由表7可知,Simpson指数和Shannon-Winner多样性指数与磷脂脂肪酸总量、细菌PLFA含量、真菌PLFA含量、革兰氏阳性菌PLFA含量、革兰氏阴性菌PLFA含量以及革兰氏阳性菌PLFA含量与革兰氏阴性菌PLFA含量比值、饱和脂肪酸PLFA含量、不饱和脂肪酸PLFA含量显著正相关,而Margalef物种丰富度指数与细菌PLFA含量/真菌PLFA含量显著正相关。
3.5 土壤微生物与土壤理化性质、细根生物量和凋落物现存量的关系
由土壤微生物群落特征与环境变量的RDA分析(图 4, 表 8)可知,6个环境变量共解释了土壤微生物群落特征变异的87.7%,基于所有典范特征值的Monte Carlo置换检验表明微生物群落特征与环境变量之间显著相关(P=0.002)。RDA排序结果表明环境因子变量很好地解释了土壤微生物群落特征的变异,RDA前2轴(74.2%和7.3%)解释的变异量比后2轴(4.1%和2.1%)多,说明前2轴是解释土壤微生物群落特征组成变异的主要贡献者。与RDA第一排序轴显著相关的是pH值(P< 0.001)、含水量(P< 0.001)和细根生物量(P< 0.05),pH值(P< 0.05)还与RDA第二轴显著相关,与RDA第三轴显著相关的是有机碳含量(P< 0.001)、密度(P< 0.001)、含水量(P< 0.05)和凋落物现存量(P< 0.05); 说明RDA 1轴主要代表了pH值、含水量和细根生物量,RDA 3轴主要代表了有机碳含量、密度和凋落物现存量。
图2 不同林分土壤微生物不同菌群PLFAs比值Fig.2 Ratios of the different microbial groups PLFAs content in different stand types相同字母表示差异不显著(P > 0.05),不同字母表示差异显著(P < 0.05)。下同。The same letters indicate no significant difference (P > 0.05), and different letters indicate significant difference (P < 0.05).The same below.
图 3 不同林分土壤微生物群落多样性Fig.3 Diversity of microbial communities in soils under different forest types
4 讨论
研究土壤中PLFAs 总浓度变化、特征脂肪酸的组分差异,可深人了解微生物群落结构的变化。因为PLFAs含量提供了土壤中的微生物量信息(Frostegårdetal., 1991),特征脂肪酸的组分则可表征微生物群落结构(Frostegårdetal., 1993b)。本研究中,由云杉、白桦、落叶松和山杨4种常见树种组成的7种不同林分的土壤微生物群落结构和组分含量存在显著差异。一方面是不同林分类型的土壤有机碳的积累和储存是不同的(丁访军等, 2012; 向泽宇等, 2014),从而造成养分含量差异,而土壤微生物群落的代谢活性以及组成在很大程度上是由生物地球化学循环、土壤有机物的代谢过程以及土壤的肥力和质量等因素所决定(胡雷等, 2015)。另一方面,土壤微生物的群落特征受到植物物种、植物根系及根系分泌物等因素的影响(Zaketal., 2003),而本研究正是在不同林分条件下进行研究,林分组成存在差异,进而造成微生物群落结构差异。此外,不同的土壤环境条件和林分特征(植被属性)反应不同功能群的土壤微生物,并以特定的方式影响土壤微生物群落的组成。树木还能影响林下植被群落的组成,林下植被群落也可以和土壤微生物相互作用,从而间接影响土壤微生物(Prescottetal., 2013)。
表7 微生物群落特征指标和多样性指数相关性①
①*: ɑ=0.05; **: ɑ=0.01; *** : ɑ=0.001。下同The same below.
