沈娇娇 吕为群
摘要:【目的】探析褐牙鲆仔鱼早期发育阶段促肾上腺皮质激素释放激素基因(CRH)的表达情况及受甲状腺激素的影响作用,为开展牙鲆的人工繁育提供科学依据。【方法】通过实时荧光定量PCR检测褐牙鲆早期发育阶段CRH基因表达量,以ELISA测定褐牙鲆仔鱼甲状腺激素(T3和T4)水平,并测定经外源T3浸泡处理后早期发育褐牙鲆仔鱼CRH基因表达量的变化情况,探究CRH和甲状腺激素在褐牙鲆早期发育阶段的影响及作用关系。【结果】1~8日龄褐牙鲆仔鱼CRH基因相对表达量呈先升高后降低的变化趋势,在5日龄达最高值,显著高于其他日龄的仔鱼(P<0.05,下同)。10~42日龄褐牙鲆仔鱼CRH基因主要在其头部表达,尾部CRH基因的相对表达量随着生长发育的进程而逐渐增加。褐牙鲆仔鱼变态前期甲状腺激素T4含量逐渐增加,变态高峰期迅速升高,在变态后期呈下降趋势。较其他早期发育时期,甲状腺激素T3在褐牙鲆变态期维持高水平,但含量低于甲状腺激素T4。22日龄褐牙鲆仔鱼经50 nmol/L外源T3处理2 h后,其头部和尾部CRH基因的相对表达量显著升高;但以外源T3处理8 h后,无论是头部还是尾部,CRH基因的相对表达量均呈显著下降趋势。【结论】褐牙鲆早期变态发育需CRH基因高表达及甲状腺激素积累,二者对褐牙鲆早期变态发育阶段具有重要作用并呈互相代偿效应。
关键词: 褐牙鲆;促肾上腺激素释放激素基因(CRH);甲状腺激素;变态发育
中图分类号: S965.399 文献标志码:A 文章编号:2095-1191(2017)02-0323-05
Abstract:【Objective】The present study investigated expression of corticotropin releasing hormone(CRH) gene and influence of thyroid hormone on it, in order to provide reference for artificial breeding of Paralichthys olivaceus. 【Method】CRH gene expression of P. olivaceus at early development was detected by real-time fluorescence quantitative PCR. Thyroid hormone(T3 and T4) level of P. olivaceus larvae and CRH gene expression after exogenous T3 immersion treatment were measured by ELISA method. The interaction between CRH and thyroid hormone at early development stage of P. olivaceus was studied. 【Result】During 1-8 dph, CRH gene expression went through up-down variation, and reached the peak at 5 dph, which was significantly higher than the value at other day ages(P<0.05, the same below). At 10-42 dph, CHR gene expression was mainly in head, and expression in tail increased with growth of P. olivaceus. T4 content gradually increased before metamorphosis, and soared at metamorphosis climax, then decreased at metamorphosis postclimax. Compared with other early development stages, T3 maintained at a high level during metamorphosis, but the content was lower than T4. After P. olivaceus at 22 dph treated with 50 nmol/L exogenous T3 for 2 hours, the expression of CRH in head and tail significantly increased; but aftet 8 hours, the expression in head and tail significantly decreased. 【Conclusion】At early metamorphosis stage, P. olivaceus needs to increase CRH expression and accumulate thyroid hormone. Both of them play important roles at early development stage of P. olivaceus and have compensatory effect between each other.
