大叶藻种子育苗及移栽技术研究❋

2017-04-10 09:06张壮志潘金华李晓捷于深辉韩厚伟王伟伟梁广津杨官品
关键词:春化底质海区

张壮志, 潘金华, 李晓捷, 于深辉, 韩厚伟, 江 鑫, 王伟伟, 梁广津, 赵 楠, 杨官品

(1.山东东方海洋科技股份有限公司,国家海藻与海参工程技术研究中心,山东 烟台 264003; 2.山东东方海洋科技股份有限公司,山东省海藻遗传育种与栽培技术重点实验室, 山东 烟台 264003; 3.中国海洋大学海洋生命学院, 山东 青岛 266003)

大叶藻种子育苗及移栽技术研究❋

张壮志1,2, 潘金华1,2, 李晓捷1,2, 于深辉1,2, 韩厚伟1,2, 江 鑫1,2, 王伟伟1,2, 梁广津1,2, 赵 楠1,2, 杨官品3❋❋

(1.山东东方海洋科技股份有限公司,国家海藻与海参工程技术研究中心,山东 烟台 264003; 2.山东东方海洋科技股份有限公司,山东省海藻遗传育种与栽培技术重点实验室, 山东 烟台 264003; 3.中国海洋大学海洋生命学院, 山东 青岛 266003)

大叶藻(ZosteramarinaL.)是全球分布最广泛的海草之一,曾在山东半岛沿海有广泛分布。然而,自1980年代开始,受自然因素和人类活动的影响,大叶藻场严重衰退,导致黄海近岸海洋生态系统恶化,渔业资源锐减。本研究以中国黄海海域(山东半岛)大叶藻为研究对象,研究不同温度、春化作用时间对大叶藻种子萌发和不同播种深度对种子成苗率的影响,进行了幼苗培育,研制开发幼苗移栽装置和技术。结果表明:春化处理温度对大叶藻种子萌发率具有显著影响(p<0.01),4 ℃春化处理50 d的大叶藻种子萌发率最高,平均达55.3%;埋植深度对大叶藻种子萌发率和幼苗成苗率有影响,埋植深度0.5~2.5 cm时大叶藻幼苗的出苗率相似,但显著高于埋植深度3~4.5 cm的成苗率(p<0.01)。依据这些研究结果,成功培育大叶藻苗7.6万株,生长110 d,平均幼苗长度达16.3 cm,最大长度达22 cm;研制了育苗杯大叶藻苗移栽装置,实现了从水面高效栽植大叶藻幼苗。

大叶藻种子;春化作用;播种深度;幼苗培育;移栽装置

海草场生态系统、珊瑚礁生态系统和红树林生态系统是三大典型海洋生态系统[1]。近几十年来,人类活动、自然因素等导致全球海草场衰退[2-3],大叶藻场监测与修复引起广泛关注[4]。大叶藻场修复策略之一是成体移栽,但劳动强度大、成本高、效率低,很大程度上阻碍了大叶藻场修复进程[5-6]。自上世纪末,人们开始尝试利用种子播撒的方法进行大叶藻场修复、构建和重建[7-8]。大叶藻种子体积小,易运输,种子采集对原海草场影响小,生态环保、成本低[9]。但种子播撒存在不足。例如,因休眠不能迅速萌发的种子有被摄食的风险[10]。如果用大叶藻种子人工育苗后移栽至目标海区,或播撒刚萌发种子,将能减少种子流失,将提高海草场修复、构建和重建效率。

大叶藻是山东半岛沿海最常见海草。近年来,海洋环境变化和人类活动(如拖网作业等)极大地破坏了大叶藻资源,导致大叶藻场逐年减少。不同海区存在环境差异,大叶藻生物学特性不同[11-12],影响种子萌发的因素不确定。大叶藻种子有休眠特性,特定环境因素会打破休眠,但不同海区大叶藻种子对不同环境因素有不同反应[13]。有研究发现较高水温抑制大叶藻种子萌发,促进休眠;而较低水温促进种子萌发[14-15]。但Harrison[16]发现温度对大叶藻种子萌发没有显著影响。因此,探索大叶藻种子萌发条件,可为研发大叶藻人工育苗技术提供参考。大叶藻场人工修复和构建有两种主要方法,即成体移栽和种子播种[17]。大叶藻成体移栽成活率高于70%[18],但成体采集需潜水作业,成本高,劳动强度大,机械采集可克服这些限制,但对原大叶藻场造成毁灭性破坏[6],且成体移栽往往导致新修复海草场遗传多样性低[19]。繁殖枝(种子)采集范围很大,因此,用种子修复的海草场,其遗传多样性远高于成体移栽[20]。采集大叶藻种子进行人工育苗,在适宜季节移栽到海区,用人工培育的大叶藻植株代替采集自然海草场的大叶藻植株,可极大程度降低成体植株采集对原海草场的破坏,且能维持新构建藻场遗传多样性。

