时云朵,孙豪,曾东,倪学勤,潘康成
(1.四川省水产学校,成都611730;2.雅安市农业局,四川雅安625000;3.四川农业大学动物医学院,成都611130)
肠道菌群与肠道免疫系统相互作用研究进展
时云朵1,孙豪2,3,曾东3,倪学勤3,潘康成3
(1.四川省水产学校,成都611730;2.雅安市农业局,四川雅安625000;3.四川农业大学动物医学院,成都611130)
肠道菌群是一个庞大而复杂的微生态系统,肠壁内存在为数众多、功能强大的免疫细胞,两者相互作用,相互制约,维持动态平衡状态。文章主要从肠道菌群的分布、肠道免疫系统的组成、肠道菌群的免疫功能及肠道免疫系统对正常菌群的耐受机制等方面研究肠道菌群与肠道免疫系统的相互关系。
肠道菌群;肠道免疫;黏膜;免疫耐受
Abstract:Intestinal microflora is a huge and complex micro-ecosystem.There are numerous and powerful lymphocytes.They interact and restrict each other,and maintain dynamic equilibrium in the intestinal wall.This paper focused on the distribution of intestinal flora,the composition of the intestinal immune system,intestinal flora immune function and the immune tolerance mechanisms of intestinal system for gut microbiota to elaborate the relationship between the intestinal flora and the intestinal immune system.
Key words:gut microbiota;intestinal immune;mucosa;immune tolerance
宿主与肠道微菌群共享一组核心基因与代谢路径[1]。肠道菌群的某些遗传元件与宿主的生理生化路径所需基因呈现功能补充关系,而这些基因在人类基因组内可能编码不完整或丢失,涉及新陈代谢、黏膜免疫等相关基因,从而调节机体免疫器官发育、提高机体非特异性和特异性免疫、激活巨噬细胞活性、调控细胞因子合成分泌、增强红细胞免疫功能及协同颉颃病原菌入侵等[2]。同时,免疫系统对肠道菌群又有调控和制约作用,对正常菌表现为免疫耐受,对病原菌则表现为免疫排斥。本文就肠道菌群与肠道免疫系统的相作关系作以综述。
胃肠道菌群是机体内最庞大、最复杂的微生态系统。成人肠道内定居着数以万亿计的微生物,是机体细胞数的10倍,其基因组是人类基因组的150倍,在共同进化过程中与宿主建立了共生关系,胃肠道里微生物种类达4 000余种,其中细菌达1 000余种,主要由厌氧菌、兼性厌氧菌和需氧菌组成,专性厌氧菌>99%[3-6]。因结构及功能特性以及黏膜免疫系统的影响,导致菌群在不同肠段中定植种类存在差异,在胃和小肠内,主要以梭菌Ⅸ群、链球菌和乳杆菌等为优势菌群,细菌数达10~107cfu·g-1;盲肠、结肠和直肠中的优势菌群是厚壁菌门和拟杆菌门,细菌数量为1010~1012cfu·g-1[7]。
肠道是机体与外环境接触最为密切的组织器官之一,也是机体最大的免疫器官,肠黏膜是机体与抗原发生相互作用的主要场所[8]。此外,肠道菌群也是肠道免疫系统的重要组成部分[3]。肠道免疫系统由肠上皮细胞(iEC)、菌膜、肠上皮内淋巴细胞(iIEL)、固有层淋巴细胞(LPL)及派氏淋巴结(PP)等组成。肠道免疫的诱导部位是iEC和PP。iEC有消化吸收、摄取和释放SIgA、提呈抗原、分泌细胞因子等功能;PP位于肠黏膜下,是肠道特异性免疫场所。肠道免疫的效应部位是iIEL和LPL。iIEL是机体内最大的淋巴细胞群和肠道免疫系统的主力军,其中>90%是CD3+T细胞,通过Fas受体消除入侵病原体,并分泌细胞因子调节淋巴细胞和上皮细胞功能;LPL主要为分泌SIgA的浆细胞和CD4+T细胞[9]。肠道免疫的诱导物是肠道菌群和食物源抗原。微生物相关性分子模式(PAMP)被机体免疫系统模式识别受体(PRRs)识别,激活核转录因子NF-κB,调控细胞因子分泌,上调免疫细胞协同刺激因子的表达和增强抗原提呈功能[10]。
无菌动物胃肠道蠕动减慢、体积增大、小肠绒毛增长、肠壁变薄、相关淋巴组织不发达、上皮淋巴细胞、黏膜中IgA+浆细胞和CD4+T细胞减少、抗原呈递细胞的MHCⅡ表达下降,当被移植菌群后,肠道收缩、绒毛变短、血管增生、淋巴细胞聚集到黏膜、淋巴细胞对抗原的反应速度和强度增加[12-15]。
