杨 钊,汪芳裕,杨妙芳
南方医科大学金陵医院(南京军区南京总医院)消化内科,江苏 南京 210002
肠道菌群在非酒精性脂肪性肝病中作用机制的研究进展
杨 钊,汪芳裕,杨妙芳
南方医科大学金陵医院(南京军区南京总医院)消化内科,江苏 南京 210002
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)已经成为最常见的慢性肝脏疾病之一。近年来研究发现,肠-肝轴在NAFLD的发生、发展中起着重要作用。作为肠-肝轴重要组成部分,肠道菌群通过增加宿主能量摄入、调节胆碱及胆汁酸代谢、激活模式识别受体(pattern recognition receptors,PRRs)而促发炎症反应等机制,促使NAFLD的发生、发展;益生菌对NAFLD有一定疗效进一步证实肠道菌群在NAFLD中发挥着重要作用。本文对肠道菌群在NAFLD发病中可能的作用机制作一概述。
非酒精性脂肪性肝病;肠道菌群;肠-肝轴;模式识别受体;益生菌
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是指除酒精和其他明确肝损伤因素外所致的,以弥漫性肝细胞大泡性脂肪变为主要特征的临床病理综合征[1]。在美国,非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)已经成为第2大肝移植的病因[2],然而目前对其发病机制尚未完全阐明。经典的“二次打击”已被扩展为“多次平行打击”[3],其中,肠道菌群是肠道来源的重要致病因子,参与调控肠道免疫功能[4]。近年来研究表明,肠道菌群与NAFLD密切相关[5-6],肠道中某些细菌甚至与NAFLD炎症及纤维化程度相关[7]。益生菌、益生元在治疗NAFLD中有一定的效果[8-9]。本文主要概述近年来肠道菌群在NAFLD发生、发展中所起到的作用。
近年来,肠道菌群受到研究者的普遍关注。Qin等[10]研究发现,人体共含有1 000~1 150种细菌,肠道细菌基因量多达330万,约为人体基因的150倍;Le Chatelier等[11]研究发现,与肠道菌群丰度较高组相比,肠道菌群丰度较低组表现为胰岛素抵抗(insulin resistance,IR)、血脂异常及更明显的炎症表型等。多项研究[5,12]发现,肠道菌群与NAFLD密切相关,如与正常对照组相比,NAFLD患者肠道中厚壁菌门与拟杆菌门之比增大;此外,研究[13-14]发现,双歧杆菌及乳酸杆菌的含量在NAFLD患者中低于正常对照,而双歧杆菌及乳酸杆菌等益生菌的增加可改善NAFLD的病情[9]。
目前认为,肠-肝轴是肠道菌群作用于NAFLD的重要途径。肠-肝轴是指肠道与肝脏在解剖及功能上紧密联系的系统,在人体解剖上,肝脏接收来自肠系膜上静脉及脾静脉汇合成的门静脉血;在功能上,肠道及肝脏在物质营养的吸收及代谢中共同发挥重要作用。门静脉血不仅含有各种营养物质,还可含有各种信号分子及细菌代谢产物,如脂多糖(LPS)、细菌DNA等[15]。当小肠细菌过度生长时,肠道中有害物质增多,肠道通透性增加,内毒素血症形成,而LPS等通过门静脉进入肝脏,激活模式识别受体,促发肝脏发生炎症反应[15-16]。
2.1模式识别受体(patternrecognitionreceptors,PRRs)及炎症反应PRRs是一类可识别入侵细胞的微生物信号或无菌性信号,引起细胞因子转录表达进而促发一系列炎症反应的受体,可分为TLRs、CLRs、RLRs及NLRs四大类,其中TLRs及NLRs近年来颇受研究者重视。TLRs可通过MyD88依赖途径及TRIF依赖途径激活MAPK及NF-κB或激活IRF3,进而使肿瘤坏死因子及白介素等细胞因子释放,诱发一系列炎症反应,如TLR4、TLR9等与LPS、细菌DNA等结合,激活下游信号,最终使肝脏发生炎症反应[17]。此外,最新研究[18]发现,当细菌、病毒等被TLR7识别后,肝脏释放IGF-1,促发细胞发生自噬,及时清除病原菌,从而在NAFLD中起保护作用。NLRs又称炎症小体,其通过炎症小体装配及激活Caspase-1,进而使IL-1β成熟、释放[19]。在众多炎症小体中,NLRP3最受研究者关注,在与NAFLD相关的研究[20]中发现,NLRP3识别模式是NAFLD发生脂肪性肝炎、纤维化的重要信号通路。另外,NLRP6也与肠道菌群密切相关,其主要在小肠上皮细胞表达,参与维持正常的肠道屏障功能,从而在肠-肝对话中发挥重要作用,因此与NAFLD的发生、发展密切相关[21]。Henao-Mejia等[5]发现,普雷沃氏菌科及紫单胞菌科可能与NAFLD的发病密切相关,更重要的是,研究中发现是IL-18而非普遍认识的IL-1β介导肠道菌群在NAFLD中发挥重要作用。