Key words: Paralichthys olivaceus; corticotropin releasing hormone(CRH); thyroid hormone; metamorphosis
0 引言
【研究意義】褐牙鲆(Paralichthys olivaceus)是一种重要经济鱼类,广泛分布在我国、日本和朝鲜等国家。变态前的褐牙鲆仔鱼形态与其他硬骨鱼类极其相似(Russell,1976),但其幼鱼和成鱼在形态结构和生活习性上存在极大差别,从仔鱼向稚鱼生长发育过程中须经历一个剧烈的变态过程,决定着幼鱼和成鱼的生长发育状况。在鱼类中,尾部神经内分泌系统(Caudal neurosecretory system,CNSS)多肽可能从尾垂腺直接分泌进入尾静脉和肾静脉系统,以确保其快速传送到靶器官(肾脏、肠、性腺和肝脏)。CNSS是提供促肾上腺皮质激素释放激素(CRH)的主要场所(Lu et al.,2004,2006),且有大量研究表明鱼类CNSS的组织结构与下丘脑—垂体系统有一定的相似性,其分泌物进入血液与靶组织结合,在鱼类新陈代谢、渗透压调节、应激等生理活动中发挥重要作用(McCrohan et al.,2007)。绝大多数鱼类的甲状腺不是一个单独的腺体,其在形式和位置上也多变,如多数鱼类的甲状腺组织为弥漫性滤泡(Eales and Barrington,1979)。鱼类甲状腺的内稳态受下丘脑—垂体—甲状腺轴(HPT)的内分泌系统调控,如下丘脑分泌的促甲状腺激素释放激素(TRH)和CRH能促进垂体释放促甲状腺激素(TSH),TSH刺激甲状腺滤泡分泌甲状腺激素(THs),而甲状腺激素对脊椎动物正常生理功能的维持起重要作用。因此,深入了解褐牙鲆早期发育阶段CRH基因表达及甲状腺激素的影响作用,对揭示褐牙鲆的生长发育机理具有重要意义。【前人研究进展】甲状腺激素主要协助参与机体渗透压调节、新陈代谢、皮肤色素沉着、生长发育和孵化后的形态等。Brown等(1987)研究证实,将硬骨鱼类幼鱼暴露在非常高剂量的外源甲状腺素T3中数周,能普遍促进其生长发育及卵黄囊的吸收。Janz(2000)研究认为,与其他任何激素相比,甲状腺激素对各组织的活力和生物功能影响更广泛。Brown和Cai(2007)研究发现,在切除甲状腺后蝌蚪幼体停止变态发育,但采用外源甲状腺激素对其进行治疗,蝌蚪幼体又重新生长发育至变态期。甲状腺激素在鱼类生长发育阶段发挥重要作用,尤其在早期胚胎发育阶段。Ishizuya-Oka(2011)研究认为,甲状腺激素是两栖动物自身重塑适应从水生到陆生生活及幼虫器官/组织向成熟器官/组织转变的必需激素。Kawakami等(2013)发现甲状腺激素可通过甲状腺激素受体控制日本鳗鱼的早期生长发育,Stinckens等(2016)研究表明,在斑马鱼幼年阶段破坏甲状腺激素的合成可对其鱼鳔产生影响。此外,有研究表明甲状腺激素在类胚胎发育过程中对相关基因起调控作用,即佐证其对鱼类早期胚胎发育也发挥着决定作用。Liu和Chan(2002)在斑马鱼胚胎中发现有TRa和TRb基因表达,且响应外源甲状腺激素。Nelson和Habibi(2016)研究认为,甲状腺激素可能影响金鱼卵黄生成素的生成,但经外源甲状腺素T3处理后只在雌性金鱼中产生影响。【本研究切入点】在牙鲆的变态过程中甲状腺激素发挥着重要作用,Miwa和Inui(1987)研究证实外源添加适量的甲状腺激素可使牙鲆变态加快,且发现甲状腺素T3的作用效果远高于甲状腺激素T4。但至今鲜见从基因角度揭示甲状腺激素对牙鲆早期变态发育影响的研究报道。【拟解决的关键问题】探析褐牙鲆仔鱼早期发育阶段CRH基因的表达情况及受甲状腺激素的影响作用,为开展牙鲆的人工繁育提供科学依据。
1 材料与方法
1. 1 试验材料
供试褐牙鲆购自中国水产科学研究院北戴河中心实验站,选用发育优良的雌、雄性亲鱼进行繁殖,授精和孵化用的自然海水(盐度30‰)均经沙滤处理。受精卵孵化前5 d采用静水孵化,之后以流水培育。孵化后2 d(2日龄)开始投喂褶皱臂尾轮虫,20日龄后开始驯化人工配合饵料(鲆鲽鳎鱼类专用料)。甲状腺激素T3购自美国Sigma公司,先用二甲基亚砜(DMSO)进行溶解,再用海水稀释至所需浓度(海水中DMSO为0.005%)。ELISA检测试剂盒购自上海裕平生物科技有限公司。
1. 2 样品采集与保存
选取1~8日龄褐牙鲆仔鱼,每日龄取全鱼20尾,在8~42日龄期间每隔2~5 d取样一次,并按头、身、尾分成3部分,以RNAfixer固定,用于CRH基因定量表达分析。每隔2 d选取19~40日龄仔鱼样品冻存,用于甲状腺激素水平测定。同时选取22日龄褐牙鲆变态前仔鱼为研究对象,甲状腺激素T3设2个浓度梯度(5和50 nmol/L)和2个处理时间点(2和8 h),以未添加T3为空白对照组。每个时间点和浓度各取10尾仔鱼用RNAfixer进行固定,用于CRH基因定量表达分析。
1. 3 组织RNA提取及反转录
参照RNAisoTM Plus操作说明,对取样的褐牙鲆各组织进行总RNA提取及反转录合成cDNA模板。
1. 4 实时荧光定量PCR检测分析
