李振明
智慧的问题引领,是提高数学课堂教学效能的关键所在。在小学数学教学中,往往有教师不知道如何进行问题引导,导致课堂气氛沉闷。究其原因,在于教师提出的问题缺乏思维含量,那么,该如何创设有效的问题呢?笔者现根据特级教师朱国荣老师执教《平行四边形的面积》的教学片段进行赏析,并谈谈自己的看法。
一、设疑而问,引发思考
[片段一]
教师画出一个平行四边形,并给学生提供了一个用纸剪的一样大小的平行四边形,让学生测量长度,学生量出了长度:底边为7cm,邻边为5cm,高为3cm。教师设置疑问:现在要求出这个平行四边形的面积,你有什么办法?说说你是怎么计算的?学生提出了三种方案:方案1:(5+7)×2=24(cm2);方案2:5×7=35(cm2);方案3:7×3=21(cm2)。此时教师追问:(5+7)×2=24(cm2)是求什么?学生展开思考,发现这种方案是将两条边相加再乘2,这种做法求出来的是平行四边形四条边的和,也就是平行四边形的周长,而不是面积。此时教师追问:这种算法算出的结果是周长,那么计算结果单位应该用什么?学生指出,周长的面积单位应该是cm,而不是cm2。教师对方案1点评:如果是要求平行四边形的周长,这个方法是正确的。但现在我们要求的是面积,这种方法你认为可行吗?学生立刻否定了这种方案。教师随即将这种方案删掉。
[赏析]
在小学数学教学中,教师常用的教学策略便是提问。通过提问激发学生的好奇心,引发学生参与数学探究的积极性。朱老师在课堂之初就提出了疑问:如何求这个平行四边形的面积?学生在这个疑问的驱使下,找到了三种解决问题的办法,此时朱老师又引发了学生的疑问:到底哪种方案才是正确的呢?由此对方案一展开探究。朱老师进行了三次提问:这是求什么?如果求周长单位应该是什么?你认为这种方案求面积可行吗?这三个问题引导学生厘清了面积和周长两个不同的概念,并由此明确了这节课的主要内容:要求出平行四边形的面积,引导学生将注意力放在这个关键问题上,展开自主探究。这些有效的问题设置,让数学课堂节奏紧凑,为学生打开了思维之门。
二、以问探路。激活思维
[片段二]
教师继续引导学生讨论另外两种方案,并让学生交流:5×7=35(cm2)是求什么?为什么要这样求?学生指出,这是将平行四边形转化为长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底边乘邻边。教师出示一个可以拉动的平行四边形,让学生将其拉成一个长方形,而后让学生观察并思考:这个长方形和原来的平行四边形相比,有什么变化?哪个是平行四边形的底边,哪个是邻边?你发现了什么?学生认为,长方形的长就是平行四边形的底边,宽就是平行四边形的邻边。也有学生认为,平行四边形的面积变大了,宽并不是平行四边形的邻边,因为将平行四边形拉成一个长方形,不但形状变了,面积也变了。
[赏析]
有效的问题设置,能够引发学生的认知冲突,激活学生的思維,使之思路清晰。学生对底边乘邻边的算法存在疑问,此时朱老师通过活动演示,展开思辨性的探究,让学生发现问题的关键在于平行四边形的面积变大了,从而为下一步学生深入探究做好了铺垫。
三、巧妙设问,提升思维
[片段三]
教师演示将平行四边形拉动的过程,追问学生:现在平行四边形的什么变了,什么没变?学生发现平行四边形的周长没变,但面积变了。教师追问:该怎么求平行四边形的面积?学生认为,运用剪拼的方法,将平行四边形的高剪下来,然后移动到左边,这样就将平行四边形转化为一个面积相等的长方形。这个平行四边形的高就是长方形的宽,底边就是长方形的长。教师再追问:那么,平行四边形的面积怎么计算?哪种方案是正确的?学生指出,底边是7cm,高是3cm,平行四边形的面积等于底边乘高即7×3=21(cm2)。教师继续追问:同样是把平行四边形拉成长方形,为什么刚才的底边乘邻边不对呢?学生认为,将平行四边形拉成—个长方形,面积变了;将平行四边形剪拼为长方形时,面积没变。教师追问:在拉的过程中什么没变?剪拼的过程中什么变了?学生认为,平行四边形拉动为长方形,周长没变;拼接为长方形时,周长变了。
[赏析]
有效的设问,能够帮助学生在思辨中找到解决问题的办法。朱老师的追问,让学生找到了解决办法:要将平行四边形剪拼,使之转化为面积相等的长方形,并通过反思澄清了两种方案的本质区别,由此建构了平行四边形面积模型,认识到平行四边形拉动为长方形,周长没变,面积变了;将平行四边形剪拼为面积相等的长方形,周长变了,面积没变,从中体会到变与不变的辩证统一。
(责编 林剑)