碳纳米材料在修饰电极领域的应用

2017-03-06 01:53鲍昌昊黄蓉萍马静芳
化学研究 2017年2期
关键词:玻碳电催化碳纳米管

谷 飞,鲍昌昊,黄蓉萍,马静芳,李 元,李 梅,程 寒

(中南民族大学 药学院,湖北 武汉 430074)

碳纳米材料在修饰电极领域的应用

谷 飞,鲍昌昊,黄蓉萍,马静芳,李 元,李 梅,程 寒*

(中南民族大学 药学院,湖北 武汉 430074)

碳纳米材料具有良好的力学、电学及化学性能等特点,被人们广泛研究,特别是具有大比表面积、高的电导率和良好生物相容性的碳纳米管和石墨烯更是研究的热点,在电化学领域显示出独特的优势. 采用碳纳米材料修饰的电极具有高灵敏度、高选择性及优良的媒介作用. 主要阐述了碳纳米材料在修饰电极领域中的应用,从功能及应用上重点探讨了近年来碳纳米管、石墨烯、富勒烯、纳米金刚石等碳纳米材料在修饰电极领域的研究进展.

碳纳米材料;修饰电极;石墨烯;碳纳米管;富勒烯

纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料. 碳纳米材料主要包括碳纳米管(CNT)、石墨烯(CP)、富勒烯以及金刚石,有序介孔碳等.

1991年日本饭岛博士[1]在用高分辨透射电镜观察C60的结构时发现了碳纳米管,碳纳米管又称巴基管,按照石墨烯片层数可把其简单分为:单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs). 2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫[2]用实验方法从石墨中分离出了石墨烯(Graphere, CP),由此证明了石墨烯能单独存在. 近年来石墨烯掺杂技术的研究取得了很大的进展,出现了碳掺杂石墨烯,硼掺杂石墨烯等新材料. 富勒烯是一个大家族,包括C50,C60,C70等. 纳米金刚石硬度高,化学性质稳定,其研制和应用一直是研究的热点. 有序介孔碳是二十世纪九十年代出现的一种纳米碳材料,在制作储氢材料和电极方面具有很好的应用前景.

由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是具有大比表面积、高的电导率和良好生物相容性的碳纳米管和石墨烯更是研究的热点. 这些新型碳材料具有优异的物理和化学特性,被广泛应用于诸多领域,特别是在电化学研究中显示出其独特的优势.

1 碳纳米材料在修饰电极领域的应用研究

1.1 电催化作用

碳纳米管修饰电极经常被应用于电催化方面,如应用在肾上腺素(EP),抗坏血酸(AA),多巴胺(DA)等物质的测定上. 唐婧等[3]利用碳纳米管修饰玻碳电极,对特丁基对苯二酚进行了检测,采用循环伏安法和差分脉冲法考察了对特丁基对苯二酚在裸电极以及修饰电极上的电化学行为,对比实验的结果表明碳纳米管修饰的玻碳电极对特丁基对苯二酚的氧化具有较好的电催化活性,电极性能稳定. 碳纳米管复合材料的修饰电极在电催化方面也有很多应用. 张娜等[4]制备了中性红功能化的多壁碳纳米管复合材料修饰电极,并研究了其电化学行为,实验结果表明该电极对过氧化氢具有良好的电催化效果.

石墨烯修饰电极也同样具有良好的电催化作用. 马玲等[5]用石墨烯修饰电极测定VB12. 实验结果表明石墨烯修饰的电极能显著提高VB12检测灵敏度;张勇等[6]采用循环伏安法测定盐酸表阿霉素,发现在石墨烯修饰的玻碳电极上,盐酸表阿霉素在-0.382 V处有非常明显的氧化峰,比裸玻碳电极峰电流提高了两倍多;另有研究表明石墨烯修饰电极对致癌物质肼具有优良的电催化氢化能力[7];石墨烯修饰的玻碳电极在对苯二酚存在下选择性测定米吐尔,米吐尔在修饰后的玻碳电极上的氧化还原峰电位差减小,峰电流明显增加[8].

氧化石墨烯的电催化活性显著,可以媲美甚至是超越镧镍的电催化性能. 氧化石墨烯修饰电极具有良好的电催化性能,顾玲等[9]采用氧化石墨烯修饰电极对锌含量进行测定与分析,氧化石墨烯修饰电极表现出较好的催化作用和导电性;氧化石墨烯修饰电极在对邻硝基苯酚[10]和氧氟沙星[11]的检测中也表现出了良好的电催化活性.

