刘祖希
(上海教育出版社200031)
2016年12月,国家课程标准修订组组长、东北师大原校长史宁中教授受邀出席在上海召开的高中数学新课程、新教材高峰论坛,[1]笔者借论坛的两个间隙访谈了史宁中教授.访谈围绕当前数学教育领域的几个重要话题展开(以下访谈过程中,刘祖希简称“刘”,史宁中教授简称“史”).
刘:史校长您好,感谢您接受我们的邀请莅临本次论坛.
史:谢谢你们的邀请,我很高兴与教材出版社以及中学界的朋友们交流,大家一起出力把我们国家的数学教材编好.
刘:我们出版社正在组织新青年数学教师工作室编写《当代中国数学教育名家访谈》这本书,想对您做个访谈,当面向您请教一些问题.
史:请教不敢当,前两年北师大曹一鸣教授和我也有过一次访谈,[2]有些内容可以供你们参考.新的问题,我今天也乐意回答.
教育应当包括经验信息的传递,知识信息的传递和智慧信息的传递.我们对三种信息传递的载体进行研究,去寻求教育的内核,探讨教育自身的发展过程,从而展望教育的未来.[3]
——史宁中
刘:您是何时开始关注教育、师范教育与数学教育的?您对我们国家的教育、师范教育与数学教育总体上有什么判断?
史:我从1994年起担任东北师大主管本科教学与研究生培养的副校长,开始关注教育,对教育作了点哲学层面的思考.[3]1998年出任东北师大校长,对东北师大的师范教育进行了改革.特别是2005年承担义务教育阶段数学课程标准修订工作后,接触了多位中小学教师和学科教学论的专家,我意识到:应当详细地研究数学的基本思想,构建切实可行的方法把这些思想体现于数学教师的日常教学;应当理顺中小学数学的脉络,使得数学教师在教学活动中有所遵循;应当清晰地阐述数学教学内容中重要知识点的内涵与外延,对于数学教师能够有所启发.[4]
刘:您说清晰地阐述数学教学内容中重要知识点的内涵与外延,是不是写成了“学科教学核心问题研讨丛书”这套书?
[1]史宁中.基本概念与运算法则——小学数学教学中的核心问题[M].北京:高等教育出版社,2013.
[2]史宁中.函数关系与几何证明——初中数学教学中的核心问题[M](待出版).
[3]史宁中.数形结合与数学模型——高中数学教学中的核心问题[M](待出版).
我们发现第一本书在当当网上已获得2000多条好评.
史:是的,遗憾的是这套书还没有写完,只出版了第一本.主要是工作太忙了,争取挤时间写完,不辜负读者的期待.
刘:您刚才讲到对师范教育进行了改革,这些年我们国家的师范生教育一直在改革,效果似乎不太令人满意,您怎么看师范教育改革?
史:师范教育的问题主要是课程比较陈旧.作为师范大学的校长,我清楚地意识到,随着经济与社会的发展,教师教育必然逐渐走向开放,传统的师范教育也必然逐渐走向综合.面对转型期提出的问题和挑战,我们需要认真思考和扎实实践;要实现教师职业专门化,就必须对传统的师范教育进行改造.1998年,东北师大把传统的“教育学原理”和“普通心理学”两门师范类课程改造为“教师学与教学论”、“教育研究方法”、“青少年心理学”和“学校教育心理学”四门更为实用的课程.我总是认为,在大学,应当尊重学生的学习兴趣,尊重学生的专业选择,对于师范专业尤其重要,因为一个人是否能成为一名好的教师,首先在于他是否热爱教师这个职业.事实上,从2002年开始,东北师大就打通了师范与非师范的界限:在7个一级学科实行前两年为通识课、两年后选专业方向的培养模式;对于选择师范专业的学生,从教学方法、学科思想方法等方面给予特殊的培养,我们不能用“专业+教育学+心理学=教师”这个公式来培养教师.[4]
刘:您来主持国家数学课程标准的修订工作,是不是跟您的大学校长身份有关?能调动更多的社会力量来做这件事?