2.2增加能量摄入NAFLD与能量摄入增加相关。高热量饮食,如富含反式/饱和脂肪酸、胆固醇食物及果糖饮料等,可增加肝脏内脂质的积累[22]。早期研究[23]发现,无菌小鼠接触正常小鼠肠道细菌2周后,即使饮食量减少,它们体内脂肪含量却比对照的无菌小鼠增多60%,并出现IR,其作用机制为:肠道菌群促进肠道对单糖的吸收,激活碳水化合物反应元件结合蛋白及固醇调节元件结合蛋白,或通过抑制小肠上皮产生空腹诱导脂肪细胞因子,进而激活脂蛋白脂酶活性,从而增加甘油三酯的储存。Turnbaugh等[24]发现,肥胖小鼠肠道中厚壁菌门增多,后者可将食物分解为短链脂肪酸,一方面促进糖及脂肪合成,使能量产生增加,另一方面抑制AMPK活性,减少脂肪酸β氧化,从而使游离脂肪酸在肝脏中累积。
2.3调节胆汁酸代谢研究发现,初级胆汁酸与NAFLD脂肪变性程度相关,甚至与NASH的纤维化程度相关[25],其作用机制可能为初级胆汁酸可增加肠黏膜通透性,产生内毒素血症,进而引起IR使NAFLD病情加重[26]。另外,胆汁酸还调控多种受体,包括法尼酯X受体(FXR)、TGR5等。Jiang等[27]研究发现,在小鼠高脂模型中,肝脏合成牛磺β鼠胆酸(tauro-β-muricholic acid,T-β-MCA)增多,T-β-MCA在回肠中转化为鼠胆酸(MAC),后者激活FXR后促使神经酰胺释放,进而通过激活SREBP-1C使脂肪从头合成增加,而在抗生素处理后的小鼠中,其肝脏脂肪变性可发生逆转。最近研究[25]发现,NASH患者胆汁酸合成量比正常对照者增多,初级胆汁酸与次级胆汁酸之比高于正常组,并发现柔嫩梭菌(C.leptum)与牛磺胆酸呈正比,与胆酸及鹅脱氧胆酸呈反比,提示C.leptum可能有助于将初级胆汁酸转化为次级胆汁酸,从而减轻初级胆汁酸对肝脏的损伤。
2.4调节胆碱代谢胆碱缺乏可引起NAFLD,其机制包括:增加脂肪合成及储存,减少甘油三酯输出等[28]。此外,近年来,肠道菌群与胆碱代谢的关系在NAFLD发病中作用受到研究者的关注。肠道中广泛存在代谢胆碱的细菌,主要包括变形菌门、放线菌门及厚壁菌门,将可代谢胆碱的细菌植入无菌小鼠肠道中,发现胆碱生物利用度下降,其效果相当于胆碱缺乏饮食而引起NAFLD[29]。一项前瞻性临床研究[30]发现,经过42 d胆碱缺乏的饮食后,肠道中γ-变形菌纲明显降低,可能机制是γ-变形菌纲含有大量的代谢磷脂酰胆碱的酶,故该菌丰度越高,胆碱消耗量越大。研究者认为,结合基因多态性因素,肠道中γ-变形菌丰度升高者对胆碱缺乏更敏感,发生NAFLD的风险更大。
2.5其他相关机制内源性酒精增加肠道菌群失调,如大肠杆菌(Escherichiacoli)丰度升高可引起肠道内源性酒精增多,肠道黏膜通透性增大,内毒素、酒精等通过门静脉直接对肝脏进行打击,或进一步激活PRRs,使NAFLD向NASH发展[13]。
肠道动力降低肠道菌群失调,促使肠道释放出酪酪肽(PYY),后者可使胃排空延迟及小肠蠕动减慢,而肠道动力降低,可使营养物质吸收不良,进一步促进肠道菌群失调,形成恶性循环,促使NAFLD发生、发展[16]。
益生菌是一类定植于人体肠道、生殖系统内,能产生确切健康功效、改善宿主微生态平衡的活性微生物的总称;益生元则是不易消化的碳水化合物,可改变肠道菌群的组成及活性[31]。临床研究[9,32-33]表明,益生菌和/或益生元可以使NAFLD患者血清转氨酶下降,HOMA-IR、血清甘油三酯及胆固醇等降低;在动物实验[8]中发现,补充益生菌可使肝脏脂肪沉积减少,肝脏组织炎性改变程度减轻。益生菌和/或益生元作用的机制主要包括:(1)调节肠道菌群,如增加双歧杆菌、乳酸杆菌等[34];(2)降低肠道通透性,减轻内毒素血症[8];(3)调节血糖,改善IR[9];(4)调节脂质代谢[35];(5)产生短链脂肪酸,发挥抗炎作用[8]。以上疗效及作用机制从另一角度反映了肠道菌群在NAFLD发病中的重要作用。然而,目前益生菌/益生元在NAFLD中的疗效多基于动物实验,各临床试验之间的疗效也不一致,可能与样本量不足、研究设计、纳入人群不同等有关,迫切需要高质量的多中心临床随机试验来提供更可靠的证据。