本研究设置不同温度和时间确定了春化温度、春化时间以及种子埋植深度对黄海海区大叶藻种子萌发的影响;进行了大叶藻种子室内人工育苗和海区移栽,并研发了水面幼苗移栽工具和技术。

1 材料与方法

1.1 大叶藻种子的采集和活力检验

山东半岛沿海大叶藻种子采集时间范围在6月中旬至7月初进行。种子采集方法参考Pan等[21]。种子活力用修正后的TTC法检验[22]。选取300粒种子,平均分成3份,在过滤海水中24 ℃预处理12 h,然后将种子去皮浸入到24 ℃的1%氯化四唑溶液中处理24 h,子叶被染成红色或红褐色是活种子。种子活力为活种子占种子总量的百分比。

1.2 春化作用与大叶藻种子萌发

试验用大叶藻种子2010年采自四十里湾。用1%次氯酸钠溶液表面消毒5 min,再用消毒海水连续冲洗6次[23],在4、8和12 ℃春化处理2个月,转入20 ℃过滤消毒自然海水(盐度约31)萌发。每个春化温度设置3个平行,每平行100粒种子。60 d后统计萌发率。

在4℃春化温度处理10、30、50和70 d,转入20 ℃海水萌发,每处理3个平行,每平行用100粒种子。每10 d统计一次萌发量。

1.3 播种深度与大叶藻幼苗发生

本试验大叶藻种子为2011年采自四十里湾。利用采集自四十里湾海区的底质进行大叶藻种子播种深度试验,以检验不同埋植深度对大叶藻幼苗发生的影响。四十里湾海区有大叶藻场分布,退潮期间,在四十里湾潮间带低潮带挖掘底质(泥沙底质)并运回实验室低温(低于10 ℃)黑暗保存备用。大叶藻种子分别被在0.5~1、1~1.5、2~2.5、3~3.5和4~4.5 cm深度播种。播种前,种子4 ℃、盐度30 psu春化处理2个月。每播种深度设5个平行,每平行用100粒种子。因低盐度可提高种子萌发率[16],播种后,前20 d所采用的海水经过与蒸馏水按照一定比例混合盐度调整至6~8 psu,第21天开始,盐度每天增加5左右,逐步提高至30左右。从第2天开始,每天统计各播种深度大叶藻幼苗数。水温控制在15~18 ℃,自然光周期,调节光照强度为80~180 μmol·m-2·s-1。第101天时,每播种深度每平行随机测量6株大叶藻幼苗长度,分析各播种深度对大叶藻幼苗长度生长的影响。

1.4 大规模大叶藻人工育苗

大规模人工育苗用的种子2012年采集,底质采自四十里湾海区。底质分装到育苗杯内(一次性可降解水杯),每杯播10~20粒种子,深度1~2 cm左右,最大不超过3 cm。播种前,种子已在4 ℃、盐度30春化处理2个月。育苗杯置于育苗池内(约4.2 m×4.2 m×0.8 m)。

前3周,育苗池海水盐度调整至约8 psu。之后逐步升到正常海水的30 psu,每天增幅5 psu。恢复到正常盐度后,流水育苗,每天进新水约为2倍育苗水体体积,水温控制在15~18 ℃左右,自然光周期,光照强度控制在80~180 μmol·m-2·s-1。出苗后,每天加硝酸钠至有效N浓度约1.5 mg/L,加磷酸二氢钾至有效P浓度约0.25 mg/L[24]。