研究表明,菌群可分泌信号交流分子促进菌群定植和宿主信号传递基因的表达[16]。随着肠道菌群的定植,黏膜免疫系统结构发生变化,免疫细胞数量增加并分化[17]。另外肠道菌群及其衍生物能通过PRRs诱导黏液及抗菌肽等分子表达;表明肠道菌群能促进肠道免疫系统的发育[18]。
健康个体肠道菌群能调节T、B淋巴细胞等刺激先天性免疫和获得性免疫或阻止不适当地先天性免疫和获得性免疫来维持肠道稳态;梭状芽孢杆菌等G+菌能够促进小鼠免疫反应,尤其能诱导调节T细胞及T17细胞的增殖分化,并促进肠道Th17细胞产生IL-17[19-20]。肠道菌群在诱导B细胞合成与释放SIgA的过程中起关键作用,而SIgA是肠道菌群影响宿主的主要关键因子,在肠道菌群中SIgA反应缺乏记忆特性,但速度较快[21]。
细胞因子是由免疫细胞产生的,具有调节免疫、炎症及造血功能的小分子蛋白质,包括白介素(ILs)、肿瘤坏死因子(TNFs)、干扰素(IFNs)、转化生长因子(TGF)和趋化因子等。Julio等研究表明,肠道菌群能够诱导猪肠道上皮细胞内IFN-α、IFN-β、IL-6、TNF-α的表达,并能显著上调源于PP的APCs细胞表面分子的表达[22]。Yamashita等研究表明,肠道菌群促进肠系膜淋巴结及PP的增殖[23]。肠道菌群诱导NK细胞产生IL-22,促进机体黏膜免疫[24]。此外,肠道菌群通过下调DC细胞miR-10a的表达,增强DC细胞对前炎性细胞因子的耐受[25]。
肠道微生物能够上调小鼠各肠断内多种基因的表达,其中与免疫相关,如CCL5(RANTES)和CXCL9(MIG)等及肠道屏障功能相关的基因,如SPRR1A和MUC2等,且大多数发生于小肠黏膜;肠道菌群能够诱导黏蛋白(MUC2、4、13)及抗菌基因(REG3γ、REG3β、NOX1)的表达,巩固黏膜屏障[26]。
TLRs有向细胞基底膜极化的特性,并因配基诱导,使肠上皮细胞顶点没有TLRs的表达[27]。研究表明,不同种类TLRs具有各自精确的定位,TLR3、TLR7、TLR8、TLR9被局限在细胞内,TLR5定位于细胞基底膜的外侧表面,TLR2、TLR4则在肠上皮细胞中表达较少甚至缺失[28]。肠道免疫系统具有选择性,对肠道菌群产生耐受,有助于肠道正常菌群的存活。由肠道菌群引起的一些前炎性反应被宿主免疫系统或肠道菌群本身快速地弱化,如肠道菌群通过TLR2能诱导前炎性细胞因子与抗炎性细胞因子的合成与释放,但是否与之有关还有待进一步研究。
肠道菌群可通过阻断IκB-α的泛素化抑制NF-κB信号途径,最终引起胃肠道黏膜对肠道菌群原发性刺激的独特耐受[29]。
宿主的部分基因,如CD4、MHCⅡ、IL-10、TGF-β和NOD2等均可弱化TLRs信号及炎症反应,使免疫系统对共生菌群产生耐受[30]。完整的NOD2信号抑制NF-κB信号,尤其是对NF-κB的c-Rel亚基作用,NOD2的缺乏可引起针对来自肠道菌群普通抗原的Th1反应。研究表明,给动物口服某种抗原可使动物针对该抗原的迟发性变态反应下调,呈现口服免疫耐受现象,但在MHCⅡ类分子或IL-10基因敲除小鼠中不能观察到此现象,应用抗CD4的单克隆抗体处理过的动物也有类似情况[31]。
厌氧菌共生菌群,如B.thetaiotaomicron的抗炎性效应能使肠道菌群耐受共生菌鞭毛蛋白诱导的前炎性反应,即共生菌群之间的相互作用也是免疫耐受的一种机制[32]。
共生菌群有Ⅲ和Ⅳ型分泌系统,可通过该系统与宿主联系,传递细菌效应分子到肠上皮细胞,从而调节宿主信号的输出[33]。Granato等研究表明,正常菌群缺乏毒力因子,但拥有延长因子Tu及鞭毛蛋白等从而改变免疫途径,免疫系统产生的黏蛋白酶及共生菌表面的多糖和糖蛋白使得免疫系统对菌群的免疫受到抑制,在此过程中多聚糖和黏蛋白形成的结构扮演受体的角色,并能促进细菌有效的粘附于肠壁,这为竞争性排斥提供了分子基础,也解释了各肠段定植不同菌群的现象[34]。
肠道菌群可激活调节性T细胞的抑制调节活性,从而使黏膜中DCs及调节性T细胞对其耐受,这利于共生菌群定植肠道,最终导致口服耐受[35]。Cukrowska等研究表明,给刚出生的无菌小猪接种非致病性大肠杆菌,在初期可见肠粘膜通透性增加、细菌一过性易位到肠系膜淋巴结、产生特异性抗体,5~10 d后,局部和全身的免疫反而被抑制,出现限自性的、可控的生理性炎症反应并最终达到免疫耐受[36]。
肠道菌群对宿主健康、代谢和免疫等的有益作用已被公认,然而菌群与宿主之间究竟是如何作用,其详细机制还有待进一步研究,同时肠道菌群与疾病关系也是今后一段时间的研究热点,因此在继续基础研究的同时,寻找高效的益生菌、益生元、合生元及开发其他手段(粪便移植)维持、调节、恢复肠道菌群平衡也至关重要。
[1]Hemarajata P,Versalovic J.Effects of probiotics on gut microbiota∶mechanisms of intestinal immunomodulation and neuromodulation[J].Therapeutic Advances in Gastroenterology,2013,6(1)∶39-51.