康辉等[12]采用自制的氮掺杂石墨烯修饰电极对抗坏血酸进行检测,氮掺杂石墨烯修饰电极的电子转移阻抗明显小于相同条件的石墨烯修饰电极,电子转移速率显著提高,电催化效果明显;氮掺杂石墨烯修饰电极也能促进对嘌呤类物质的在电极表面的电子转移速率,具有显著的电催化活性,能极大增加检测灵敏度,如郑波[13]用氮掺杂石墨烯修饰电极对鸟嘌呤进行分析,鸟嘌呤在修饰后的电极表面的吸附能力增加,修饰电极对鸟嘌呤的检测表现出良好的电催化能力. 在pH=7.0的磷酸盐溶液中,鸟嘌呤氧化峰电流在5.0×10-6~1.0×10-4mol/L浓度范围内呈现良好的线性关系,检出限达1.0×10-6mol/L. 纳米金刚石在电催化性能方面也有报道,崔凯等[14]利用纳米金对掺硼纳米金刚石电极进行修饰,该电极具有优异的电化学性能,对生物小分子如巴胺等具有很好的催化作用.

碳纳米纤维复合材料[15-16]修饰电极也应用于物质的测定中,ARDELEAN等[17]制备了碳纳米纤维-环氧树脂复合材料修饰电极,用该电极检测海水样品中的硫化物的含量,结果显示其对硫化物具有很好的氧化催化效应,灵敏度极高.

合成系列富勒烯衍生物及测定其电化学性能是研究其电催化性能的前提,罗红霞等[18]制备了(C70)2-对叔丁基杯芳烃超分子配合物,并将该配合物用于玻碳电极的修饰,考查了几种溴代乙酸和氯代乙酸在该电极上的电化学行为,实验结果表明其对卤代酸的还原具有催化作用. 富勒烯与其他材料的络合也能产生电催化效应,李南强[19]合成了一系列的C60及C70与环糊精和杯芳烃的超分子络合物,研究结果表明其涂层修饰电极对生物大分子以及亚硝酸根、卤代酸等具有电催化作用.

关于有序介孔碳在电催化方面的研究报道较少,韩清等[20]制备了有序介孔碳电极,该电极对双酚A具有很强的电催化作用.

1.2 富集、分离与测定

在检测生物小分子时,往往会出现两种或两种以上的物质混合的情况,这时就需要进行分离测定,待测物可通过与电极表面接着的化学基团发生反应而被富集、分离[21]. 这也是碳纳米材料修饰电极的重要研究领域之一.

碳纳米管修饰电极在生物分子的分离与测定领域应用广泛,王歌云等[22]研究了神经递质多巴胺和肾上腺素在多壁碳纳米管修饰电极上的电化学性质,实验结果显示该修饰电极对多巴胺和肾上腺素具有显著的增敏和电分离作用,且电极性能稳定.

碳纳米管复合材料修饰电极也用于对多种物质的分离,刘拥军[23]制作的单壁碳纳米管/金—四氧化三铁复合材料修饰电极对硫磷具有很好的富集和电催化作用. 潘艳等[24]制备了聚苯乙烯磺酸钠/单壁碳纳米管复合膜修饰电极,利用差分脉冲法实现了对体系中的多巴胺、尿酸、抗坏血酸的同时测定,实验结果表明三种电活性物质的氧化峰信号区分明显.

石墨烯优良的理化性质也体现在对生物样品的分离检测方面,王朝霞等[25]利用石墨烯修饰的玻碳电极对抗坏血酸进行测定,发现其不但具有比裸玻碳电极更高的氧化峰电流,而且还能够有效排除肾上腺素、多巴胺、尿酸等物质对实验的干扰. 王峻敏等[26]通过电化学沉积的方法制备了石墨烯/Nafion/纳米镍复合材料修饰电极,成功实现了邻、间、对硝基苯酚的分离和测定. 鲁莉华等[27]研究了氢氧化镍/多壁碳纳米管复合材料的溶剂热法制备及电容性能,该电极有良好的重现性. 李春兰等[28]制备了石墨烯/DNA/纳米金复合材料修饰电极,实验研究了布洛芬在该电极上的电化学行为,并在实际样品中对布洛芬进行了检测,该电极具有很好的选择性及重现性.

FIGUEIREDO-FILHO等[29]利用掺硼纳米金刚石作为修饰材料制作修饰电极,提出了一种测定农药利谷隆除草剂的高效方法. 陈凯玉]等[30]采用掺硼金刚石(BDD)薄膜电极灵敏地检测出浓度为10 μmol/L的尿酸(UA),能抵抗 20倍浓度葡萄糖和抗坏血酸干扰的影响.

C60是富勒烯家族的代表,刘艳丽等[31]制备了C60修饰电极,并研究了其电化学行为,建立了用微分脉冲伏安法测定盐酸克伦特罗的方法.

有序介孔碳(OMC)修饰电极可用于检测多巴胺,抗坏血酸和尿素等,还可用于污染物的检测. 林凡允[32]采用OMC-Nafion复合膜修饰电极实现了对多巴胺的高灵敏度,高选择性测定. GUO等[33]采用电化学聚合法将硫堇聚合到有序介孔碳修饰的电极上,该电极表现出对NADH良好的电化学响应.