1.5 人工大叶藻苗移栽技术开发

育苗后,在合适时机移栽至目标海区。作者用一次性可降解水杯作为育苗杯育苗,用课题组研发的水面(深水区在船上,浅水区站立水中,不需潜水)可操作的育苗杯培育大叶藻幼苗移栽装置移栽。

1.6 数据分析

用单因素方差分析(One-way ANOVA)检验不同春化温度对大叶藻种子萌发率的影响,不同春化处理周期对萌发率的影响,不同播种深度对大叶藻幼苗发生的影响以及不同播种深度下大叶藻幼苗长度的影响。用最小差异显著法检验各处理间差异显著性。数据满足Leven’s方差齐性检验,显著水平设为p<0.05。数据分析在SPSS 17.0下进行。

2 结果与分析

2.1 春化作用与大叶藻种子萌发

大叶藻种子活力约为98.1%。春化温度对大叶藻种子萌发率具有显著影响(p<0.01)。春化60 d后转入20 ℃萌发60 d,4 ℃春化获得最高萌发率,平均约为55.3%,显著高于8和12 ℃春化处理组(p<0.01)。12 ℃春化萌发率最低,平均值约为36.3%(见图1)。

(不同小写字母代表差异显著(p<0.01, n=3)。 Different lowercase letters indicate significant differences (p<0.01, n=3).)

4 ℃春化不同时间,萌发60 d后发现,春化50 d萌发率最高,平均约53.3%,与春化70 d差异不显著。2个春化时间的萌发率均显著高于春化10和30 d的萌发率(p<0.01)。春化10 d萌发率最低,平值约为27%(图2)。

(不同小写字母代表差异显著(p<0.05, n=3)。 Different lowercase letters indicate significant differences (p<0.05, n=3).)

2.2 播种深度与大叶藻幼苗发生

大叶藻种子活力检测约97.3%。大叶藻出苗最早的播种深度为0.5~1 cm,第6天平均出苗率达4.8%左右(见图3)。播种深度1~1.5和2~2.5 cm时,第10天出苗,平均出苗率分别约为2.6%和3.6%。播种深度3~3.5 cm时,第19天出苗,第20天出苗率平均约为17.7%。播种深度4~4.5 cm时,第25天出苗,平均出苗率约为3%。播种深度显著影响出苗时间(p<0.01)。50 d后统计,播种深度0.5~1、1~1.5和2~2.5 cm间差异不显著,播种深度1~1.5 cm出苗率最高,平均达62.7%,显著高于播种深度3~3.5和4~4.5 cm的出苗率(p<0.01)。101 d后,播种深度1~1.5 cm幼苗长度最长,达13.5 cm,与播种深度0.5~1和2~2.5 cm差异不显著,但显著高于播种深度3~3.5和4~4.5 cm的出苗率(见图4)(p<0.01)。

2.3 大叶藻大规模人工育苗

2012年,利用16万粒大叶藻种子(采自爱莲湾围堰池,活力约97.5%)大规模人工育苗,110 d后获得幼苗约7.6万株,长度平均达16.3 cm,最大长度达22 cm(见图5)。

2.4 人工大叶藻苗移栽技术开发

成功研制了杯育大叶藻苗水面移栽装置。装置由PVC管(含延长管,内径8 cm,图6 a、b)和不锈钢(304)底质插头(见图6 d)、插头盖控制索(见图6 c)等组成。垂直时,拉紧控制索,底质插头末端盖关闭(见图6d1),放松控制索时,盖打开(见图6d2)。

图3 播种深度对大叶藻种子出苗率的影响(n=5)

(不同小写字母代表差异显著(p<0.05, n=30)。Different lowercase letters indicate significant differences (p<0.05, n=30).)

图5 杯育大叶藻幼苗

移栽装置核心部件是不锈钢底质插头(见图7a)。插头上有孔(见图7b),便于海水进入管体以保持内外水压平衡;插头末端有挡沙盖(见图7c),通过旋转轴(见图7d)与插头主体链接,可绕轴转动;控制索(见图7f)与盖子上的固定扣(见图7e)连接,穿过深度标记阻挡板(见图7g)向上延伸,当插头插入底质一定深度后,遇到阻挡板,会产生较大的阻力,操作者可明显感觉到插头已经插入到合适深度,即可停止下插;阻挡板的位置经过计算,当插入底质到该位置的时候,插入深度恰好满足大叶藻育苗杯埋入深度。

(a.主管;b.延长管;c.控制索;d.底质插头;d1.插头盖封闭;d2.插头盖打开。a. Main pipe; b. Prolonged pipe; c. Control rope; d. Sediment drill; d1. Lid sealed; d2.Lid opened.)