根据褐牙鲆CRH基因序列设计实时荧光定量PCR扩增引物(表1),并制作内参基因β-actin和目的基因的标准曲线。实时荧光定量PCR的反应体系20.0 μL:5倍梯度稀釋的cDNA模板2.0 μL,SYBR Premix Ex Taq(Tli RnaseH Plus)10.0 μL,正、反向引物各0.4 μL,RNase Free ddH2O 7.2 μL。扩增程序:95 ℃预变性30 s;95 ℃ 5 s,60 ℃ 34 s,95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s,进行40个循环;随后设计溶解曲线扩增期间检测荧光信号,相应的扩增效率达96%~100%,R均大于0.99,且目的基因和内参基因的M相差小于0.10,随后进行定量测定。采用2-ΔΔCt计算目的基因的相对表达量。
1. 5 组织甲状腺激素水平测定
将褐牙鲆仔鱼加入适量生理盐水研磨,1000×g离心10 min,吸取上清液,采用ELISA检测组织中甲状腺激素(T3和T4)水平。
1. 6 统计分析
采用GraphPad Prism v5.0进行单因素方差分析,并以Tukeys进行多重比较。
2 结果与分析
2. 1 褐牙鲆早期发育阶段CRH基因的相对表达情况
由图1可看出,1~8日龄褐牙鲆仔鱼CRH基因的相对表达量呈先升高后降低的变化趋势,在5日龄达最高值,显著高于其他日龄的仔鱼(P<0.05,下同)。10~42日龄褐牙鲆仔鱼CRH基因主要集中在其头部表达,但随着生长发育的进程,其尾部的相对表达量逐渐增加,说明CRH基因可能对尾部神经系统的发育起重要调控作用。
2. 2 褐牙鲆早期发育阶段甲状腺激素水平变化
由图2可看出,褐牙鲆仔鱼甲状腺素T4在变态前期(24日龄)的含量逐渐增加,变态高峰期(31日龄)迅速升高,在变态后期(37日龄)呈下降趋势。甲状腺素T3虽然在变态时期的含量高于其他早期发育时期,约是变态前的1.5倍,但含量低于甲状腺素T4。甲状腺轴产生的甲状腺激素主要是T4,T3则是T4经脱碘转化形成,需通过与核受体结合才能发挥生物学功能。
2. 3 外源T3对褐牙鲆早期发育阶段CRH基因表达的影响
由图3可看出,22日龄褐牙鲆仔鱼经50 nmol/L外源T3处理2 h后,其头部和尾部CRH基因的相对表达量均显著升高;但以50 nmol/L外源T3处理8 h后,无论是头部还是尾部,CRH基因的相对表达量均呈显著的下降趋势,可能是外源T3水平升高而引起甲状腺激素负反馈作用。
3 讨论
CRH是一个重要的神经内分泌多肽,控制应激诱导垂体促肾上腺皮质激素(ACTH)的分泌,从而促进弥散的肾间细胞合成皮质醇(Olivereau and Olivereau,1988;Tran et al.,1990;Mommsen et al.,1999)。在应激状态下,CRH调节机体的HPA轴功能,协调机体的免疫、神经、内分泌、生理及行为学等反应(Fuzzen et al.,2011)。Pavlidis等(2011)研究发现,在第1次投喂褶皱臂尾轮虫后褐牙鲆仔鱼的CRH逐渐增加,其生活方式从内源向外源营养转变。类似结果在日本鲈鱼、花鲈等其他海洋硬骨鱼上已得到印证(Pérez et al.,1999)。本研究于孵化后2 d(2日龄)开始对褐牙鲆仔鱼投喂褶皱臂尾轮虫,20日龄后开始驯化人工配合饵料(鲆鲽鳎鱼类专用料),经实时荧光定量PCR检测发现1~8日龄褐牙鲆仔鱼CRH基因的相对表达量呈先升高后降低的变化趋势,在5日龄达最高值,显著高于其他日龄的仔鱼,此时仔鱼处于由内源性营养转变为外源性营养阶段,个体器官发育尚未完善,生理机能尚不成熟,对环境变化极其敏感,与Pérez等(1999)、Pavlidis等(2011)的研究结果相似。
机体内的糖皮质激素和甲状腺激素在生活过渡阶段起协同作用,调节其他激素的生物活性或组织对其他激素的敏感性(Bagamasbad and Denver,2011)。糖皮质激素通过影响脱碘酶活性及表达而调节组织对甲状腺激素作用的敏感性,也可改变循环中甲状腺激素的含量。Denver(1988)运用T4处理鲤鱼后发现其下丘脑CRH结合蛋白(CRH-BP)水平提高了40%。Terrien等(2011)研究发现,在斑马鱼胚胎发育的最后一周糖皮质激素的上升会使其肝脏的3型脱碘酶活性下降,增加循环T3水平而诱导孵化。此外,CRH被认为是鱼类HPT轴和HPA/HPI轴的一个共同调节因子,对ACTH和TSH分泌起调控作用,同时CRH和TSH对甲状腺激素的合成起调控作用(De Groef et al.,2006)。本研究结果表明,经外源T3处理2 h后,褐牙鲆仔鱼头部和尾部的CRH基因表达量均有所升高,可能是短时间的应激反应能促使CRH分泌增加(Jiang et al.,2012);但处理8 h后CRH基因相对表达量呈下降趋势可能是长时间的外源T3作用引起负反馈作用(Shi et al.,2009)。Geven等(2009)研究表明,在鲤鱼视前区T4可通过上调CRH结合蛋白的表达减少下丘脑分泌CRH;Lema等(2009)研究认为黑头呆鱼CRH基因表达上调与T4的减少相关;Mohácsik等(2016)研究发现HPT轴由下丘脑室旁核促脑垂体TRH-合成神经元控制甲状腺激素的负反馈。可见,CRH基因表达上调可能归因于下丘脑和垂体间的负反馈机制补偿T4水平下降。