目前,肠道菌群在NAFLD中的作用主要基于肠-肝轴的作用机制,即通过改变肠道中菌群组成成分,参与炎症反应,调控宿主能量代谢,参与调节胆汁酸及胆碱代谢,以及产生内源性酒精等,从而促进NAFLD发生、发展。肠道菌群是一个复杂的生态系统,其作用与功能尚未完全明确,未来需要多种检测技术如蛋白组学、代谢组学、转录组学、宏基因组学等相互配合使用以阐明其作用机制。同时,为更加清楚地了解肠道菌群的功能,传统细菌培养方法不能忽视,将培养法及分子生态学检测法相结合,可以更加全面了解肠道菌群在NAFLD中的作用。
[1] Rinella M, Charlton M. The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health [J]. Hepatology, 2016, 64(1): 19-22.
[2] Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States [J]. Gastroenterology, 2015, 148(3): 547-555.
[3] Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis [J]. Hepatology, 2010, 52(5): 1836-1846.
[4] Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity [J]. Science, 2016, 352(6285): 565-569.
[5] Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity [J]. Nature, 2012, 482(7384): 179-185.
[6] Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease [J]. Hepatology, 2013, 58(1): 120-127.
[7] Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota [J]. Hepatology, 2016, 63(3): 764-775.
[8] Endo H, Niioka M, Kobayashi N, et al. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis [J]. PLoS One, 2013, 8(5): e63388.
[9] Alisi A, Bedogni G, Baviera G, et al. Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis [J]. Aliment Pharmacol Ther, 2014, 39(11): 1276-1285.
[10] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464(7285): 59-65.
[11] Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers [J]. Nature, 2013, 500(7464): 541-546.
[12] Boursier J, Diehl AM. Implication of gut microbiota in nonalcoholic fatty liver disease [J]. PLoS Pathog, 2015, 11(1): e1004559.
[13] Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH [J]. Hepatology, 2013, 57(2): 601-609.
[14] Okubo H, Kushiyama A, Sakoda H, et al. Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice [J]. Sci Rep, 2016, 6: 20157.
[15] Federico A, Dallio M, Godos J, et al. Targeting gut-liver axis for the treatment of nonalcoholic steatohepatitis: translational and clinical evidence [J]. Transl Res, 2016, 167(1): 116-124.