[2]Lepage P,Leclerc M C,Joossens M,et al.A metagenomic insight into our gut's microbiome[J].Gut,2013,62(1)∶146-158.
[3]Doré J,Corthier G.The human intestinal microbiota[J].Gastroentérologie Clinique Et Biologique,2010,34(1)∶7-15.
[4]Qin J J,Li R Q,Raes J,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature,2010,464∶59-65.
[5]Ley R E,Hamady M,Lozupone C,et al.Evolution of mammals and their gut microbes[J].Science,2008,320(5 883)∶1 647-1 651.
[6]Hooper L V,Gordon J I.Commensal host-bacterial relationships in the gut[J].Science,2001,292(5 519)∶1 115-1 118.
[7]Ley R E,Peterson D A,Gordon J I.Ecological and evolutionary forces shaping microbial diversity in the human intestine[J].Cell,2006,124(4)∶837-848.
[8]Pabst R,Russell M W,Brandtzaeg P.Tissue distribution of lymphocytes and plasma cells and the role of the gut[J].Trends in Immunology,2008,29(5)∶206-208.
[9]徐凯进,李兰娟.肠道正常菌群与肠道免疫[J].国际流行病学传染病学杂志,2005,32(3)∶181-183.
[10]Hooper L V,Gordon J I.Commensal host-bacterial relationships in the gut[J].Science,2001,292(5 519)∶1 115-1 118.
[11]Round J L,Mazmanian S K.The gut microbiome shapes intestinal immune responses during health and disease[J].Nature Reviews Immunology,2009,9(5)∶313-323.
[12]Macpherson A J,Uhr T.Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria[J].Science,2004,303(5 664)∶1 662-1 665.
[13]Suzuki H,Jeong K I,Itoh K,et al.Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germfree and specific pathogen-free mice[J].Experimental and Molecular Pathology,2002,72(3)∶230-235.
[14]Stappenbeck T S,Hooper L V,Gordon J I.Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells[J].Proceedings of the National Academy of Sciences,2002,99(24)∶15 451-15 455.
[15]Merritt J,Qi F,Goodman S D,et al.Mutation of luxS affects biofilm formation in Streptococcus mutans[J].Infection and Immunity,2003,71(4)∶1 972-1 979.
[16]Yamanaka T,Helgeland L,Farstad I N,et al.Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches[J].The Journal of Immunology,2003,170(2)∶816-822.
