多思考 善总结

2017-05-11 06:17江苏省淮安外国语学校九13卢雨蘅
初中生世界 2017年17期
关键词:项数单项式括号

江苏省淮安外国语学校九(13)班 卢雨蘅

多思考 善总结

江苏省淮安外国语学校九(13)班 卢雨蘅

责任编辑:沈红艳李诗email:czsshy@126.com

我在学习“整式乘法与因式分解”这一章时,真是遇到了不少麻烦,但是慢慢理解,慢慢练习、总结后,我也解决了不少问题.

一、漏乘

解决单项式乘多项式问题时我还不会出现漏乘的错误,但是遇到多项式乘多项式,就十分容易出错.像(a2+5a+2)(3a+7),我经常是看到两项便乘,不讲究顺序,一开始就写成(a2+5a+2)(3a+7)=3a3+ 35a+14+7a2+6a,不小心就漏乘了.所以我们应该记住“多项式乘多项式,等于用其中一个多项式的每一项去依次乘另一个多项式的每一项,再把所得的积相加”这一基本的法则,“依次”这个词十分关键,先用第一个多项式中的第一项a2与第二个多项式中的每一项相乘,接着再用5a与第二个多项式中的每一项相乘,最后用2与第二个多项式中的每一项相乘,再把所得的积相加,正确的做法应为:

当然,小小的检查也可以提高做题的正确率,多项式与多项式相乘,合并前的项数是每个多项式中项数的乘积.这样检查,可以大大避免漏乘的现象出现.

二、符号

正、负号,看似不起眼,却又至关重要,着实让我苦恼不已,一个符号的错误就会导致结果的错误.计算(-a-2b)2,一开始我会算作-a2-4b2+4ab,这里并不是因为粗心而把符号弄错,而是错把a、2b看作一个整体,而不是把(-a)、(-2b)看作一个整体.正确算法是(-a-2b)2=(-a)2+(-b)2+2(-a)(-2b)= a2+b2+2ab.等到熟练了之后,也可以将(-a-2b)2变形为(a+2b)2.而像-(a+2b)2,这里的负号则是针对整个(a+ 2b)2,所以我们必须要注意负号与它所表示的范围.

三、因式分解

刚学习因式分解时,对这个概念很模糊,要求因式分解6(x-y)2-3(y-x)2,偏偏做成3x2+3y2-6xy,这样化简的结果,或者已经得到3(x-y)2,却又把括号拆开,白白忙活一通.但理解了因式分解的定义“把一个多项式化为几个最简整式的乘积的形式”,就会明白不应该拆括号了.在因式分解过程中,也常常犯分解不彻底的错误,有时只顾找字母的公因式而忘了找系数,找了系数忘了找最低次幂,因此一定要前后兼顾.当然还有一些细节问题需要注意,如单项式应该写在多项式前面,结果不能出现“{}”“[]”等.

希望同学们在今后的数学学习中,能找对方法,抓住问题本质,走出误区.

教师点评

学习的道路并不会一帆风顺,很多时候,我们总会在同一个问题上跌倒、爬起、跌倒、再爬起,反反复复.越是这样,越要沉住气,多思考,找到错误原因,多练习,定能打败学习中的拦路虎!

(指导教师:李迎新)

猜你喜欢
项数单项式括号
括号填数
我曾丢失过半个括号
“入”与“人”
一个不等式的推广
漏写括号闹出的笑话
求 和
学习整式概念莫出错
整式乘法与因式分解系列解读(二)
多项式除以单项式的运算法则
由浅入深探索单项式与多项式的相乘