图 4 土壤微生物群落特征与环境变量间的RDA分析Fig.4 RDA analysis of between the soil microbial properties and the environmental variablesOC: 土壤有机碳含量Soil organic carbon content;SM: 土壤含水量Soil moisture content;Soil density:土壤密度; Root: 细根生物量Fine root biomass; Litter: 凋落物现存量Litter standing crop; M: Margalef指数Margalef index; D: Simpson指数Simpson index; H: Shannon-Wiener指数Shannon-Wiener index; PLFA: PLFA总量Total content of PLFAs; G+: 革兰氏阳性菌含量Content of gram positive bacteria; G-: 革兰氏阴性菌含量Content of gram negative bacteria; G+/G-: 革兰氏阳性菌与阴性菌含量比值Ratio of content of gram positive bacteria to gram negative bacteria; BACT: 细菌含量Content of bacterial; FUNG: 真菌含量Content of fungi; BACT/FUNG: 细菌含量与真菌含量比值Ratio of content of bacteria to fungi; SFA: 饱和脂肪酸含量Content of saturated fatty acid; UFA: 不饱和脂肪酸含量Content of unsaturated fatty acid; SFA/UFA: 饱和脂肪酸与不饱和脂肪酸含量比值Ratio of content of saturated fatty acid to unsaturated fatty acid.
表8 环境变量与RDA排序轴的相关系数、特征值及变异解释
植物与土壤微生物之间的相互依存关系,植物通过其凋落物、根系分泌物为土壤微生物提供营养,导致植物和微生物之间的协同进化,促进土壤微生物的多样性。例如,阔叶和针叶植被的生化组成、植被物种间的差异,植物多样性的改变能够引起植物生物量、凋落物量及其有机组分的变化,会影响微生物群落组成和功能(蒋婧等, 2010; De Deynetal., 2008)。本研究也发现,针叶林(如A和G)的真菌生物量最低,阔叶林(如B,C和E)细菌生物量最高,说明了针叶林和阔叶林间土壤微生物群落组成存在差异。造成原因可能是有些植物凋落物中含有抑制细菌活动的酚、醛等成分,从而间接地影响凋落物的分解率(Gordon, 1998)。另外,富含低分子酚类化合物的凋落物,进入土壤后控制着真菌占优势的微生物对氮的固持,加剧了低养分的状况(Wilsonetal., 1992); 而富含碳水化合物和糖类的凋落物,促进了细菌占优势的食物网,提高了生境的养分状况会促进细菌的生长(Wardle, 1999; Bardgettetal., 2005)。因此,林型(针叶林、阔叶林和针阔混交林)不同,植物组成不同进而引起凋落物及其分解速率的变化,造成回归土壤中养分的质量和数量产生差异,从而影响了微生物群落的组成和多样性。
有研究表明: 细根对水分和养分有很强的吸收作用(Rosenvaldetal., 2011),植物本身的化学组成和特征制约着枯落物的分解和矿化过程,从而影响着植物的养分归还(郭雪莲等, 2007)。不同土地利用类型/不同林分类型间的土壤细菌群落组成和多样性有显著差异; 而且细菌群落结构在很大程度上受树种和土壤 pH值影响(Heikoetal., 2011),水分含量波动可以改变土壤微生物群落结构(Drenovskyetal., 2004)。本研究中,7 种林分下土壤 pH 值、含水量、密度、养分含量和细根生物量等的组成和空间分布均有显著差异。如土壤有机质和全氮含量表现为 A,G>C>F>B>D>E(向泽宇等, 2014),表明不同林木生长对有机碳和全氮含量的影响表现为青海云杉>白桦>山杨>落叶松。不同林分类型间土壤碳含量各异,北美云杉(Piceasitchensis)林和西部铁杉(Tsugaheterophylla)林的土壤碳含量最高,而美国黄松(Pinusponderosa)林土壤碳含量最低(Osbertetal., 2004)。不同林分对土壤碱解氮含量的影响也表现为青海云杉>白桦>山杨>落叶松,林分类型影响森林地表氮素的转化(向泽宇等, 2014)。不同林分对细根生物量的影响表现为A,C>E,F,G>B,D,但密度、pH 值影响没有表现出明显的规律性。总之,4 种不同林木生长对土壤养分积累与分布的影响表现为青海云杉>白桦>山杨>落叶松。阔叶林和针叶林对土壤质量的影响不同(Saetre, 1999),而且云杉作为青海特有的优势树种对土壤养分的改良及土壤生态的维持具有重要意义(刘晓敏, 2012)。
5 结论
本研究利用PLFA法分析青海7种林分类型土壤微生物结构特征变化规律,发现土壤微生物PLFA含量表现为阔叶林 > 混交林 > 针叶林,且林分类型越接近其土壤微生物群落组成也越相近; 不同林分类型其土壤微生物群落结构多样性存在显著差异。
PLFA法分类水平较低,且无法精确到微生物种的水平,从而限制了对更多土壤微生物群落信息的认识。因此,在今后的研究中应该结合其他检测方法(如高通量测序技术)开展土壤微生物群落多样性研究。
陈振翔, 于 鑫, 夏明芳, 等. 2005. 磷脂脂肪酸分析方法在微生物生态学中的应用. 生态学杂志, 24(7): 828-832.