(a.底质插头主体件;b.进水孔;c.档沙盖;d.挡沙盖旋转主轴;e.控制索固定扣;f.挡沙盖控制索;g.深度标记阻挡板。a. Main body of drill; b.Plughole; c.Sand blocking lid; d.Shaft; e.Rope retainer; f. Control rope; g.Depth-marker block.)

(A. Keeping the control rope tight, letting lid be closed; B. Putting cup into the apparatus when the drill reaches the preset depth; C. Allowing cup sank to the bottom; D. Relaxing the control rope while lifting the drill; E. Allowing the lid open under gravity, letting cup drop into sediment; F. Repeating the process, planting more seedlings.)

杯育大叶藻幼苗移栽操作过程见图8。实地测试效果理想(见图9)。用力差异可能让育苗杯位置高出底质平面(见图9A),但多数能与底质平面齐平(见图9B),甚至低于底质平面(见图9C)。在实际使用时,应用力使探头下插,使杯口齐平或低于底质平面,以达到最好移栽效果。

(A.杯口略高于底质平面;B.杯口与底质平面齐平;C.杯口低于底质平面。A. Cup rim a little higher than sediment surface; B. Cup rim parallel with the sediment surface; C. Cup completely buried in the sediment.)

3 讨论

3.1 春化作用对大叶藻种子萌发的影响

大叶藻属种子有休眠特性,种子休眠对海草种群延续和维持有重要意义[13]。植物种子需要环境信号刺激萌发,或打破休眠[25-26],大叶藻种子萌发主要环境诱导因子有温度[27]、溶解氧[14,28]和底质有机质含量[29]等。有些植物(或种子)需要低温刺激才能形成花芽和花器。低温诱导植物开花或种子萌发的效应称为春化作用。Morita等[30]研究发现一年生大叶藻种子在7 ℃春化1个月的萌发率显著高于未春化种子,且春化大叶藻繁殖枝分枝数显著高于未春化株。低温促进大叶藻种子的萌发[31],表明大叶藻种子需春化才能萌发。温度的季节波动可调节海草种子萌发时机,这可能与低温春化作用有关。Pirc等[32]研究发现海草Cymodoceanodosa种子需休眠8个月,次年春天才萌发;鄂霍次克海[11]和切萨皮克湾[14]大叶藻种子萌发有明显季节性,通常经历冬天后才能萌发。种子打破休眠状态成功萌发是许多因素综合作用的结果,包含内在生理和遗传因素以及外界底质、光线、含氧水平、渗透压和温度等因素[25]。因此,本研究认为低温春化处理是促进山东半岛黄海海域大叶藻种子萌发的一个重要因素。

3.2 埋植深度对大叶藻种子萌发的影响

大叶藻种子播种深度影响大叶藻种子萌发率和幼苗成苗率。本研究发现播种深度0.5~2.5 cm范围内(0.5~1、1~1.5和2~2.5 cm)经过近2个月后,大叶藻幼苗成苗率无显著差异。Tanner和Parham[24]发现切萨皮克湾约克河河口大叶藻种子最佳播种深度为1~1.5 cm。Granger等[33]发现大叶藻种子播种深度2 cm的萌发率和幼苗成活率显著高于表面播撒种子和播种深度更深的种子。Marion和Orth[34]发现不论是在在底质表面没有埋植的种子,还是种子被埋植在2~3 cm的深度,对种子的萌发率均没有显著的影响,但是埋植的种子产生的大叶藻幼苗成活率,显著高于未经埋植的种子或者埋植较浅的种子,埋植深度合适的种子产生的幼苗更加容易度过如夏季高温胁迫不利环境,且更容易逃避被摄食的命运。在底质表面或者埋植过浅,会因为水流或者海浪的扰动而导致幼苗不能牢固的固着于底质而导致幼苗流失[35]。

