文锋 吴小祝 廖亮 刘新圣 李鹏
摘要: 轉录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸(JA)、水杨酸(SA)、脱落酸(ABA)和赤霉素(GA)等,在其信号传递途径中都起着重要作用。WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件Wbox(TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。
关键词: WRKY转录因子, 抗逆, 生物胁迫, 非生物胁迫
中图分类号: Q945
文献标识码: A
文章编号: 10003142(2017)01006912
Abstract: Transcription factor, also called sequence specific DNA binding factor, is a protein which can bind to specific DNA sequences, and then controlling the rate of transcription from DNA to messenger RNA. By binding to either enhancer or promoter regions of DNA adjacent to the genes, transcription factors can control the transcription level of the adjacent gene either up or down regulated. In plants, transcription factors use a variety of mechanisms for the regulation of gene expression, when plants are in response to environmental stimuli, especially to biotic or abiotic stresses. WRKY transcription factors are conserved in evolutional history throughout the Plant Kingdom, which play essential roles in various physiological processes. Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. Previous studies have demonstrated that WRKY transcription factors play essential roles in various physiological processes, including senescence, root development, sugar signaling, and germination. Furthermore, WRKY transcription factors have been shown to be involved in responses to various biotic stresses caused by viruses, bacterial pathogens, fungi, abiotic stresses including drought, heat, cold, and so on, and some signaling substances such as salicylic acid (SA)/benzothiadiazole, jasmonic acid, gibberellin and ABA. All members of this family contain at least one conserved DNAbinding domain with a highly conserved WRKYGQK heptapeptide sequence. These conserved sequences have been designated as the WRKY domains, and function in Wbox DNA motif (C/T)TGAC(C/T) binding activation, to regulate stressresponse gene expression, which were induced by pathogen, wound external stimuli and signal molecule. Here, this present review concentrates on the recent report about function study of WRKY transcription factors, including abiotic stresses (cold,drought,salinity) and various biotic stresses (viruses, bacterial pathogens, fungi), intent to elucidate how these WRKY proteins regulate the plant defense and how they interact with each other will be hot topics for future studies.