(Chen Z X, Yu X, Xia M F,etal. 2005. Application of phospholipid fatty acid (PLFA) analysis in microbial ecology. Chinese Journal of Ecology, 24(7):828-832. [in Chinese])
丁访军, 潘忠松, 周凤娇,等. 2012. 黔中喀斯特地区3种林型土壤有机碳含量及垂直分布特征. 水土保持学报, 26(1):161-164.
(Ding F J, Pan Z S, Zhou F J,etal. 2012. Organic carbon contents and vertical distribution characteristics of the soil in three forest types of the karst regions in central Guizhou Province. Journal of Soil & Water Conservation, 26(1):161-614. [in Chinese])
董 旭. 2009. 青海省森林资源评价. 安徽农业科学, 37(12):5727-5728.
(Dong X. 2009. Evaluation of forest Resources in Qinghai Province. Journal of Anhui Agricultural Sciences, 37(12):5727-5728. [in Chinese])
郭雪莲, 吕宪国, 郗 敏. 2007. 植物在湿地养分循环中的作用. 生态学杂志, 26(10): 1628-1633.
(Guo X L, Lü X G, Qie M. 2007. Roles of plant in nutrient cycling in wetland. Chinese Journal of Ecology, 26(10):1628-1633. [in Chinese])
胡 雷, 阿的鲁骥, 字洪标,等. 2015. 高原鼢鼠扰动及恢复年限对高寒草甸土壤养分和微生物功能多样性的影响. 应用生态学报, 26(9):2794-2802.
(Hu L, Ade L J, Zi H B,etal. 2015. Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow. Chinese Journal of Applied Ecology, 26(9):2794-2802. [in Chinese])
蒋 婧,宋明华. 2010. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 34 (8): 979-988.
(Jiang J, Song M H. 2010. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34 (8): 979-988. [in Chinese])
李立平, 张佳宝, 朱安宁, 等. 2004. 土壤养分有效性测定及其方法. 土壤通报, 35(1): 84-90.
(Li L P, Zhang J B, Zhu A N,etal. 2004. Soil nutrition availability and testing methods. Chinese Journal of Soil Science, 35(1):84-90. [in Chinese])
刘 波, 胡桂萍, 郑雪芳,等. 2010. 利用磷脂脂肪酸(PLFAs)生物标记法分析水稻根际土壤微生物多样性. 中国水稻科学, 24(3):278-288.
(Liu B, Hu G P, Zheng X F,etal. 2010. Analysis on microbial diversity in the rhizosphere of rice by phospholipid fatty acids biomarkers. Chinese Journal of Rice Science, 24(3):278-288. [in Chinese])
刘晓敏. 2012. 祁连山青海云杉林土壤理化性质的空间变异性研究. 兰州: 甘肃农业大学硕士学位论文.
