踢球法来判定受试者的优势侧与非优势侧,踢球时左右两侧均采用原地踢球。实验之前,首先让受试者熟悉此动作,正式测试时,每侧各进行3次踢球动作,记录每一次的成绩,分别选取两侧最远的成绩进行评定,踢球距离最远的一侧评定为优势侧。这是国内外常用的一种判定下肢优势侧与非优势侧较为简便有效的方法。
要求受试者统一身着实验室的紧身短裤,赤脚站立,与肩同宽,此时对受试者的身高、体重、腿长、膝宽、踝宽等形态学指标进行测量。正式测试前,要求受试者赤足在长约8 m的木质地板上(力台安放于之间)试跑几次,调整起始步位置使测试足完全踏在力台上面,使受试者足底适应接触的力台,减少测试仪器对受试者跑步动作的影响,直至受试者感觉自己可以正常测试为止。要求受试者在此跑步过程中“无视”力台的存在,避免出现跨步、踮脚、忽快忽慢等现象,要求受试者的跑速控制在(3.5±5%)m/s。跑速的测试仪器采用苏大自主研发的光电感应计时系统,主要包括起点触发设备、终点采集设备、电脑控制端。将起点触发设备放于8 m距离的起点,终点采集设备放于8 m距离的终点。受试者从2采集器中间穿过,仪器结束采集并自动计算受试者穿越起点和终点设备的时间,计算跑速。正式测试时,每个受试者的两侧各按要求做3次动作,每次动作间隔2 min,以避免疲劳对研究结果的影响。endprint
1.3.2指标选取
1)运动学指标包括髋、膝、踝关节在矢状面和额状面内的角度。矢状面包括:足跟着地时刻、足趾离地时刻的髓、膝、踝关节角度;踝关节最大背伸角度;膝关节最大屈曲角度;髋关节最大屈角度和最大伸角度。额状面包括:足跟着地时刻、足趾离地时刻的髋、膝、踝关节角度;踝关节最大外翻角度;膝关节最大内翻角度;髓关节最大内收和外展角度,单位是(°)。
2)动力学指标主要是经体重标准化处理后的三维地面反作用力峰值。包括:垂直方向的第1和第2地面反作用力峰值(FGRF and SGRF);内外方向上的地面反作用力峰值(MGRFand LGRF);前后方向的加速力峰值和制动力峰值(peak accel-eration GRF and peak braking GRF,AGRF.and BGRF)。如图3所示。
3)经支撑期总时间标准化处理后的着地时刻至地面反作用力峰值的时间Δt。
4)载荷率(LR),单位是kg/s,公式为:垂直方向的第1载荷率=第1地面反作用力峰值除以到达第1峰值的时间;垂直方向的第2载荷率=垂直第2峰值减去波谷值再除以两力值之间的时刻差。
5)对称指数(SI),本研究主要计算垂直地面反作用力和载荷率对称性,公式如下:
SI是由Robinson等首次提出的,用来量化左右两侧的差异,当SI=0时表示两侧完全对称,SI≤10%时,表示两侧比较对称,SI越大说明两侧对称性越低。其中XD(Dominant)代表优势侧,XN(Non-dominant)代表非优势侧。本研究未对内外和前后方向的地面反作用力对称指数进行计算,主要是因为SI不适合较小数值的运算。
1.3.3数据处理
本研究采用SPSS 17.0统计学软件包对实验数据进行处理,数据以均数±标准差表示。优势侧与非优势侧的各指标差异进行配对t检验,检验水准选α=0.05。
2研究结果
2.1优势侧与非优势侧跑步支撑期的运动学特征
从跑步支撑期优势侧与非优势侧关节角度(见表1和表2)可以看出:优势侧与非优势侧跑步支撑期额状面内的髓、膝、踝关节角度两侧比较差异无统计学意义(P>0.05);在矢状面,非优势侧膝关节最大屈曲角度大于优势侧(P<0.05),非优势侧髋关节最大伸角度大于优势侧(P<0.05),其他角度两侧比较差异无统计学意义(P>0.05)。
2.2优势侧与非优势侧跑步支撑期的动力学特征
2.2.1优势侧与非优势侧跑步支撑期的地面反作用力峰值特征和对称指数