Key words: WRKY transcription factors, stress resistance, biotic stress, abiotic stress
植物是固定在土壤中生存的生物,大多数植物不能自主移动,为了适应外界不断变化的环境,在长期进化的过程中,植物发展了一系列针对内外环境变化而做出相应反应的复杂机制(Glazebrook, 2001; Lawlor, 2011)。在病虫害、高温、干旱等胁迫下,植物依赖这种复杂的生理机制维持其生命活动(Rushton & Somssich, 1998)。随着分子生物学的发展以及科学家对植物基因组研究的深入研究,人们在基因调控水平上对植物应答逆境生理活动的了解正在逐步加深。植物基因组中有一部分基因在应对外界环境变化的信号转导或者基因转录水平调控过程中起着重要的作用,并且往往是以基因家族的形式出现(Riechmann et al, 2000)。转录因子是参与此类外界环境胁迫的信号转导和基因表达水平调控过程中的重要基因之一。转录因子可以直接或者间接地结合在顺式作用元件上,来实现调控目标基因的转录效率的抑制或增强的目的,从而使植物应对外界逆境胁迫做出相应的反应。转录因子大多都具有特异的DNA识别位点和DNA结合活性,通常由几个相对独立的功能域组成,包括转录调控区、核定位信号区、DNA结合域和寡聚化位点等。根据DNA结合域的特征,转录因子主要分为以下几大类:bZIP(碱性亮氨酸拉链)、bHLH(碱性环-螺旋-环)、WRKY、MYB、ERF(乙烯响应因子)、Zinc finger(锌指蛋白)、HSF(热激转录因子)等(Riechmann et al, 2000; Yamasaki et al, 2008)。其中,WRKY转录因子在植物界中分布较广泛,并且是植物所特有的一类成员较多的转录因子家族(图1)。
Ishiguro & Nakamura (1994)首次从甘薯(Ipomoea batatas)中分离出第一个编码与顺式作用元件Wbox(TTGAC序列)相结合的蛋白的cDNA(SPF1)以来,人们相继从拟南芥(de Pater et al, 1996; Wang et al, 2011; Wu et al, 2005)、野燕麦(Rushton et al, 1995)、水稻(Berri et al, 2009; Wu et al, 2005)和二穗短柄草(Wen et al, 2014)等植物中分离出WRKY转录因子,例如在拟南芥中分离出了74个WRKY转录因子,在水稻中则含有126个(Berri et al, 2009)。根据已有的文献报道,WRKY转录因子参与了植物生长发育中的许多重要生理过程,其中包括种子的形成发育和萌发、根的发育、糖分的运输以及植物器官的衰老等过程(Eulgem et al, 2000)。同时,WRKY转录因子在植物生长过程中响应各种生物胁迫,如细菌、病毒、虫害和真菌等,以及多种非生物胁迫,包括冷害、高温、高盐和强光等,以及在各种植物激素(茉莉酸、水杨酸、赤霉素和脱落酸等)的信号传递途径中都起着重要作用(Chen et al, 2012; Jiang & Deyholos, 2006; Li et al, 2009; Park et al, 2006; Qiu et al, 2007; Rushton et al, 2010; Xie et al, 2006; Xu et al, 2006)。
1WRKY转录因子的结构特征和功能特性
通过分析WRKY转录因子的蛋白序列,发现其最主要的结构特征是各个成员的DNA结合域中都含有一个或两个WRKY结构域。WRKY结构域由一段大约包含60个氨基酸的保守序列组成,包含四个β折叠,并有由一对半胱氨酸残基(Cys)与一对组氨酸(His)残基组成的锌离子结合功能结构(图2)。其保守结构域N端含有7个绝对保守的氨基酸残基WRKYGQK,它是WRKY转录因子的标志,是WRKY结构域中的核心序列,主要控制WRKY结构域与DNA之间的结合活性。实验表明,WRKYGQK残基在WRKY结构域中有极高的保守性,其变异往往导致转录因子与DNA 结合的活性减弱或者甚至丧失(Maeo et al, 2001; Wu et al, 2005)。例如,在拟南芥和水稻中,一些WRKY家族成员的WRKY结构域中的甘氨酸、精氨酸、赖氨酸和谷氨酰胺发生了变异,常见的例如谷氨酰胺突变为谷氨酸或者赖氨酸,最终导致WRKY转录因子与DNA的结合力下降(Maeo et al, 2001; Wu et al, 2005)。WRKY结构域的C端通常含有两种类型的由半胱氨酸和组氨酸残基组成的锌指结构,其组成分别为:C2H2(CX45CX2223HX1H)和C2HC(CX7CX23HX1C)。鋅指结构的分类,在植物的进化中可能起到重要的作用(Xie et al, 2005; Zhang & Wang, 2005)。