(Liu X M. 2012. Spatial variation of soil physical and chemical properties inPiceacrassifoliaforest of Qilian Mountain. Lanzhou:MS thesis of Gansu Agricultural University. [in Chinese])
卢 航, 刘 康, 吴金鸿. 2013. 青海省近20年森林植被碳储量变化及其现状分析. 长江流域与资源, 22(10): 1333-1338.
(Lu H, Liu K, Wu J H. 2013. Change of carbon storage in forest vegetation and current situation analysis of Qinghai Pronvince in reccent 20 years. Resources & Environment in the Yangtze Basin, 22(10):1333-1338. [in Chinese])
牛小云, 孙晓梅, 陈东升, 等. 2015. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性. 应用生态学报, 26(9):2663-2672.
(Niu X Y, Sun X M, Chen D S,etal. 2015.Soil microorganisms, nutrients and enzyme activity ofLarixkaempferiplantation under different ages in mountainous region of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 26(9):2663-2672. [in Chinese])
王长庭, 龙瑞军, 王根绪, 等. 2010. 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业学报, 19(6): 25-34.
(Wang C T, Long R J, Wang G X,etal. 2010. Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 19(6): 25-34. [in Chinese])
王 淼, 曲来叶, 马克明, 等. 2014. 罕山土壤微生物群落组成对植被类型的响应. 生态学报, 34(22): 6640-6654.
(Wang M, Qu L Y, Ma K M,etal. 2014. Response of soil microbial community composition to vegetation types. Acta Ecologica Sinica, 34(22):6640-6654. [in Chinese])
吴则焰, 林文雄, 陈志芳, 等. 2014. 武夷山不同海拔植被带土壤微生物 PLFA 分析. 林业科学, 50(7): 105-112.
(Wu Z Y, Lin W X, Chen Z F,etal. 2014. Phospholipid fatty acid analysis of soil microbes at different elevation of Wuyi mountains. Scientia Silvae Sinicae, 50(7):105-112. [in Chinese])
向泽宇, 张 莉, 张全发, 等. 2014. 青海不同林分类型土壤养分与微生物功能多样性. 林业科学, 50(4): 22-31.
(Xiang Z Y, Zhang L, Zhang Q F,etal. 2014. Soil nutrients and microbial functional diversity of different stand types in Qinghai Province. Scientia Silvae Sinicae, 50(4):22-31. [in Chinese])
杨君珑, 付晓莉, 马泽清, 等. 2015. 中亚热带5种类型森林土壤微生物群落特征. 环境科学研究, 28(5): 720-727.
(Yang J L, Fu X L, Ma Z Q,etal. 2015. Characteristics of soil microbial community in five forest types in mid-subtropical China. Research of Environmental Sciences, 28(5): 720-727. [in Chinese])
易 秀, 谷晓静, 侯燕卿, 等. 2011. 陕西省泾惠渠灌区土壤肥力质量综合评价. 干旱区资源与环境, 25(2): 132-137.
(Yi X, Gu X J, Hou Y Q,etal. 2011. Comprehensive assessment on soil fertility quality in Jinghuiqu irrigation district of Shaanxi Province. Journal of Arid Land Resources & Environment, 25(2): 132-137. [in Chinese])
于 树, 汪景宽, 李双异. 2008. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响. 生态学报, 28(9): 4221-4227.
(Yu S, Wang J K, Li S Y. 2008. Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA. Acta Ecologica Sinica, 28(9): 4221-4227. [in Chinese])
翟 辉, 张 海, 张 超, 等. 2016. 黄土峁状丘陵区不同类型林分土壤微生物功能多样性. 林业科学, 52(12): 84-91.
(Zhai H, Zhang H, Zhang C,etal. Soil microbial functional diversity in different types of stands in the hilly-gully regions of Loess Plateau. Scientia Silvae Sinicae, 52(12): 84-91. [in Chinese])
中国科学院南京土壤研究所. 1983. 土壤理化分析. 上海: 上海科学技术出版社.