播种超过一定深度会对大叶藻种子萌发和幼苗发生、生长不利。本研究结果显示,所设置的5个大叶藻种子播种深度,越深越大,大叶藻幼苗首次出现时间越久,0.5~1 cm首次出现幼苗是在实验进行第6天,而埋植深度4~4.5 cm则到第25天才首次出现幼苗,在实验结束时,埋植深度为4~4.5 cm的幼苗的长度也显著小于其它实验组。Jarvis和Moore[36]发现大叶藻种子播种深度1 cm条件下萌发需要时间比更深的埋植深度要短,播种深度大于5 cm会对大叶藻种子萌发造成很大困境,这与本文研究相符。Churchill[23]发现播种深度1 cm的大叶藻种子萌发率远高于播种深度3.7 cm,且随着深度的增加,在实验结束时因腐烂分解损失的种子越多。综合本研究结果和以上研究报道,大叶藻种子埋植深度控制在2 cm左右为宜。

3.3 大叶藻人工育苗和移栽

全球范围内海草场衰退对海洋近岸环境造成了许多负面影响引起了多方重视,世界上许多机构都加入到海草场修复当中来,其中大叶藻场修复是最成功的一项[37]。成体移栽和种子播种是目前进行大叶藻场构建和修复工程中所采用的最主要的2种方式[38-40],但是大叶藻成体植株采集和栽植成本极高,一般要潜水员水下作业,劳动强度极大,且对原大叶藻场会造成更加严重的破坏[41]。种子采集和播种的方法虽然对原海草场破坏较小,但是种子采集之后也面临着需要等待到最佳播种时间才能播种的问题[20,42],且自然海区底质表面播撒之后大叶藻种子的成苗率非常低也严重影响了大叶藻场构建和修复效率[8,33,43]。利用植物的种子在可控环境下进行幼苗培育,然后在合适的时机进行移栽到目标修复地,这在高等农业或者陆上草皮植被修复和构建当中早已成熟运用。Fonseca等[38]曾报道了采集回成体大叶藻植株,在室内人工条件下进行保育,使其通过营养繁殖进行扩增,以获得更大量的移栽植株,这一方法虽然在一定程度上,在对原海草场破坏一定的情况下获得更大量的可供移栽的成体植株提供了有效途径,却依然不能脱离对自然海区大叶藻场的依赖和破坏。在人工控制条件,大叶藻种子萌发率会大大提高[16],利用采集到的大叶藻种子进行幼苗培育,然后将培育成的幼苗移栽至目标海区,大大提高了修复效率。Tanner和Parham[24]在美国切萨皮克湾大叶藻场修复中进行了利用种子育苗并移栽的研究,经过3个月幼苗培共育苗2.6万株,并通过枚钉固定法[18]进行海区移栽取得了较好的效果。但枚钉法移栽大叶藻幼苗像大叶藻成体移栽方法一样,依然需要潜水作业进行操作,仍拜托不了劳动强度大和工作效率低的弊端。本研究所杯育苗法进行大叶藻幼苗培育,然后利用所开发的育苗杯水面移栽装置,将大叶藻幼苗在不需潜水作业的情况下移栽至目标海区的海底并取得良好效果。两人配合连续操作,该水面移栽装置每分钟至少可移栽2个育苗杯,大大降低劳动强度,提高了效率。

大叶藻室内育苗再进行移栽,为大叶藻场的修复和构建提供了新的方向,特别是在成体植株不易获得的情况下,为利用植株移栽进行海草场修复和构建提供重要的支撑。在人工可控条件下育苗再进行移栽,以及本研究所开发的育苗杯移栽技术和装置,在其它海草特别是大叶藻属的海草场修复和构建中具有很大的推广潜力。

[1] Short F T,Wyllie-Echeverria S. Natural and human-induced disturbance of seagrasses[J]. Environmental Conservation,1996,23(1): 17-27.

[2] Cambridge M L, McComb A J. The loss of seagrass in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development[J]. Aquatic Botany, 1984, 20: 229-243.

[3] Short F T, Burdick D M. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachussetts[J]. Estuaries, 1996, 19 (3): 730-739.

[4] Orth R J, Luckenbach M L, Marion SR, et al. Seagrass recovery in the Delmarva Coastal Bays, USA[J]. Aquatic Botany, 2006, 84: 26-36.