根据WRKY结构域的数目和C端锌指的结构特征,一般可以将WRKY转录因子分为三大类:Ⅰ类、Ⅱ类和Ⅲ类(图3)。其中第Ⅰ类WRKY转录因子有2个保守WRKY结构域,锌指结构域为C2H2型,主要包括最早被发现的NtWRKY1、IbSPF1、PcWRKY1、AtZAP1和CsSE71等。进一步的研究表明,C端的WRKY结构域在第Ⅰ类WRKY与DNA结合过程中起主导作用,而N端WRKY结构域的功能目前还不清楚,可能与WRKY转录因子与DNA特异序列的亲和力和结合特异性有关,通过提高其亲和力和特异性从而参与该家族转录因子与DNA相互结合的过程(Eulgem et al, 1999; Maeo et al, 2001)。第Ⅱ和第Ⅲ类WRKY转录因子都只含一个保守的WRKY结构域,两者的主要区别在于,第Ⅱ类转录因子的锌指结构为C2H2,然而第Ⅲ类转录因子的锌指结构为C2HC(Eulgem et al, 2000)。其中,第Ⅱ类WRKY转录因子在WRKY家族中所占比例最高,通常分为5个亚类(Ⅱa、Ⅱb、Ⅱc、Ⅱd和Ⅱe)。序列比对结果表明,第Ⅱ类转录因子的WRKY结构域与第Ⅰ类转录因子C端WRKY结构域序列相似程度更大,而与N端的相似性更低,这同样也说明了第Ⅰ类WRKY转录因子与目标DNA序列相互结合的过程中起到主导作用的是C端WRKY结构域(Eulgem et al, 2000)。第Ⅲ类WRKY转录因子只含一个WRKY结构域,其C端的锌指结构是C2HC型,如AtWRKY38,、AtWRKY54、OsWRKY7、PcWRKY5和NtWRKY5等。研究表明,第Ⅲ类WRKY转录因子在进化上最为活跃,并且通常只在高等植物中存在,而在一些较低等的植物如苔藓植物中不存在。同时,高等植物中几乎全部的第Ⅲ类WRKY转录因子都参与了生物胁迫应答反应,这说明第Ⅲ类WRKY转录因子的产生可能是由植物适应外界环境胁迫所引起的(Eulgem et al, 2000; Wu et al, 2005; Xie et al, 2005; Zhang & Wang, 2005)2WRKY转录因子与非生物胁迫
植物在固着生长的过程中,外界的环境在不断的变化,使得植物需要不断的适应变化的环境。在恶劣的外界环境下,植物的生理生化过程会发生相应的改变,其中WRKY转录因子在此过程中起了一定的调控作用。虽然WRKY轉录因子最早是被发现参与了植物在病原菌侵染过程中的对病原菌的应答反应,但最近的研究表明,许多WRKY转录因子同样也参与了干旱、高温、低温、损伤等非生物逆境的应答反应(Chen et al, 2012)。笔者总结了部分已报道的与非生物胁迫相关的WRKY转录因子(表1)。随着高通量测序技术和分子生物学的发展,越来越多的物种的基因组序列已经渐渐变为已知。建立在此基础上的全基因组分析、转录组分析、基因芯片分析和转录谱的综合性分析等方法,为研究含有较多成员的转录因子大家族的功能提供了非常好的方法和手段。通过基因组的表达水平和基因芯片分析,现已经报道了许多WRKY转录因子参与了植物响应非生物胁迫的过程,例如,研究发现100个杨树WRKY转录因子中有61个转录因子参与了植株响应非生物胁迫,41个芜菁WRKY转录因子提高或降低了植株对冷害、干旱和盐害等胁迫的抗性,15个葡萄WRKY转录因子参与了葡萄应答冷害胁迫的过程(Jiang et al, 2014; Kayum et al, 2014; Wang et al, 2014)。转录组分析结果表明TaWRKY16、TaWRKY24、TaWRKY59和TaWRKY61的表达水平在小麦面对干旱胁迫时迅速上升(Okay et al, 2014)。Ramamoorthy et al(2008)对水稻103个WRKY转录因子在不同非生物胁迫(包括冷害、盐害、干旱)下的表达谱分析,结果发现54个WRKY转录因子在上述非生物胁迫下会诱导表达。同时发现,这些WRKY转录因子的表达量,有的会上调,有的会下调,说明了WRKY转录因子对于植物的非生物胁迫反应有正调控和负调控之分。另外,他们还发现有的WRKY转录因子只受一种胁迫因子的诱导,而有的同时受几种胁迫因子的诱导,说明这些WRKY转录因子在响应不同非生物胁迫的调控过程中具有一定的特异性。
除了利用全基因组的表达谱和基因芯片分析,科学家通过将目标物种的WRKY转录因子过量表达到拟南芥或烟草等模式植物中,研究其在提高植株对非生物胁迫抗性过程中的分子机制。Zhou et al(2008)把大豆GmWRKY13、GmWRKY21和GmWRKY54过量表达到拟南芥中,发现过量表达GmWRKY21可以提高植株对冷害的抗性,过量表达GmWRKY54提高了植株对干旱和盐害的忍耐力,然而过量表达GmWRKY13的植株对盐害和甘露醇胁迫的抗性下降,降低了植株对ABA的敏感。过表达小麦WRKY转录因子TaWRKY2到拟南芥中,发现TaWRKY2可以通过上调STZ和RD29B的表达从而提高植株对盐害和干旱的抗性,TaWRKY19可以通过上调DREB2A、RD29A和RD29B提高植株耐盐、抗寒和抗寒能力(Niu et al, 2012)。将棉花中的GhWRKY391转入本氏烟中可以提高植株的抗盐和抗氧化胁迫的能力(Shi et al, 2014)。同样,通过转基因技术,人们可以从在极端条件下生长的物种中分离和克隆出对非生物胁迫具有特定抗性的WRKY转录因子。例如,人们从重金属超富集植物天蓝遏蓝菜中的TcWRKY53过量表达到烟草中,发现TcWRKY53是一个渗透胁迫反应的负调控因子(Wei et al, 2008)。Zheng et al(2013)研究发现从耐盐碱的刚毛柽柳中分离得到ThWRKY4转录因子,并发现其可以通过调节超氧岐化酶(SOD)和过氧化物酶的表达,从而清除植株体内的超氧阴离子和过氧化氢,最终提高植株的耐盐和抗旱性。