[16] Leung C, Rivera L, Furness JB, et al. The role of the gut microbiota in NAFLD [J]. Nat Rev Gastroenterol Hepatol, 2016, 13(7): 412-425.
[17] Takeuchi O, Akira S. Pattern recognition receptors and inflammation [J]. Cell, 2010, 140(6): 805-820.
[18] Kim S, Park S, Kim B, et al. Toll-like receptor 7 affects the pathogenesis of non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6: 27849.
[19] Alegre F, Pelegrin P, Feldstein AE. Inflammasomes in liver diseases [J]. Semin Liver Dis, 2017, 37(3): 119-129.
[20] Wree A, Mcgeough MD, Pea CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD [J]. J Mol Med (Berl), 2014, 92(10): 1069-1082.
[21] Wlodarska M, Thaiss C, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion [J]. Cell, 2014, 156(5): 1045-1059.
[22] Fan JG, Cao HX. Role of diet and nutritional management in non-alcoholic fatty liver disease [J]. J Gastroenterol Hepatol, 2013, 28 Suppl 4: 81-87.
[23] Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage.[J]. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723.
[24] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature, 2006, 444(7122): 1027-1131.
[25] Mouzaki M, Wang AY, Bandsma R, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease [J]. PLoS One, 2016, 11(5): e151829.
[26] Arab JP, Karpen SJ, Dawson PA, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives [J]. Hepatology, 2017, 65(1): 350-362.
[27] Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease [J]. J Clini Invest, 2015, 125(1): 386-402.
[28] Li Z, Agellon LB, Allen TM, et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis [J]. Cell Metab, 2006, 3(5): 321-331.
[29] Sherriff JL, O'Sullivan TA, Properzi C, et al. Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes [J]. Adv Nutr, 2016, 7(1): 5-13.
[30] Spencer MD, Hamp TJ, Reid RW, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency [J]. Gastroenterology, 2011, 140(3): 976-986.
[31] Tarantino G, Finelli C. Systematic review on intervention with prebiotics/probiotics in patients with obesity-related nonalcoholic fatty liver disease [J]. Future Microbiol, 2015, 10(5): 889-902.
[32] Kadooka Y, Sato M, Ogawa A, et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial [J]. Br J Nutr, 2013, 110(9): 1696-1703.
[33] Shavakhi A, Minakari M, Firouzian H, et al. Effect of a probiotic and metformin on liver aminotransferases in non-alcoholic steatohepatitis: a double blind randomized clinical trial [J]. Int J Prev Med, 2013, 4(5): 531-537.
[34] Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women [J]. Gut, 2013, 62(8): 1112-1121.
[35] Qamar AA. Probiotics in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and cirrhosis [J]. J Clin Gastroenterol, 2015, 49 Suppl 1: S28-S32.
(责任编辑:王全楚)
Theroleofgutmicrobiotainnon-alcoholicfattyliverdisease
YANG Zhao, WANG Fangyu, YANG Miaofang
Department of Gastroenterology, Jinling Hospital, Southern Medical University/Nanjing General Hospital of Nanjing Military Region, PLA, Nanjing 210002, China
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases. Recent years, many studies have found that gut-liver axis plays an important role in the pathogenesis of NAFLD. As an important part of the gut-liver axis, gut microbiota contributes to the development of NAFLD by enhancing energy intake, regulating the choline and bile acid metabolism, and activating the pattern recognition receptors (PRRs) which promote inflammation. Probiotics are beneficial for NAFLD, which support that gut microbiota plays an important role in NAFLD. This article reviewed the possible role of gut microbiota in the pathogenesis of NAFLD.
Non-alcoholic fatty liver disease; Gut microbiota; Gut-liver axis; Pattern recognition receptors; Probiotics
R575.5
A
1006-5709(2017)10-1100-03
2016-11-06
国家自然科学基金(81370546)
杨钊,硕士,研究方向:肠道微生态与脂肪肝。E-mail:zhaoyangjinrui@hotmail.com
杨妙芳,博士,副主任医师,研究方向:肠道微生态与脂肪肝、肝癌的发病机制。E-mail:miaofangyang@hotmail.com
10.3969/j.issn.1006-5709.2017.10.007