史:课程标准的修订工作主要靠大家多出主意、多沟通,包括数学家、数学教育家、中小学数学教研员和教师,甚至包括其他行业的专家,大家多交换意见就好办了.比如,我们在新修订的义务教育阶段数学课程标准里提“四基”,为此征求了许多数学家、数学教育界人士的意见,他们都很赞同.误解往往源于缺少沟通,我找到一个很有效的办法,就是把争论的双方请到一起、坐下来交换意见,误解很快就消除了.课程标准修订主要还是学术问题,不一定非要靠大学校长来做.包括这次的高中数学课程标准修订稿,一直没有公布,我们就跟教育部沟通,把精神传达给出版社,以便他们能够尽早修订教材,确保试验地区能够按时用上新教材.
刘:对数学课程标准进行修订,不管是义务教育阶段的还是高中阶段的,您主张推倒重来还是小修小补?
史:我们在课程标准修订过程中制定了几条基本原则:(1)坚持基础教育课程改革的大方向;(2)课程标准要更加准确、规范、明了、全面,凡是没有充足理由的说法都不出现,还是用传统的;(3)课程标准要更适合于教材编写、教师教学、学习评价,我们编了许多例子帮助老师们理解数学教学;(4)处理好几个关系:关注过程和结果的关系;学生自主学习和教师讲授的关系;合情推理和演绎推理的关系;生活情境和知识系统性的关系.这几条基本原则保障了课程标准的已有成果得到巩固,不合理的地方得到较大改善,原来的课程标准总体上是积极的,也是富有成效的.
我们把数学基本思想归结为三个核心要素:抽象、推理、模型.[5]
——史宁中
刘:我们准备了一套您的著作《数学思想概论》(5册):
[1]史宁中.数学思想概论(第1辑):数量与数量关系的抽象[M].长春:东北师范大学出版社,2015.
[2]史宁中.数学思想概论(第2辑):图形与图形关系的抽象[M].长春:东北师范大学出版社,2015.
[3]史宁中.数学思想概论(第3辑):数学中的演绎推理[M].长春:东北师范大学出版社,2015.
[4]史宁中.数学思想概论(第4辑):数学中的归纳推理[M].长春:东北师范大学出版社,2015.
[5]史宁中.数学思想概论(第5辑):自然界中的数学模型[M].长春:东北师范大学出版社,2015.
想请您为这套书签个名,送给会场踊跃提问的老师.
史:好,我来签名,谢谢你们的精心准备.这套书内容有点多,我最近将这套书压缩成了一本,叫做《数学基本思想18讲》[5],已由北师大出版社出版,这样学校上课、读者看起来都方便一些.
刘:我记得您在2005年左右就提出了数学的三个基本思想——抽象、推理、模型,您是怎样考虑的?
史:大家都觉得数学思想很重要,但是说不清道不明,有的人把数学思想列出一大串.在数学教学中,通常说的等量替换、数形结合、递归法、换元法等,可以称为数学思想方法,但不是数学基本思想,数学基本思想是更上位的概念.因为在述说这些概念的时候,必然要依附于某些具体的数学内容,因此这些概念在本质上是个案而不是一般.此外,这些概念也不是最基本的,比如关于等量替换,人们可以进一步追问:为什么可以在计算的过程中进行等量替换呢?这就意味着,作为一种方法,等量替换可以用其他的更为基本的原理推演出来.为此,需要建立判断数学基本思想的原则.我们建立两个原则:
第一个原则,数学产生和发展所必须依赖的那些思想;
第二个原则,学习过数学的人应当具有的基本思维特征.
根据这两个原则,我们把数学基本思想归结为三个核心要素:抽象、推理、模型.
刘:您能否做些具体解释呢?