3WRKY转录因子与病原菌
植物在病原菌侵染的过程中,病原菌能够诱导植物表达大量的抗病相关基因,包括了对病原菌响应的细胞表面受体蛋白、MAPK级联相关蛋白、抗病相关转录因子以及下游的病程相关蛋白等。其中,WRKY转录因子在植物防卫反应过程中起了非常重要的调控作用。许多基因芯片的数据表明,病原菌侵染植物后,植物体内的一些WRKY转录因子的表达水平会发生改变(Ryu et al, 2006; Zhao et al, 2007)。例如,病原菌诱导的水稻WRKY转录因子家族基因的表达分析结果表明,15个水稻WRKY转录因子可以被稻瘟病病菌Magnaporthe grisea诱导表达,有12个WRKY基因同时能够被细菌Xanthomonas oryzae pv. oryzae诱导表达(Ryu et al, 2006)。研究发现在很多与植物防卫反应相关的抗病基因启动子中都有顺式作用元件Wbox的存在,例如,许多已被研究清楚的病程相关蛋白基因,甘蓝中的SFR2、欧芹中的PcPR11、烟草中的CHN50和拟南芥中的NPR1等基因的启动子都含有不同形式的Wbox。WRKY结构域能够保守地和Wbox相互作用,因此,WRKY转录因子可以通过与抗病相关蛋白基因启动子的Wbox结合,激活下游抗病基因的表达,从而开启植物的抗病防卫系统(Rocher et al, 2005; Turck et al, 2004; Yang et al, 1999; Yu et al, 2001)。随着多个物种全基因组的测序完成,在许多物种中都发现了经病原菌侵染诱导表达升高的WRKY转录因子。该类表达升高的WRKY转录因子与下游基因启动子结合,导致其下游与抗病相关的基因表达水平升高,从而提高植株对病原菌的免疫力。通过全基因组的WRKY转录因子表达谱分析,在受黑斑病菌侵染的埃塞俄比亚芥中发现部分WRKY转录因子的表达模式与抗病相关基因如PR1、PAL和PDF1.2等的相关性高,从而可以推测这些WRKY转录因子参与了植株抗病过程(Chavan & Kamble, 2013)。Kayum et al(2014)发现至少有8个芜菁WRKY转录因子提高了植株对软腐果胶杆菌和镰孢菌的抗性。Jiang et al(2014)对杨树WRKY基因表达谱分析发现大量的WRKY转录因子表达水平在黑斑病菌感染后升高,同时将其中的一个基因PtrWRKY89在白杨中过表达,发现其过表达可以提高白杨植株对黑斑病菌的抗性。
在篩选和克隆到与植物抗病相关的WRKY转录因子后,科学家可以通过TDNA插入、基因沉默和转基因等技术进一步地研究其提高植株抗病性的分子机制,发现WRKY转录因子在植物抗病过程中起着多种调控功能,包括调控植物抗毒素、植物病程相关蛋白和超敏反应相关基因等的表达,另外,研究发现还有不少的WRKY转录因子的植物抗病过程中起到负调控的作用(Eulgem & Somssich, 2007; Pandey & Somssich, 2009)。利用缺少突变和过表达植株,Abbruscato et al(2012)发现水稻OsWRKY22突变后使得植株对稻瘟病菌易感,相反在水稻植株过表达OsWRKY22基因很大程度地提高了其对稻瘟病菌的抗性,说明OsWRKY22转录因子在水稻抗稻瘟病的机制中起着关键的作用。Mao et al(2011)研究发现,AtWRKY33在被MAPK3和MAPK6磷酸化激活后,调控了植物抗毒素camalexin的表达,从而提高拟南芥对葡萄孢菌的抗性。而利用基因沉默技术将辣椒CaWRKYd基因表达沉默后,发现植株病程相关蛋白基因和超敏反应相关基因的表达水平都下降了,说明CaWRKYd能够通过调控抗病相关基因表达从而提高植株的抗病性(Huh et al, 2012)。除了对植株抗病的正向调节外,植物体内还有相当多的一部分WRKY转录因子在植株对病原菌的应答过程中起负调控的作用,例如通过全基因组的分析大麦WRKY转录因子的表达谱,发现大麦HvWRKY1和2通过抑制类萌发素抗病相关蛋白HvGER4c的表达,从而负调控大麦对白粉菌的抗性(Liu et al, 2014b)。Wang et al(2013b)将辣椒CaWRKY58过表达到烟草植株后,反而烟草中抗病相关基因和超敏反应标记基因的表达都受到了抑制,说明CaWRKY58在植株受雷尔氏菌的侵染过程中起到负调控的作用。最后,笔者总结了部分新报道的与植物抗病相关的WRKY转录因子(表2)。
4WRKY转录因子与植食性昆虫