[5] Fonseca M S, Kenworthy W J, Courtney F X, et al. Seagrass planting in the southeastern United States: Methods for accelerating habitat development[J]. Restoration Ecology, 1994, 2(3): 198-212.

[6] Fishman J R, Orth R J, Marion S, et al. A comparative test of mechanized and manual transplanting of eelgrass,Zosteramarina, in Chesapeake Bay[J]. Restoration Ecology, 2004, 12(2): 214-220.

[7] Harwell M C, Orth R J. Eelgrass (ZosteramarinaL.) seed protection for field experiments and implications for large-scale restoration[J]. Aquatic Botany, 1999, 64: 51-61.

[8] Orth R J, Fishman J R, Harwell M C, et al. Seed-density effects on germination and initial seedling establishment in eelgrassZosteramarinain the Chesapeake Bay region[J]. Marine Ecology Progress Series, 2003, 250: 71-79.

[9] Granger S, Traber M, Nixon S W, et al. A Practical Guide for the Use of Seeds in Eelgrass (ZosteramarinaL.)Restoration. Schwartz M. Part 1 [M]. Malia Schwartz. Narragansett: Rhode Island Sea Grant, 2002.

[10] Chambers J C, MacMahon J A. A day in the life of a seed: Movements and fates of seeds and their implications for natural and managed systems[J]. Annual Review of Ecology and Systematics, 1994, 25: 263-292.

[11] McMillan C. Seed germination for an annual form ofZosteramarinafrom the sea of Cortez, Mexico[J]. Aquatic Botany, 1983, 16: 105-110.

[12] Loques F, Caye G, Meinesz A. Germination in the marine phanerogamZosteranoltiiHornemann at Golfe Juan, French Mediterranean[J]. Aquatic Botany, 1990, 38: 249-260.

[13] Orth R J, Harwell M C, Bailey E M, et al. A review of issues in seagrass seed dormancy and germination: Implications for conservation and restoration[J]. Marine Ecology Progress Series, 2000, 200: 277-288.

[14] Moore K A, Orth R J, Nowak J F. Environmental regulation of seed germination inZosteramarinaL. (eelgrass) in Chesapeake Bay: Effects of light, oxygen and sediment burial[J]. Aquatic Botany, 1993, 45: 79-91.

[15] Abe M, Kurashima A, Maegawa M. Temperature requirements for seed germination and seedling growth ofZosteramarinafrom central Japan[J]. Fisheries Science, 2008, 74: 589-593.

[16] Pan J H, Jiang X, Li X J, et al. Influence of temperature and salinity on germination of eelgrass (ZosteramarinaL.) seeds[J]. Journal of Ocean University of China, 2011, 10(2): 147-152.

[17] Pan J H, Jiang X, Sai S, et al. Seagrass meadow ecosystem and its restoration: A review[J]. Acta Ecologica Sinica, 2012,32(19): 6223-6232.

[18] Davis R C, Short F T. Restoring eelgrass,ZosteramarinaL., habitat using a new transplanting technique: The horizontal rhizome method[J]. Aquatic Botany, 1997: 59: 1-15.

[19] Williams S L, Orth R J. Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays[J]. Estuaries, 1998, 21: 118-128.

[20] Busch K E, Golden R, Parham T A, et al. Large-scaleZosteramarina(eelgrass) restoration in Chesapeake Bay, Maryland, USA. Part I: A comparison of techniques and associated costs[J]. Restoration Ecology, 2010, 18(4): 490-500.

[21] Pan J H, Jiang X, Li X J, et al. An effective method for collecting and storing seeds fromZosteramarina(Eelgrass) in the Yellow Sea, China[J]. Restoration Ecology, 2014, 22(6): 716-722.

[22] Sawma J T, Mohler C L. Evaluating seed viability by an umimbibed seed crush test in comparison with the tetrazolium test[J]. Weed Technology, 2002, 16: 781-786.

[23] Churchill A C. Growth characteristics ofZosteramarinaseedlings under anaerobic conditions[J]. Aquatic Botany, 1992, 43: 379-392.

[24] Tanner C E, Parham T. GrowingZosteramarina(eelgrass) from seeds in land-based culture systems for use in restoration projects[J]. Restoration Ecology, 2010, 18(4): 527-537.