[17]Hooper L V,JMacpherson A.Immune adaptations that maintain homeostasis with the intestinal microbiota[J].Nature Reviews Immunology,2010,10∶159-169.
[18]Tanabe S.The effect of probiotics and gut microbiota on Th17 cells[J].International Reviews of Immunology,2013,32(5-6)∶511-525.
[19]Montalvillo E,Garrote J A,Bernardo D,et al.Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system[J].Rev Esp Enferm Dig,2014,106(5)∶334-345.
[20]Molloy M J,Bouladoux N,Belkaid Y.Intestinal microbiota∶shaping local and systemic immune responses[C].Seminars in immunology.Academic Press,2012,24(1)∶58-66.
[21]Turroni F,Ventura M,Buttó L F,et al.Molecular dialogue between the human gut microbiota and the host∶a Lactobacillus and Bifidobacterium perspective[J].Cellular and Molecular Life Sciences,2014,71(2)∶183-203.
[22]Villena J,Chiba E,Vizoso-Pinto M G,et al.Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells[J].BMC Microbiology,2014,14∶126.
[23]Yamashita M,Ukibe K,Uenishi H,et al.Lactobacillus helveticus SBT2171,a cheese starter,regulates proliferation and cytokine production of immune cells[J].Journal of Dairy Science,2014,97(8)∶4 772-4 779.
[24]Satoh-Takayama N,Vosshenrich C A J,Lesjean-Pottier S,et al.Microbial flora drives interleukin 22 production in intestinal NKp46+cells that provide innate mucosal immune defense[J].Immunity,2008,29(6)∶958-970.
[25]Xue X,Feng T,Yao S,et al.Microbiota downregulates dendritic cell expression of miR-10a,which targets IL-12/IL-23p40[J].The Journal of Immunology,2011,187(11)∶5 879-5 886.
[26]Johansson M E V,Phillipson M,Petersson J,et al.The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria[J].Proceedings of the National Academy of Sciences,2008,105(39)∶15 064-15 069.
[27]Lundin A,Bok C M,Aronsson L,et al.Gut flora,Toll-like receptors and nuclear receptors∶a tripartite communication that tunes innate immunity in large intestine[J].Cellular Microbiology,2008,10(5)∶1 093-1 103.
[28]Qian C,Cao X.Regulation of Toll-like receptor signaling pathways in innate immune responses[J].Annals of the New York Academy of Sciences,2013,1 283∶67-74.
[29]Neish A S,Gewirtz A T,Zeng H,et al.Prokaryotic regulation of epithelial responses by inhibition of IkB-a ubiquitination[J].Science,2000,289(5 484)∶1 560-1 563.
[30]Kelly D,Conway S,Aminov R.Commensal gut bacteria∶mechanisms of immune modulation[J].Trends in Immunology,2005,26(6)∶326-333.
[31]Dongarrà M L,Rizzello V,Muccio L,et al.Mucosal immunology and probiotics[J].Current Allergy and Asthma Reports,2013,13(1)∶19-26.
[32]Kelly D,Campbell J I,King T P,et al.Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA[J].Nature Immunology,2004,5∶104-112.
[33]Nagai H,Roy C R.Show me the substrates∶modulation of host cell function by type IV secretion systems[J].Cellular Microbiology,2003,5(6)∶373-383.
[34]Granato D,Bergonzelli G E,Pridmore R D,et al.Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533(La1)to human intestinal cells and mucins[J].Infection and Immunity,2004,72(4)∶2 160-2 169.
[35]Hart A L,Kamm M A,Knight S C,et al.Quantitative and functional characteristics of intestinal-homing memory T cells∶analysis of Crohn's disease patients and healthy controls[J].Clinical and Experimental Immunology,2004,135(1)∶137-145.
[36]Cukrowska B,Kozáková H,Reháková Z,et al.Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli O86[J].Immunobiology,2001,204(4)∶425-433.
Interaction between Gut Microbiota and Intestinal Immune System
SHI Yunduo1,SUN Hao2,3,ZENG Dong3,NI Xueqin3,PAN Kangcheng3
(1.Sichuan Fishery School,Chengdu 611730,China;2.Ya'an City Bureau of Agriculture,Ya'an 625000,Sichuan China;3.College of Veterinary Medicine,Sichuan Agricultural University,Chengdu 611130,China)
S852.6;S852.4
A
1001-0084(2017)09-0007-04
2017-05-30
时云朵(1989-),女,河北石家庄人,硕士研究生,研究方向为动物微生态。