到目前为止,与植食性昆虫相关的WRKY转录因子的报道相对还比较少,但随着基因组测序技术和基因芯片技术的发展,基因表达谱的结果显示植物被植食性昆虫取食之后,WRKY转录因子的表达水平会发生变化。例如,在烟草中,表达谱数据显示烟草天蛾的取食可以强烈的诱导NtWRKY2、NtWRKY3和NtWRKY6的表达(Hui et al, 2003; Izaguirre et al, 2003; Skibbe et al, 2008),同样的,Lu et al(2011)发现剥离螟虫取食可以诱导水稻中OsWRKY53和OsWRKY70的表达,说明WRKY转录因子家族某些成员可能参与植物应答植食性昆虫取食的防卫反应过程。Atamian et al(2012)人发现西红柿中的SlWRKY70在土豆蚜虫取食后被诱导表达,进一步沉默SlWRKY70基因后,发现在沉默植株wrky70中,Mi1所诱导的抗虫害性减弱,说明Mi1所诱导的抗虫性需要SlWRKY70基因的参与。同样的,Skibbe et al(2008)也构建了沉默植株irwrky3和irwrky6研究NaWRKY3和NaWRKY6的功能,研究发现在沉默植株中,烟草天蛾的生长速率明显强于野生植株,并且蛋白酶抑制剂的含量也明显低于野生植株,说明NaWRKY3和NaWRKY6在烟草对烟草天蛾的抗性生理过程中起正向调控作用。进一步研究表明,在沉默植株中,茉莉酸的含量以及茉莉酸合成关键基因LOX2的表达量下降,并且外源的茉莉酸可以恢复NaWRKY3和NaWRKY6基因沉默所减弱的抗虫性,说明NaWRKY3和NaWRKY6转录因子通过调控茉莉酸的合成,从而参与到茉莉酸介导的烟草抗虫害的防卫反应中来(Skibbe et al, 2008)。目前,在水稻中,暂时也发现了一个直接与抗虫害相关的WRKY转录因子,经研究发现,过表达OsWRKY89提高了水稻对灰稻飞虱的抗性(Wang et al, 2007)。最后,笔者总结了部分与植食性昆虫相关的WRKY转录因子的报道(表3)。
5展望
WRKY转录因子作为植物所特有的、并与植物生长发育和抗性有密切关系的重要转录因子,已经引起人们的关注,近年来关于WRKY转录因子的研究也层出不穷。近年来,利用基因组学、转录谱、生物信息学、基因工程等方法,人们对WRKY转录因子功能的了解逐步加深,发现其不仅参与了植物生长发育过程,更是调控了植物对外界胁迫的响应过程。研究发现,WRKY转录因子与MAPK级联和SA、JA等抗病相关激素有着密切的关系,同时还能调控下游的抗性相关蛋白转录和表达。WRKY转录因子在大多数植物中是一个比较大的基因家族,植物体内存在很多WRKY转录因子。那么,是否众多的WRKY转录因子都存在其生理作用,其功能是否存在着重复,以及WRKY转录因子家族基因之间的相互协作调节关系是如何,目前尚未研究清楚。因此,进一步的研究WRKY转录因子之间的相互调控网络,以及进一步阐明WRKY转录因子在植物调控网络机制中的作用,将是今后研究的一个重要方向,同时利用WRKY转录因子筛选抗逆植株品种和提高植株抗逆性具有远大的应用前景。
参考文献:
ABBRUSCATOP, NEPUSZ T, MIZZI L, et al, 2012. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast [J]. Mol Plant Pathol, 13: 828-841.
ATAMIANHS, EULGEM T, KALOSHIAN I, 2012. SlWRKY70 is required for Mi1mediated resistance to aphids and nematodes in tomato [J]. Planta, 235: 299-309.
BERRIS, ABBRUSCATO P, FAIVRERAMPANT O, et al, 2009. Characterization of WRKY coregulatory networks in rice and Arabidopsis [J]. BMC plant biology, 9: 120.
CHAVANV, KAMBLE A, 2013. Betaaminobutyric acid primed expression of WRKY and defence genes in Brassica carinata against alternaria blight [J]. J Phytopathol, 161: 859-865.
CHEN L, SONG Y, LI S, et al, 2012. The role of WRKY transcription factors in plant abiotic stresses [J]. BBAGene Regul Mech, 1819: 120-128.
CHEN L, ZHANG L, YU D, 2010. Woundinginduced WRKY8 is involved in basal defense in Arabidopsis [J]. Mol Plant Microbe Interaction, 23: 558-565.
CHEN L, YANG Y, LIU C, et al, 2015. Characterization of Wrky transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment [J]. Biochem Biophys Res Comm, 464(3): 962-968.