(Nanjing Institute of Soil Science, Chinese Academy of Sciences. 1983. Analysis of soil physical-chemical feature. Shanghai: Shanghai Science and Technology Press. [in Chinese])
Adair K L, Steve W, Gavin L. 2013. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial. Environmental Microbiology Reports, 5(3):404-413.
Aneja M K, Sharma S, Fleischmann F,etal. 2006. Microbial colonization of beech and spruce litter-influence of decomposition site and plant litter species on the diversity of microbial community. Microbial Ecology, 52(1): 127-135.
Baldock J A. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31(7/8):697-710.
Bardgett R D, Bowman W D, Kaufmann R,etal. 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20(11):634-41.
Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917.
De Deyn G B, Cornelissen J H C, Bardgett R D. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecological Letters, 11(5): 516-531.
Drenovsky R E, Vo D, Graham K J,etal. 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microbial Ecology, 48(3): 424-430.
Frostegård Å, Bååth E, Tunlid A. 1993a. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biology & Biochemistry, 25(6): 723-730.
Frostegård A, Tunlid A, Baath E. 1993b. Phospholipid fatty-acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals. Applied and Environmental Microbiology, 59(11): 3605-3617.
Frostegård J, Haegerstrand A, Gidlund M,etal. 1991. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis, 90(2/3): 119-126.
Gordon D R. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecological Applications, 8(4): 975-989.
Heiko N, Andrea T, Antje W,etal. 2011. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 6(2):e17000.
Hobbie S E, Ogdahl M, Chorover J,etal. 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems, 10(6): 999-1018.
Joergensen R G, Emmerling C. 2006. Methods for evaluating human impact on soil microorganisms based on their activity, biomass,and diversity in agricultural soils. Journal of Plant Nutrition and Soil Science, 169(3): 295-309.
Joergensen R G, Potthoff M. 2005. Microbial reaction in activity, biomass and community structure after long-term continuous mixing of a grassland soil. Soil Biology & Biochemistry, 37(7): 1249-1258.
Kimura M, Asakawa S. 2006. Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis. Biology and Fertility of Soils, 43(1): 20-29.
Meier C L, Bowman W D. 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences of the United States of America, 105(50): 19780-19785.
Merila P, Malmivaara-Lamsa M, Spetz P,etal. 2010. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Applied Soil Ecology, 46(2): 259-267.
Ohansen A, Olsson S. 2005. Using phospholipid fatty acid technique to study short term effects of the biological control agentPseudomonasfluorescensDR54 on the microbial microbiota in barley rhizosphere. Microbiology Ecology, 49(2): 272-281.
Osbert J S, John C, Beverly E L,etal. 2004. Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biology, 10(9):1470-1481.
Prescott C E, Grayston S J. 2013. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management, 309(4): 19-27.
Rosenvald K, Kuznetsova T, Ostonen I,etal. 2011. Rhizosphere effect and fine-root morphological adaptations in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas. Ecological Engineering, 37(7): 1027-1034.
Rutigliano F A, Ascoli R D, Virzo De Santo A. 2004. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology & Biochemistry, 36(11): 1719-1729.
Saetre P, Bååth E. 2000. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biology & Biochemistry, 32(7): 909-917.
Saetre P. 1999. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 22(2): 183-192.
Shillam L, Hopkins D W, Badalucco L,etal. 2008. Structural diversity and enzyme activity of volcanic soils at different stages of development and response to experimental disturbance. Soil Biology & Biochemistry, 40(9):2182-2185.
Tscherko D, Hammesfahr U, Zeltner G,etal. 2005. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic and Applied Ecology, 6(4): 367-383.
Vestal J R, White D C. 1989. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. Bioscience, 39(8): 535-541.
Wall D H, Moore J C. 1999. Interactions underground: soil biodiversity, mutualism, and ecosystem process. BioScience, 49(2): 109-117.
Wardle D A, Yeates G W, Nicholson K S,etal. 1999. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biology & Biochemistry, 31(12): 1707-1720.
White P S. 1979. Pattern, process and natural disturbance in vegetation. The Botanical Review, 45(3): 229-299.