[25] Baskin C B, Baskin J. Ecologically meaningful germination studies[M]. Seeds. London: Academic Press,1998: 5-26.

[26] Woodin S A, Marinelli R L, Lindsay S M. Process-specific cues for recruitment in sedimentary environments: Geochemical signals[J]. Journal of Marine Research, 1998, 56: 535-558.

[27] Lamounette R G. A Study of the Germination and Viability ofZosteramarinaL. Seeds[D]. Adelphi University, 1977: 41.

[28] Probert R J, Brenchly J L. The effect of environmental factors on field and laboratory germination in a population ofZosteramarinaL. from southern England[J]. Seed Science Research, 1999, 9: 331-339.

[29] van Katwijk M M, Wijgergangs L J M. Effects of locally varying exposure, sediment type and low-tide water cover onZosteramarinarecruitment from seed[J]. Aquatic Botany, 2004, 80: 1-12.

[30] Morita T, Kakinuma M, Mizuno G, et al. Morphological characteristics of annualZosteramarinashoots at various germination temperatures[J]. Aquatic Botany, 2010, 92: 49-54.

[31] Hootsmans M J M, Vermaat J E, Van Vierssen W. Seed-bank development, germination and early seedling survival of two seagrass species from the Netherlands:ZosteramarinaL. andZosteranoltiiHornem[J]. Aquatic Botany, 1987, 28: 275-285.

[32] Pirc H, Bula M C, Mazzella L. Germination and seedling development ofCymodoceanodosa(Ucria) Asherson under laboratory conditions and “in situ”[J]. Aquatic Botany, 1986, 26: 181-188.

[33] Granger S L, Traber M S, Nixon S W. The influence of planting depth and density on germination and development ofZosteramarinaL. seeds[J]. Biologia Marina Mediterranea, 2000, 7(3): 55-58.

[34] Marion S R, Orth R J. Seedling establishment in eelgrass: seed burial effects on winter losses of developing seedlings[J]. Marine Ecology Progress Series, 2012, 448: 197-207.

[35] Koch E W, Ailstock S M, Booth D M, et al. The role of currents and waves in the dispersal of submersed angiosperm seeds and seedlings[J]. Restoration Ecology, 2010, 18: 584-595..

[36] Jarvis J C, Moore K A. Effects of seed source, sediment type, and burial depth on mixed-annual and perennialZosteramarinaL. seed germination and seedling establishment[J]. Estuaries and Coasts, 2015, 38(3): 964-978

[37] Shafer D J, Bergstrom P. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay[M]. Army Engineer Research and Development Center. US: Vicksburg, 2008.

[38] Fonseca M S, Bell S S. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA[J]. Marine Ecology Progress Series, 1998, 171: 109-121.

[39] Orth R J, Harwell M C, Fishman J R. A rapid and simple method for transplanting eelgrass using single, unanchored shoots[J]. Aquatic Botany, 1999, 64: 77-85.

[40] Marion S R, Orth R J. Innovative techniques for large-scale seagrass restoration usingZosteramarina(eelgrass) seeds[J]. Restoration Ecology, 2010, 18(4): 514-526.

[41] Orth R J, Marion S R, Granger S, et al. Restoring Eelgrass (Zosteramarina) from Seed: A Comparison of Planting Methods for Large-Scale Projects. U S Army Engineer Research and Development Center[M]. Vicksburg: Mississippi, 2008: 1-11.

[42] Orth R J, Marion S R. Innovative Techniques for Large-Scale Collection, Processing, and Storage of Eelgrass (Zosteramarina) Seeds[M]. Army Engineer Research and Development Center. Vicksburg: Mississippi, 2007: 1-14.

[43] Orth R J, Luckenbach M, Moore KA. Seed dispersal in a marine macrophyte: Implications for colonization and restoration[J]. Ecology, 1994, 75: 1927-1939.