CHEN YF, LI LQ, XU Q, et al, 2009. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis [J]. Plant Cell, 21: 3554-3566.
CHU X, WANG C, CHEN X, et al, 2015. The cotton Wrky gene Ghwrky41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana [J]. PLoS ONE, 10(11): e0143022.
CHUJO T, SUGIOKA N, MASUDA Y, et al, 2009. Promoter analysis of the elicitorinduced WRKY gene OsWRKY53, which is involved in defense responses in rice [J]. Biosci Biotechnol Biochem, 73: 1901-1904.
DANG F, WANG Y, SHE J, et al, 2014. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection [J]. Physiol Plant, 150: 397-411.
DANG FF, WANG YN, YU L, et al, 2013. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection [J]. Plant Cell Environ, 36: 757-774.
DAI X, WANG Y, ZHANG WH, 2016. Oswrky74, a Wrky transcription factor, modulates tolerance to phosphate starvation in rice [J]. J Exp Bot, 67(3): 947-960.
DE PATERS, GRECO V, PHAM K, et al, 1996. Characterization of a zincdependent transcriptional activator from Arabidopsis [J]. Nucl Acid Res, 24: 4624-4631.
DEVAIAH BN, KARTHIKEYAN AS, RAGHOTHAMA KG, 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis [J]. Plant Physiol, 143: 1789-1801.
DUAN Y, JIANG Y, YE S, et al, 2015. Ptrwrky73, a Salicylic AcidInducible Poplar Wrky transcription factor, is involved in disease resistance in Arabidopsis thaliana [J]. Plant Cell Rep, 34(5): 831-841.
EULGEM T, RUSHTON PJ, ROBATZEK S, et al, 2000. The WRKY superfamily of plant transcription factors [J]. Trends Plant Sci, 5: 199-206.
EULGEM T, RUSHTON PJ, SCHMELZER E, et al, 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors [J]. EMBO J, 18: 4689-4699.
EULGEM T, SOMSSICH IE, 2007. Networks of WRKY transcription factors in defense signaling [J]. Curr Opin Plant Biol, 10: 366-371.
FAN X, GUO Q, XU P, et al, 2015. Transcriptomewide identification of saltresponsive members of the Wrky gene family in Gossypium aridum [J]. PLoS ONE, 10(5): e0126148.
GLAZEBROOKJ. 2001. Genes controlling expression of defense responses in Arabidopsis--2001 status [J]. Curr Opin Plant Biol, 4: 301-308.
GONG X, ZHANG J, HU J, et al, 2015. Fcwrky70, a Wrky protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine Decarboxylase gene [J]. Plant Cell Environ, 38(11): 2248-2262.
HUANG T, DUMAN JG, 2002. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNAbinding activity from winter bittersweet nightshade, Solanum dulcamara [J]. Plant Mol Biol, 48: 339-350.
HUH SU, CHOI LM, LEE GJ, et al, 2012. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection [J]. Plant Sci, 197: 50-58.
HUI D, IQBAL J, LEHMANN K, et al, 2003. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of largescale changes in herbivoreinduced mRNAs [J]. Plant Physiol, 131: 1877-1893.
ISHIGURO S, NAKAMURA K, 1994. Characterization of a cDNA encoding a novel DNAbinding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and betaamylase from sweet potato [J]. Mol Gen Genet, 244: 563-571.
IZAGUIRRE MM, SCOPEL AL, BALDWIN IT, et al, 2003. Convergent responses to stress. Solar ultravioletB radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in fieldgrown plants of Nicotiana longiflora [J]. Plant Physiol, 132: 1755-1767.
JIANG Y, DEYHOLOS MK, 2006. Comprehensive transcriptional profiling of NaClstressed Arabidopsis roots reveals novel classes of responsive genes [J]. BMC Plant Biol, 6: 25.
JIANG Y, DEYHOLOS MK, 2009. Functional characterization of Arabidopsis NaClinducible WRKY25 and WRKY33 transcription factors in abiotic stresses [J]. Plant Mol Biol, 69: 91-105.
JIANG Y, DUAN Y, YIN J, et al, 2014. Genomewide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses [J]. J Exp Bot, 65: 6629-6644.
JIANG Y, LIANG G, YU D, 2012. Activated expression of WRKY57 confers drought tolerance in Arabidopsis [J]. Mol Plant, 5: 1375-1388.
KARIM A, JIANG Y, GUO L, et al, 2015. Isolation and characterization of a subgroup Iia Wrky transcription factor Ptrwrky40 from Populus trichocarpa [J]. Tree Physiol, 35(10): 1129-1139.