优势侧与非优势侧支撑期地面反作用力峰值见表3,垂直地面反作用力峰值及到达峰值的时刻两侧差异比较无统计学意义(P>0.05),前后地面反作用力峰值及到达峰值的时刻两侧差异比较无统计学意义(P>0.05)。内侧地面反作用力峰值优势侧大于非优势侧,而到达峰值的时间晚于非优势侧(P<0.05),外侧地面反作用力峰值非优势侧大于优势侧,且到达峰值的时间晚于优势侧(P<0.05)。
地面反作用力峰值对称指数如图4所示,其中FGRF(21.62+11.37)均值大于10%,SGRF(6.47±4.56)均值小
2.2.2优势侧与非优势侧跑步支撑期的载荷率特征和对称指数
跑步支撑期载荷率特征如图5所示,跑步支撑期优势侧与非优势侧载荷率特征两侧差异无统计学意义(P>0.05)。第1载荷率(34.92±28.48)和第2载荷率(20.95+17.44)对称指数均值大于10%,如图6所示。
3分析与讨论
本研究发现在跑步支撑期,非优势侧与优势侧相比仅在矢状面内的膝关节最大屈曲角度和髓关节最大伸角度表现出差异性(P<0.05),在额状面内的关节角度两侧差异比较均无统计学意义(P>0.05)。关于无损伤者跑步支撑期优势侧与非优势侧下肢关节角度的研究较少,Brown等对研究指出无损伤女性受试者跑步时优势侧与非优势侧运动学参数未表现出差异性,性别和所选指标的不同可能是导致上述结果不同的原因。此外,有学者对优势侧和非优势侧单腿下落着地的生物力学偏侧性进行研究,指出非优势腿落地时膝关节和髋关节在矢状面活动范围较小增加了非优势腿在单侧动态运动时的损伤风险;而有研究对两侧连续纵跳的生物力学进行了分析,指出非优势侧可能在屈伸与外旋方向进行了较大的运动限制,减小了其下落损伤的风险。上述研究说明了不同的运动形式表现出不同的下肢对称性,其易损伤的机制可能就有所不同;因此,在不同运动形式中所呈现出的下肢不对称性及损伤的机制有待学者们进一步探索,对下肢损伤与康复具有重要的作用。本研究所呈现出的运动学差异性,提示了在跑鞋、矫形仪器以及临床康复治疗时,不能只选择一侧来代表整个下肢的感受或康复效果,需要考虑其存在的差异性。
优势侧和非优势侧在跑步支撑期所表现出的运动学差异可能与下肢僵硬程度有关。Brauner等对单腿跳跃时优势侧与非优势侧腿部僵硬程度进行了研究,并指出优势侧较大的肌肉力量可能会导致其腿部僵硬程度较高;但研究结果却表明两侧的腿部僵硬程度相似。De等指出赤足跑与穿鞋跑相比,在支撑期腿部更加僵硬。本研究受试者赤足跑步支撑期优势腿与非优势腿是否存在不同的僵硬程度,有待进一步研究。此外,下肢屈伸肌肉力量也可能是造成上述運动学差异性的原因之一,Lanshammar等对159名健康女性(非运动员)下肢优势侧和非优势侧屈伸肌力量进行了对比,指出优势腿的屈肌弱于非优势腿,伸肌力量强于优势腿。Rahnama等也指出足球运动员优势腿膝关节屈肌较弱。优势腿较弱的膝关节屈肌可能是造成膝关节最大屈曲角度较小的原因。由表1和表2可知,髋、膝、踝关节无论是在矢状面还是额状面,在足跟着地时刻和足趾离地时刻两侧角度的差异比较均无统计学意义(P>0.05),在跑步支撑期相似的着地和离地角度。说明无论是优势侧还是非优势侧在着地和离地时刻分别采用了相同的控制策略,间接反映了两侧在此时刻的控制机制的相似性。此前已有研究指出跑速会影响跑步时运动学参数的变化,由于本研究对受试者的跑速进行了控制,那么随着跑速的增加,在着地和离地时刻或者说在整个支撑期的关节角度是否会因跑速的增加表现出不同的差异性,今后的实验研究中可以考虑跑速的变化对两侧下肢运动学参数偏侧性的研究。此外,从研究结果还可以看出:矢状面内的髋关节最大伸角度和膝关节最大屈曲角度两侧差异具有统计学意义(P<0.05),此时处于支撑中期;但是足跟着地时刻和足趾离地时刻两侧髋膝角度差异比较未见统计学意义(P>0.05),从足跟着地时刻过渡到支撑中期再到足趾离地时刻,神经机制是如何在控制下肢运动,使得矢状面两侧髋膝角度在支撑期经历了相似、差异、相似的过程,未知而复杂的神经控制机理可能是学者和临床医生对跑步损伤的原因研究多年,还一直有所困惑的重要原因之一。endprint