史:这三者对于数学的作用以及相互之间的关系大体是这样的:通过抽象,人们把现实世界中与数学有关的东西抽象到数学内部,形成数学的研究对象,思维特征是抽象能力强;通过推理,人们从数学的研究对象出发,在一些假设条件下,有逻辑地得到研究对象的性质以及描述研究对象之间关系的命题和计算结果,促进数学内部的发展,思维特征是逻辑推理能力强;通过模型,人们用数学所创造的语言、符号和方法,描述现实世界中的故事,构建了数学与现实世界的桥梁,思维特征是表述事物规律的能力强.
当然,针对具体的数学内容,不可能把三者截然分开,特别是不能把抽象与推理、抽象与模型截然分开.在推理的过程中,往往需要从已有的数学知识出发,抽象出那些并不是直接来源于现实世界的概念和运算法则;在构建模型的过程中,往往需要在错综复杂的现实背景中抽象出最为本质的关系,并且用数学的语言予以表达.反之,抽象的过程往往需要借助逻辑推理;通过推理判断概念之间的关系,判断什么是命题的独立性,什么是命题的相容性,最终抽象出公理体系;在众多个案的运算过程中发现规律,通过推理验证什么是最本质的规律,最终用抽象的符号表达一般性的运算法则.因此,在数学研究和学习的过程中,抽象、推理、模型这三者之间常常是你中有我,我中有你.[5]
刘:大家对“数学的三个基本思想”这样凝练的观点接受度如何?
史:抽象、推理这是大家都公认的;可能因为我的专业是数理统计学的,所以对数学的应用有很深的体会,感觉模型思想特别重要.我提出这三个基本思想之后,在不同场合听听大家的意见,大家都觉得不错,许多数学家也赞同.[6]
现在我们更明确地提出:数学教学的最终目标,是要让学习者会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界.而数学的眼光就是抽象,数学的思维就是推理,数学的语言就是模型.[5]这样大家就更容易理解三个数学基本思想的意思和重要性了.
普通高中数学课程标准所设定的核心素养的本质就是抽象、推理、模型.[5]基于“四基”的数学教学就是基于数学核心素养的数学教学.[7]
——史宁中
刘:“数学基本思想”是很有创见的观点.十年后的今天,您和高中数学课程标准修订组做的数学核心素养框架体系(包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析),我感觉就是在三个数学基本思想的基础上发展起来的.五年前,义务教育阶段数学课程标准修订版提的是十个核心词,进行聚类分析后,也是三个数学基本思想.[8]数学基本思想(抽象、推理、模型)就是“数学核心素养”体系的“基底”.
史:你看的很准,张奠宙先生最近也谈到了这个观点.这其实就是我们对中国数学课程的传承,是个大问题,要反复地跟大家讲.
刘:可否请您具体帮我们讲讲这个传承关系?
史:数学基本思想与数学“双基”、“四基”、数学核心素养都是一脉相承的,基于“四基”的数学教学就是基于数学核心素养的数学教学.[7]相对于我们的数学教育传统,数学核心素养并没有另起炉灶.这也是我们一以贯之的事情.
我来具体说说这里面的继承关系.1990年代,我们国家的数学教学大纲是把数学思想和方法含在数学“双基”里面的,大纲里有明确的表述;数学“四基”是把“数学基本思想”从数学“双基”里面单独列出来,另外再加上“数学基本活动经验”,这是对“双基”的继承、发展.数学核心素养是六个:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析,其中前三个就是数学基本思想、也是传承,后三个是传统的数学能力.