KAYUM MA, JUNG HJ, PARK JI, et al, 2014. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa [J]. Mol Gen Genet.
KUSNIERCZYK A, WINGE P, JORSTAD TS, et al, 2008. Towards global understanding of plant defence against aphidstiming and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack [J]. Plant Cell Environ, 31: 1097-1115.
LAWLOR D, 2011. Abiotic Stress Adaptation in Plants. Physiological, Molecular and Genomic Foundation [J]. Ann Bot, 107: vii-ix.
LI P, SONG A, GAO C, et al, 2015. Chrysanthemum Wrky gene Cmwrky 17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants [J]. Plant Cell Rep, 34(8): 1365-1378.
LI S, FU Q, CHEN L, et al, 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance [J]. Planta, 233: 1237-1252.
LI S, FU Q, HUANG W, et al, 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress [J]. Plant Cell Rep, 28: 683-693.
LIPPOK B, BIRKENBIHL RP, RIVORY G, et al, 2007. Expression of AtWRKY33 encoding a pathogen or PAMPresponsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements [J]. Mol Plant Micr Inter, 20: 420-429.
LIU B, HONG YB, ZHANG YF, et al, 2014a. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress [J]. Plant Sci, 227: 145-156.
LIU D, LEIB K, ZHAO P, et al, 2014b. Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogeninducible gene HvGER4c [J]. Mol Gen Genom, 289: 1331-1345.
LU J, JU H, ZHOU G, et al, 2011. An EARmotifcontaining ERF transcription factor affects herbivoreinduced signaling, defense and resistance in rice [J]. Plant J, 68: 583-596.
LIU X, SONG Y, XING F, et al, 2015. Ghwrky25, a Group I Wrky gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana [J]. Protoplasma.
LUO X, BAI X, SUN X, et al, 2013. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling [J]. J Exp Bot, 64: 2155-2169.
MAEO K, HAYASHI S, KOJIMASUZUKI H, et al, 2001. Role of conserved residues of the WRKY domain in the DNAbinding of tobacco WRKY family proteins [J]. Biosci Biotechnol Biochem, 65: 2428-2436.
MAO G, MENG X, LIU Y, et al, 2011. Phosphorylation of a WRKY transcription factor by two pathogenresponsive MAPKs drives phytoalexin biosynthesis in Arabidopsis [J]. Plant Cell, 23: 1639-1653.
NIU CF, WEI W, ZHOU QY, et al, 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants [J]. Plant Cell Environ, 35: 1156-1170.
NURUZZAMAN M, CAO H, XIU H, et al, 2016. Transcriptomicsbased identification of wrky genes and characterization of a salt and hormoneresponsive Pgwrky1 gene in Panax ginseng [J]. Acta Biochim Biophys Sin (Shanghai), 48(2): 117-131.
OH SK, BAEK KH, PARK JM, et al, 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense [J]. New Phytol, 177: 977-989.
OKAY S, DERELLI E, UNVER T, 2014. Transcriptomewide identification of bread wheat WRKY transcription factors in response to drought stress [J]. Mol Genet Genom, 289: 765-781.
PANDEY SP, SOMSSICH IE, 2009. The role of WRKY transcription factors in plant immunity [J]. Plant Physiol, 150: 1648-1655.
PARK CJ, SHIN YC, LEE BJ, et al, 2006. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to tobacco mosaic virus and Xanthomonas campestris [J]. Planta, 223: 168-179.
QIN Y, TIAN Y, LIU X, 2015. A wheat salinityinduced Wrky transcription factor Tawrky93 confers multiple abiotic stress tolerance in Arabidopsis thaliana [J]. Biochem Biophys Res Comm, 464(2): 428-433.
QIU D, XIAO J, DING X, et al, 2007. OsWRKY13 mediates rice disease resistance by regulating defenserelated genes in salicylate and jasmonatedependent signaling [J]. Mol Plant Micr Inter, 20: 492-499.
QIU YP, YU DQ, 2009. Overexpression of the stressinduced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis [J]. Environ Exp Bot, 65: 35-47.
RAMAMOORTHY R, JIANG SY, KUMAR N, et al, 2008. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments [J]. Plant Cell Physiol, 49: 865-879.
REN X, CHEN Z, LIU Y, et al, 2010. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis [J]. Plant J, 63: 417-429.
RICACHENEVSKY FK, SPEROTTO RA, MENGUER PK, et al, 2010. Identification of Feexcessinduced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence [J]. Mol Biol Rep, 37: 3735-3745.