责任编辑 高 蓓

Study on Techniques forZosteramarinaL. Seedling Raising and Transplantation

ZHANG Zhuang-Zhi1,2, PAN Jin-Hua1,2, LI Xiao-Jie1,2, YU Shen-Hui1,2, HAN Hou-Wei1,2, JIANG Xin1,2, WANG Wei-Wei1,2, LIANG Guang-Jin1,2, ZHAO Nan1,2, YANG Guan-Pin3

(1. Key Laboratory of Algae Genetic Breeding and Cultivation Techniques of Shandong Province, Shandong Oriental Ocean Sci-tech Co., Ltd., Yantai 264003, China; 2. National Algae and Sea Cucumber Engineering and Technique Research Center, Shandong Oriental Ocean Sci-tech Co., Ltd., Yantai 264003, China;3. College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China)

Seagrasses are aquatic angiosperms which have adapted to the marine environment successfully after nearly on hundred million years’ evolution from the land.Zosteramarinais one of the most widely distributed seagrasses in the world. It used to be abundant along the coast of Shandong Peninsula in the Yellow Sea, China. Unfortunately, obvious declines that caused by human activities and natural factors since 80s last century has been observed, which had brought great damage to the coastal ecosystem and led to sharp dereases in fishery resources.Z.marinarestoration project has been launched for many years all over the word, especially in the developed countries. However, the experience from other coastal areas in the world may not be directly applied locally because of the unique hydrologic conditions of each coastal area. Restoration ofZ.marinameadows in China has been tried in recent years. But practical techniques, especially the large scale restoration and construction techniques forZ.marinameadows using seeds, have scarcely documented. In this study, theZ.marinaseeds were collected from the coast of Shandong Peninsula in the Yellow Sea. The effects of vernalization temperatures and durations onZ.marinaseed germination rate were tested, and the seed sowing depth on its seedling establishment rate were determined. By referring to the findings obtained in this study, theZ.marinaseedling raising and seedling transplanting techniques and seedling transplanting apparatus was developed and put into practice, which were proved effectively and successfully. The results indicated that vernalizing temperature and duaration had significant effect onZ.marinaseed germination rate (p<0.01). VernalizingZ.marinaseeds at 4 ℃ for 50 days achieved the highest mean germination rate of 55.3%. Seed sowing depth affected both seedling establishment rate and seedling growth. It was found that seed germination rate and seedling establishment rate at depths of 0.5~1, 1~1.5 and 2~2.5cm were similar with each other, but significantly higher than those at 3~3.5 and 4~4.5 cm (p<0.01). The sowing depth of 1~1.5 cm achieved the highest seedling establishment rate of 62.7% and the largest seedling length of 13.5 cm after 101 d. According to these studies above, in total, 76 000 seedlings were successfully raised in 110 days, which were 16.3 cm on average and 24 cm as the maximum. In addition, a highly effective cup-raisedZ.marinaseedling transplanting apparatus was developed and applied successfully and efficiently on the water surface transplating of cup-raisedZ.marinaseedlings to the sea bottom sediment.

ZosteramarinaL. seed; vernalization; seed sowing depth; seedling raising; transplanting apparatus

山东省科技发展计划项目(2010GSF10612);国家科技支撑计划项目(2012BAD55G01)资助 Spported by Provincial Developmental Program of Science and Technology of Shandong(2010GSF10612);the National Technical Supporting Project Foundation(2012BAD55G01)

2016-06-23;

2016-08-30

张壮志(1976-),男,高级工程师,主要从事大型海藻遗传育种与苗种繁育工作

❋❋ 通讯作者:E-mail: yguanpin@ouc.edu.cn

P745

A

1672-5174(2017)05-080-08

10.16441/j.cnki.hdxb.20160215

张壮志, 潘金华, 李晓捷, 等. 大叶藻种子育苗及移栽技术研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(5): 80-87.

ZHANG Zhuang-Zhi, PAN Jin-Hua, LI Xiao-Jie, et al. Study on techniques forZosteramarinaL. seedling raising and transplantation[J]. Periodical of Ocean University of China, 2017, 47(5): 80-87.

猜你喜欢
春化底质海区
春化过程中2个时钟蛋白CCA1和LHY通过不同顺式元件激活VIN3的转录
北方海区北斗地基增强系统基站自定位精度研究
植物春化作用分子机理研究进展
一种ReliefF和随机森林模型组合的多波束海底底质分类方法
光照对小麦的春化效应及其机制初探
白菜型冬油菜萌动种子低温春化的生理生化特征
开放,活化英语资源应有“底质”
黄瑜航??《年年有余》
微生物与酶对水产养殖池塘底质及有机碳的控制