在跑步支撑期,优势侧与非优势侧主要在内外地面反作用力峰值存在差异性,内侧地面反作用力峰值优势侧大于非优势侧,外侧地面反作用力峰值非优势侧大于优势侧(P<0.05)。这种差异性说明在跑步支撑期优势侧关节有外翻的趋势,但是本研究中额状面并未在优势侧与非优势侧膝或踝内外翻角度发现差异性,可能与研究样本量有关。在跑步支撑期垂直地面反作用力值最大,其次是前后地面反作用力,内外地面反作用力最小。当前研究主要集中于垂直方向的地面反作用力,对前后和内外方向上的地面反作用力研究较少,可能与其力值较小有关。而本研究认为虽然内外方向上的地面反作用力较小,但是内外侧力代表了平衡机制控制的稳定性,同时是导致膝关节炎的重要因素之一;为此,两侧表现出的差异性不容忽视,在临床诊断、治疗和康复等方面应该引起重视。
由图3可以看出:垂直方向的地面反作用力呈现出“两峰一谷”的特征,其中的第1峰值(A)出现在足着地期为冲击力峰值,而第2峰值(C)出现在蹬地时刻为推动力峰值,也有学者将第2峰值称之为活跃峰值。本研究中的第1峰值和第2峰值两侧相比差异没有统计学意义(PI>0.05),但是优势侧和非优势侧的第1峰值(冲击力峰值)对称性指数SI(21.62±11.37)大于10%,说明两侧在脚着地后所受的冲击力值出现了偏侧性。脚着地初期所受到的较高的、较快的冲击力一直被认为是造成下肢损伤的重要原因之一。相比非优势侧,优势侧在跑步支撑期较小的膝关节屈曲角度和髓关节伸角度,却承受与非优势侧相似的冲击力,较小的膝关节屈曲角度,使得膝关节内部承受的压力增大,瞬间表现出ACL张力增加,以及两侧在脚着地后所受的冲击力值的偏侧性,都说明了优势侧膝关节更容易损伤。有研究指出,在支撑相前50%的时间内较小的膝关节屈曲角度,此时主要股四头肌的长头腱在维持膝关节的稳定,膝关节易损伤就预示着前交叉韧带(ACL)损伤的概率大幅提高,甚至会出现ACL断裂的现象,提示了优势侧膝关节ACL容易损伤。冲击力峰值出现在脚着地之后,此时冲击力主要是通过足跟垫、跟骨、距骨然后转移到腿部,将冲击力转移到骨也是一种缓冲震荡的机制,也可能代表了骨的载荷。Lieberman等指出冲击力转移出现在足跟着地后的前50 ms,而冲击力转移和垂直载荷率及胫骨冲击相关,可能造成骨和软组织损伤(应力性骨折和足底筋膜炎)。本研究中的第1载荷率和第2载荷率两侧相比差异无统计学意义(P>0.05),如图5所示。结合图6有关计算的载荷率对称性指数可知,其对称性指数均大于10%,说明两侧在跑步支撑期的载荷率并不对称。有学者指出载荷率反映了垂直地面反作用力需要多长時间可以达到第1峰值,也可以称为冲击载荷,其主要指身体在单位时间内吸收地面反作用力的快慢,单位时间内吸收的能量越多,其损伤的风险就越高。长期劳损积累,可能会造成优势侧胫骨应力性骨折和足底筋膜炎。从图5所得到的数据可以看出优势侧第1载荷率均值高于非优势侧,其对称性指数(34.92±28.4)大于10%。说明第1载荷率偏向于优势侧,不对称的载荷率,再一次说明了在跑步支撑期优势侧较易损伤。目前,关于跑步载荷率的研究主要集中于冲击载荷(第1载荷率),主要是因为冲击载荷与跑步常见损伤相关。
4结论
1)男性跑步者在跑步支撑期,优势侧与非优势侧矢状面内髋膝角度存在差异性,提示了在跑鞋、鞋垫及下肢矫形器等设计和临床研究中,不能仅仅选择一侧来评价跑步的整体感觉、损伤风险和康复效果。
2)跑步支撑期在内外地面反作用力峰值存在的差异性、第一峰值和载荷率所表现出的偏侧性,结合膝关节屈曲角度的差异性可能会增加优势侧损伤的风险。长期积累,有可能会造成优势侧胫骨应力性骨折、足底筋膜炎及ACL的损伤。endprint