RIECHMANN JL, HEARD J, MARTIN G, et al, 2000. Arabidopsis transcription factors: genomewide comparative analysis among eukaryotes [J]. Science, 290: 2105-2110.
ROCHER A, DUMAS C, COCK JM, 2005. A Wbox is required for full expression of the SAresponsive gene SFR2 [J]. Gene, 344: 181-192.
RUSHTON PJ, MACDONALD H, HUTTLY AK, et al, 1995. Members of a new family of DNAbinding proteins bind to a conserved ciselement in the promoters of alphaAmy2 genes [J]. Plant Mol Biol, 29: 691-702.
RUSHTON PJ, SOMSSICH IE, 1998. Transcriptional control of plant genes responsive to pathogens [J]. Curr Opin Plant Biol, 1: 311-315.
RUSHTON PJ, SOMSSICH IE, RINGLER P, et al, 2010. WRKY transcription factors [J]. Trends Plant Sci, 15: 247-258.
RYU HS, HAN M, LEE SK, et al, 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response [J]. Plant Cell Rep, 25: 836-847.
SHEKHAWAT UK, GANAPATHI TR, SRINIVAS L, 2011. Cloning and characterization of a novel stressresponsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale monthan (ABB group) using transformed banana cells [J]. Mol Biol Rep, 38: 4023-4035.
SHI W, HAO L, LI J, et al, 2014. The Gossypium hirsutum WRKY gene GhWRKY391 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana [J]. Plant Cell Rep, 33: 483-498.
SKIBBE M, QU N, GALIS I, et al, 2008. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory [J]. The Plant Cell, 20: 1984-2000.
SUZUKI N, RIZHSKY L, LIANG H, et al, 2005. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c [J]. Plant Physiol, 139: 1313-1322.
TURCK F, ZHOU A, SOMSSICH IE, 2004. Stimulusdependent, promoterspecific binding of transcription factor WRKY1 to Its native promoter and the defenserelated gene PcPR11 in Parsley [J]. Plant Cell, 16: 2573-2585.
WAN GC, DENG P, CHEN L, et al, 2013a. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco [J]. PloS ONE, 8: e65120.
WANG HH, HAO JJ, CHEN XJ, et al, 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants [J]. Plant Mol Biol, 65: 799-815.
WANG L, ZHU W, FANG L, et al, 2014. Genomewide identification of WRKY family genes and their response to cold stress in Vitis vinifera [J]. BMC Plant Biol, 14: 103.
WANG Q, WANG M, ZHANG X, et al, 2011. WRKY gene family evolution in Arabidopsis thaliana [J]. Genetica, 139: 973-983.
WANG X, ZENG J, LI Y, et al, 2015. Expression of Tawrky44, a wheat Wrky gene, in transgenic tobacco confers multiple abiotic stress tolerances [J]. Front Plant Sci, 6: 615.
WANG Y, DANG F, LIU Z, et al, 2013b. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection [J]. Mol Plant Pathol, 14: 131-144.
WANG Z, ZHU Y, WANG L, et al, 2009. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the Wbox elements of the galactinol synthase (BhGolS1) promoter [J]. Planta, 230: 1155-1166.
WEI W, ZHANG Y, HAN L, et al, 2008. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco [J]. Plant Cell Rep, 27: 795-803.
WEN F, ZHU H, LI P, et al, 2014. Genomewide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon [J]. DNA Res, 21: 327-339.
WU KL, GUO ZJ, WANG HH, et al, 2005. The WRKY family of transcription factors in rice and Arabidopsis and their origins [J]. DNA Res, 12: 9-26.
WU X, SHIROTO Y, KISHITANI S, et al, 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter [J]. Plant Cell Rep, 28: 21-30.
WU ZJ, LI XH, LIU ZW, et al, 2016. Transcriptomewide identification of Camellia Sinensis Wrky transcription factors in response to temperature stress [J]. Mol Genet Genom, 291(1): 255-269.
XIE Z, ZHANG ZL, ZOU X, et al, 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant Physiol, 137: 176-189.
XIE Z, ZHANG ZL, ZOU X, et al, 2006. Interactions of two abscisicacid induced WRKY genes in repressing gibberellin signaling in aleurone cells [J]. Plant J, 46: 231-242.
XIONG X, JAMES VA, ZHANG HN, et al, 2010. Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass (Paspalum notatum Flugge) [J]. Mol Breed, 25: 419-432.
XU X, CHEN C, FAN B, et al, 2006. Physical and functional interactions between pathogeninduced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors [J]. Plant Cell, 18: 1310-1326.