4 結论
褐牙鲆早期变态发育需CRH基因高表达及甲状腺激素积累,二者对褐牙鲆早期变态发育阶段具有重要作用并呈互相代偿效应。
参考文献:
Bagamasbad P,Denver R J. 2011. Mechanisms and significance of nuclear receptor auto-and cross-regulation[J]. General and Comparative Endocrinology,170(1):3-17.
Brown C,Sullivan C V,Bern H A,Dickhoff W W. 1987. Occurrence of thyroid hormones in early developmental stages of teleost fish[J]. American Fisheries Society Symposium, 2:144-150.
Brown D D,Cai L Q. 2007. Amphibian metamorphosis[J]. Developmental Biology, 306(1): 20-33.
De Groef B,Van der Geyten S,Darras V M,Kühn E R. 2006. Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates[J]. General and Comparative Endocrinology,146(1):62-68.
Denver R J. 1988. Several hypothalamic peptides stimulate in vitro thyrotropin secretion by pituitaries of anuran amphi-
bians[J]. General and Comparative Endocrinology,72(3):383-393.
Eales J G, Barrington E G W. 1979. Thyroid function in cyclostomes and fishes[J]. Hormones and Evolution, 1: 341-436.
Fuzzen M L,Alderman S L,Bristow E N,Bernier N J. 2011. Ontogeny of the corticotropin-releasing factor system in rainbow trout and differential effects of hypoxia on the endocrine and cellular stress responses during development[J]. General and Comparative Endocrinology,170(3):604-612.
Geven E J,Flik G,Klaren P H. 2009. Central and peripheral integration of interrenal and thyroid axes signals in common carp(Cyprinus carpio L.)[J]. The Journal of Endocrinology,200(1):117-123.
Ishizuya-Oka A. 2011. Amphibian organ remodeling during metamorphosis:Insight into thyroid hormone-induced apoptosis[J]. Development,Growth and Differentiation,53(2):202-212.
Janz D M. 2000. Chapter 13-Endocrine System[M]//Ostrander G. The Laboratory Fish. New York: Academic Press: 189-217.
Jiang J,Shi Y,Shan Z,Yang L,Wang X,Shi L. 2012. Bioaccumulation, oxidative stress and HSP70 expression in Cyprinus carpio L. exposed to microcystin-LR under laboratory conditions[J]. Comparative Biochemistry and Physiology,155(3):483-490.
Kawakami Y,Nomura K,Ohta H,Tanaka H. 2013. Characterization of thyroid hormone receptors during early development of the Japanese eel(Anguilla japonica)[J]. General and Comparative Endocrinology,194:300-310.