刘:听您的讲解我们就很清楚了:自从1980年代徐利治先生在国内倡导“数学方法论”,在他的影响之下,在数学教学中渗透数学思想方法,已经成为中国数学教育的常识,“数学思想方法”也在1992年正式纳入义务教育数学教学大纲,拓展了数学“双基”中“基础知识”的内容,并延续至2000年初、高中数学教学大纲;后写进1998年版上海市高中数学课程标准、2002年版高中数学大纲,成为数学“双基”中“基础知识”、“基本技能”所包括的内容;随后写进2003年版高中数学课程标准、2004年版上海市中小学数学课程标准,成为了数学“三基”中的一基:数学基本思想(“三基”的提法很短暂,容易被人忽视);进而又写进2011年修订版义务教育数学课程标准,成为了数学“四基”中的一基.[9]
史:可以这样理解,但我们不能机械地“背文件”.我们对数学教育、特别是基础阶段的数学教育至少应当清晰两件事情:一件事情是,不能单纯让学生记住一些概念,掌握一些解题的技巧,要让学生形成和发展数学核心素养,特别是逻辑推理素养;还有一件事情是,学生逻辑推理素养的形成和发展,在本质上,不是靠教师“教”出来的,而是靠学生“悟”出来的.
虽然,为了数学的严谨性,现代数学逐渐走向了符号化、形式化和公理化,但数学的教学过程却应当反其道而行之,给学生创造直观思维的机会,给学生的“悟”留有充分的时间和空间;虽然概念的表达是符号的,但对概念的认识应当是有具体背景的;虽然证明的过程是形式的,但对证明的理解应当是直观的;虽然逻辑的基础是基于公理的,但思维的过程应当是归纳的.为了实现这样的教学过程,就要求教师在数学教学活动中,更多地关心学生的思维过程,抓住数学的本质,创设合适的教学情境、提出合适的问题,启发学生独立思考或与他人进行有价值的讨论,让学生在掌握知识技能的同时,感悟数学的思想,积累数学思维的经验,形成和发展数学核心素养.这就是基于“四基”的数学教学,这也是未来将要提倡的基于“数学核心素养”的数学教学.[7]
教育的任务就是要把科学的知识让学生理解,并化为他自己的知识.这里面有两个重要的转化的过程:一是科学知识向学科课程知识的转化,这要依靠学科专家和课程开发专家的努力;二是把学科课程知识转化为学生知识,这就依靠广大教师.[4]
——史宁中
刘:这次会议的另一个主题是关于数学教材编写,我们想请教您:作为数学家、大学校长,您觉得编写中小学数学教材难度大不大?是不是一件比较容易的事情?
史:教材编写这个事还真不简单.教材要越读越有味道,经得起反复推敲,绝对不是“快餐”.你是上海教材的责任编辑,应该也有这个体会.现在我们国家很重视教材的编写,教材编写队伍力量配备很强,过去以专职的教材编写者为主,现在是由高校数学教师、教育学院的教师培训者、基层数学教育教学研究人员、资深中小学数学教师共同组成,专业、专职和兼职人员并重的四位一体编写队伍.与过去相比,教材编写队伍的学术层次提高了,研究气氛浓厚了,理论与实践之间的关系开始趋于平衡了,一线教师的参与程度加强了,教材编写活动的活力大大增加了.[10]
刘:近几年国内开展了许多教材比较研究的工作(包括国际比较),教材难度的比较是其中一个基本问题.您认为应该如何衡量一套教材的难度?
史:华东师大的《数学教学》杂志发表了我的一篇讲座稿,其中专门谈了教材难度的问题.什么是教材难度?它由许多因素确定,比如广度(知识含量,包括习题)、深度(逻辑层次,区分概念与命题)、表达(描述方式,包括例题)、时间(单位时间授课进度),这样的话,教材难度就是广度、深度、表达、时间的(线性或对数线性)函数.[11]大家可以做一些实证来验证一下这个观点.
刘:近来您与各家教材出版社的同志、各版本教材的主编和编委交流很频繁,您是不是希望向他们传递更多的关于教材编写和修订的理念、要求?