Wilson J B, Agnew A D Q. 1992. Positive-feedback switches in plant communities. Advances in Ecological Research, 23(6): 263-336.
Yang Q, Lei A P, Li F L,etal. 2014. Structure and function of soil microbial community in artificially plantedSonneratiaapetalaandS.caseolarisforests at different stand ages in Shenzhen Bay, China. Marine Pollution Bulletin, 85(2):754.
Zak D R, Holmes W E, White D C,etal. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links?. Ecology, 84(8): 2042-2050.
Zelles L, Bai Q Y, Rackwits R,etal. 1995. Determination of phospholipid and lipopolysaccharide-derived fatty acids as an estimated of microbial biomass and community structure in soils. Biology and Fertility of Soils, 19(2/3): 115-123.
Zhong W H, Gu T, Wang W,etal. 2010. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 326(1): 511-522.
(责任编辑 于静娴)
Profile of Soil Microbial Community under Different Stand Types in Qinghai Province
Zi Hongbiao1Xiang Zeyu1Wang Genxu2Ade Luji1Wang Changting1
(1.CollegeofLifeScienceandTechnology,SouthwestUniversityforNationalitiesChengdu610041; 2.InstituteofMountainHazardsandEnvironment,CASChengdu610041)
【Objective】Seven natural stand types were investigated to understand the soil microbial community. The main forest species werePiceacrassifolia,Betulaplatyphylla,Larixgmelinii,Populusdavidiana. The purpose of this study was to improve management and evaluation strategies of the forest by adjusting the structure and restoring the degraded forest.【Method】The 7 stand types were DatongPiceacrassifolia(A), DatongBetulaplatyphylla(B), HuangzhongPiceacrassifolia+Betulaplatyphylla(C), LeduLarixgmelinii+Betulaplatyphylla(D), MinhePopulusdavidiana(E), XunhuaPopulusdavidiana+Betulaplatyphylla(F) ,and JianzhaPiceacrassifolia(G) in Qinghai Province. The soil physical-chemical properties and soil microbial community composition were investigated by conventional laboratory analysis and phospholipid fatty acids (PLFAs) analysis. Changes of individual PLFA signatures and correlations between soil properties and soil microbial group of PLFA indicators were analyzed by principal components analysis (PCA) and redundancy analysis (RDA), respectively. 【Result】A total of 17 different PLFAs with different types of biomarkers were detected in the soil samples among different stand types. The stand types A and B exhibited a larger number PLFAs compared with other stand types. The lowest number of PLFAs was found in stand type G. The PLFAs biomarker was variable in different stand soils. The highest content was 16:0. The highest richness of PLFAs was saturated fatty acid. The highest total content of PLFAs biomarkers was found in stand B, and the lowest in stand G. The contents of bacteria and fungus PLFAs displayed the following order: broad-leaved stand>mixed broadleaf-conifer stand>conifer stand. The Simpson index, Shannon-Wiener index of stands F and G were significantly lower than those of the other stand types. McIntosh index were holistically higher in stand types A, B and D than in the other types. Principal Component Analysis (PCA) showed that generalized bacteria and Gram positive bacteria were the main soil microbial group. Redundancy analysis (RDA) indicated that the effects of pH, soil moisture and fine root biomass on soil microbial community were higher than those of soil organic carbon, bulk density and litter standing crop. 【Conclusion】Soil microbial community composition and impact factors were significantly different among different stand types. Therefore, the management and utilization of forest ecosystem should consider the change of soil microbial community characteristics, in order to improve forest management practices.
phospholipid fatty acids (PLFAs); microbial community;stand type;soil organic carbon; Qinghai Province
10.11707/j.1001-7488.20170303
2015-10-03;
2017-01-19。
中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”(XDA05050207); 国家自然科学基金项目 (31370542); 中央高校基本科研业务费优秀科研团队及重大孵化项目 (2014NZYTD01)。
S 718.8
A
1001-7488(2017)03-0021-12
﹡王长庭为通讯作者。