Lema S C,Dickey J T,Schultz I R,Swanson P. 2009. Thyroid hormone regulation of mRNAs encoding thyrotropin β-subunit,glycoprotein α-subunit,and thyroid hormone receptors alpha and beta in brain,pituitary gland,liver,and gonads of an adult teleost,Pimephales promelas[J]. The Journal of Endocrinology,202(1):43-54.
Liu Y W,Chan W K. 2002. Thyroid hormones are important for embryonic to larval transitory phase in Zebrafish[J]. Diffe-
rentiation,70(1):36-45.
Lu W,Dow L,Gumusgoz S,Brierley M J,Warne J M,McCrohan C R,Balment R J,Riccardi D. 2004. Coexpression of corticotropin-releasing hormone and urotensin i precursor genes in the caudal neurosecretory system of the euryhaline flounder(Platichthys flesus):A possible shared role in peripheral regulation[J]. Endocrinology,145(12):5786-5797.
Lu W,Greenwood M,Dow L,Yuill J,Worthington J,Brierley M J,McCrohan C R,Riccardi D,Balment R J. 2006. Molecular characterization and expression of urotensin II and its receptor in the flounder(Platichthys flesus):A hormone system supporting body fluid homeostasis in euryhaline fish[J]. Endocrinology,147(8):3692-3708.
McCrohan C R,Lu W,Brierley M J,Dow L,Balment R J. 2007. Fish caudal neurosecretory system:A model for the study of neuroendocrine secretion[J]. General and Comparative Endocrinology,153(1-3):243-250.
Miwa S,Inui Y. 1987. Effects of various doses of thyroxine and triiodothyronine on the metamorphosis of flounder(Paralich-
thys olivaceus)[J]. General and Comparative Endocrinology,67(3):356-363.
Mohácsik P, Füzesi T, Doleschall M, Szilvásy-Szabó A, Vancamp P, Hadadi ■, Darras V M, Fekete C, Gereben B. 2016. Increased thyroid hormone activation accompanies the formation of thyroid hormone-dependent negative feedback in developing chicken hypothalamus[J]. Endocrino-
logy,157(3): 1211-1221.
Mommsen T P,Vijayan M M,Moon T. 1999. Cortisol in teleosts:Dynamics,mechanisms of action,and metabolic regulation[J]. Reviews in Fish Biology and Fisheries,9(3):211-268.
Nelson E R,Habibi H R. 2016. Thyroid hormone regulates vitellogenin by inducing estrogen receptor alpha in the goldfish liver[J]. Molecular and Cellular Endocrinology,436:259-67.
Olivereau M,Olivereau J. 1988. Localization of CRF-like immunoreactivity in the brain and pituitary of teleost fish[J]. Peptides,9(1):13-21.
Pavlidis M,Karantzali E,Fanouraki E,Barsakis C,Kollias S,Papandroulakis N. 2011. Onset of the primary stress in European sea bass Dicentrarhus labrax,as indicated by whole body cortisol in relation to glucocorticoid receptor during early development[J]. Aquaculture,315(1-2):125-130.
Pérez R,Tagawa M,Seikai T,Hirai N,Takahashi Y,Tanaka M. 1999. Developmental changes in tissue thyroid hormones and cortisol in Japanese sea bass Lateolabrax japonicus Larvae and Juveniles[J]. Fisheries Science,65(1):91-97.
Russell F S. 1976. The Eggs and Planktonic Stages of British Marine Fishes[M]. London:Academic Press.
Shi X,Liu C,Wu G,Zhou B. 2009. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae[J]. Chemosphere,77(7):1010- 1018.
Stinckens E,Vergauwen L,Schroeder A L,Maho W,Blackwell B R,Witters H,Blust R,Ankley G T,Covaci A,Villeneuve D L,Knapen D. 2016. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II:Zebrafish[J]. Aquatic Toxi-
cology,173:204-217.
Terrien X,Fini J B,Demeneix B A,Schramm K W,Prunet P. 2011. Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids[J]. Aquatic Toxicology,105(1-2):13-20.
Tran T N,Fryer J N,Lederis K,Vaudry H. 1990. CRF,Urotensin I,and sauvagine stimulate the release of POMC-derived peptides from goldfish neurointermediate lobe cells[J]. Gene-
ral and Comparative Endocrinology,78(3):351-360.
(責任编辑 兰宗宝)