史:课程标准的实施首先体现在教材编写这个环节,至关重要.当前,编写配套的高中数学新教材要特别注意以下几点:(1)把握数学知识的本质,比如新概念的引入要回答缘由、新方法的述说要述说道理;(2)创设合适的教学情境、提出合适的数学问题;(3)启发学生思考,鼓励学生与教师交流、学生之间相互交流;(4)让学生在思考和交流中在掌握知识、技能的同时,理解知识的本质;(5)帮助学生感悟数学思想,积累思维的经验,形成和发展数学核心素养.
另外,教材编写团队平时也要注意做好教材修订工作.修订工作大体上可以围绕3个方面进行:(1)围绕“显性”问题修订;(2)围绕“打造教材特色”修订;(3)围绕“深层”问题修订,这是真正有挑战性的修订,目前教材编写有很多不太令人满意的“深层”问题,比如数学概念的表述还是几十年前的,至今没有变化;还有忽视学生学习过程的问题屡见不鲜.这些“深层”问题解决好了,有可能使中国的数学教材面貌在世界上独树一帜,令人期待.[10]上海教材就很好,很多地方值得全国同行借鉴.
在近30年上海数学教育改革的长期积淀过程中,上海至少形成了三条重要经验:连贯一致的改革思路、海派文化的数学课堂、强而有力的教研与教师队伍.[12]
——史宁中
刘:您今年已经是第5次来上海了吧.
史:是的,为了总结上海数学教育改革经验就来了4次.
刘:2016年8月22日,全国“上海中小学数学教育改革经验”交流会在上海举行,会议主题是“推广交流上海中小学数学教育改革经验,研讨我国数学教育改革发展方向与推进策略”.您作为上海基础教育改革宣传推广工作数学教育项目组组长,在会上为上海数学教育改革经验总结的3句话现在广为传播.
史:上海教育界的同志很客气,请我总结上海的数学教育改革经验,我讲了3句话:连贯一致的改革思路、海派文化的数学课堂、强而有力的教研与教师队伍.头尾两句话好理解,很多人问我第二句话是什么意思?我说海派文化的数学课堂就是“海纳百川、教无定法”,大家很赞同.上海的数学课堂什么经验、方法都可以拿来试验,好的就留下来、为我所用,海纳百川本身就是上海这座城市的精神.
刘:这3句话的经验总结令上海教育界欢欣鼓舞,也令中国其他地方羡慕不已.
史:上海数学教育界的同志工作、研究做得很扎实,比如顾泠沅教授,上海的经验有他们的功劳.当然,这3句话不是上海独有的经验,我们国家很多地区都有这样的经验,上海是代表.
刘:现在上海已经明确有几门学科会使用全国统一教材,您判断上海的数学教材会不会也使用全国统一教材?
史:上海的数学教材对上海的数学教育改革经验肯定有很大贡献,国家既然总结推广上海的数学教育改革经验,上海的数学教材应该是很重要的体现,祝愿上海教材做得更好.
刘:谢谢您接受我们的采访.
对史宁中教授的访谈时间过得很快,许多问题还来不及展开.考虑到会议日程很紧张,我们按计划结束了这次访谈.在近3个小时的访谈过程中,史宁中教授为我们详细讲解了:关于教育的哲学思考、师范教育改革与数学教育改革;什么是数学基本思想;数学基本思想与数学“双基”、数学“四基”、数学核心素养有着怎样的传承关系;如何编写中小学数学教材;如何总结上海乃至中国数学教育改革经验等重要问题.
当代中国数学家有关心教育特别是数学教育的优良传统,数学家关心数学教育主要有几种形式:一是关注中小学数学教育与课程改革;二是主持编写中小学数学教材;三是开展数学普及工作与科普创作.[13]作为一名学术成就斐然的数学家、大学校长,史宁中教授从关心、关注到逐渐领导中国的中小学数学课程改革,在这一“华丽转身”的背后,是他为中国数学教育贡献的非凡智慧与拳拳之心、殷殷深情.
说明:访谈得到了史宁中教授的大力支持,整理成文后经史宁中教授审核确认.