1.3 媒介作用

碳纳米材料修饰电极的媒介作用主要体现在电化学传感器的应用上,包括酶化学反应、异相电子转移的反应等. 许多化学分子在电极上的电子转移过程十分缓慢,而解决此类问题的方法之一便是利用化学修饰电极的媒介作用.

作为媒介作用的碳纳米管修饰电极能够应用于酶化学反应,生命分析等领域[34]. 蔡称心等[35]制备了碳纳米管修饰玻碳电极(CNT/GC),利用吸附的方法将葡萄糖氧化酶 (GOx) 固定到CNT/GC电极表面,形成GOx-CNT/GC电极. 实验结果表明,GOx在CNT/GC电极表面没有发生变性,能进行有效且稳定的电子转移反应.

石墨烯修饰电极能够加快蛋白质电子转移的速度. 用石墨烯修饰玻碳电极对H2O2和O2这两种葡萄糖传感器检测信号分子的电化学行为进行了研究,发现石墨烯修饰电极对水和氧气具有良好的电催化活性,可实现电子的转移[36].

氧化石墨烯表面含有大量的羟基、羧基和环氧等含氧官能团,这些官能团使其具有良好的亲水性、分散性和与聚合物的兼容性,而且因为有羧基的存在,可以把酶固定于氧化石墨烯表面,实现酶电极的生物检测[37].

石墨烯复合材料修饰电极在酶传感器上的应用也有很多. 该类复合材料的电催化作用强,导电高分子对酶的共价固定使得该电极具有优于许多同类传感器的灵敏度,重现性和选择性. 夏前芳等[38]制备石墨稀/金复合材料修饰电极,并将葡萄糖氧化酶共价键合于电极表面制备生物传感器. 郑龙珍等[39]将石墨烯-聚多巴胺纳米材料与过氧化酶组装到电极表面制备了H2O2传感器;李俊华等[40]利用石墨烯/碳纳米管复合材料制修饰电极而制备的L-色氨酸电化学传感器和基于氧化石墨烯/纳米银复合薄膜制备的TNP电化学传感器.

纳米金刚石也与其他材料复合用于酶化学反应,祝敬妥等[41]将无掺杂的纳米金刚石与壳聚糖制成复合膜用以修饰玻碳电极,该复合膜具有良好的生物相容性,过氧化物酶能够在此电极上保持很好的活性.

碳纳米材料不仅应用于上述酶电极,还可应用于其他类型传感器,李拂晓等[42]研制了基于碳纳米管复合材料修饰电极的DNA传感器. VEERAKUMAR等[43]采用高表面积的碳多孔材料制作玻碳电极,该电极对多巴胺的检测具有优异的灵敏度和选择性,有望制备高实用性和经济效益的DA传感器.

C60的衍生物修饰电极上的应用也见报道,史娟兰等[44]采用C60-CHO修饰的玻碳电极构建新型DNA传感器,该电化学传感器拥有良好的选择性,能有效区分不同的 DNA 序列,并具有良好的重现性.

2 前景展望

碳纳米材料具有非常高的比表面积、导电性能和良好的机械性能,是优良的电化学材料. 目前对碳纳米管在修饰电极领域的应用进行了大量的理论和实践研究,并取得了突破性的进展,充分显示了碳纳米材料作为新型电极材料的应用前景. 随着碳纳米科技的不断发展,对新型碳纳米材料在电化学研究领域的应用也必将取得更大的突破.

[1] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.

[2] 陈洁, 孙健, 胡勇有. 石墨烯修饰电极微生物燃料电池及其抗菌性研究进展[J]. 环境科学学报, 2016, 36(2): 387-397.

CHEN J, SUN J, HU Y Y. Recent advances in microbial fuel cells with graphene-modified electrodes and the antibacterial activity of grapheme [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 387-397.

[3] 唐婧, 朱金坤, 郑胜彪, 等. 碳纳米管修饰电极检测特丁基对苯二酚[J]. 分析实验室, 2015, 34(8): 934-938.

TANG Q, ZHU J K, ZHENG S B, et al. Highly sensitive determination of tertiary butyl hydroquinone at glassy carbon electrodes modified with multi-walled carbon nanotube films [J]. Chinese Journal of Analysis Laboratory, 2015, 34(8): 934-938.

[4] 张娜, 张克营, 史洪伟, 等. 基于中性红功能化多壁碳纳米管修饰电极对H2O2的电催化[J]. 分析试验室, 2014, 33(10): 1181-1183.

ZHANG N, ZHANG K Y, SHI H W, et al. Neutral red functionalized multi-walled carbon nanotubes modified and its electrocatalysis for H2O2[J]. Chinese Journal of Analysis Laboratory, 2014, 33(10): 1181-1183.

[5] 马玲, 张婷, 冯素玲. 石墨烯修饰电极对维生素B12的电化学响应及其分析应用[J]. 分析试验室, 2014, 33(5): 614-617.

MA L, ZHANG T, FENG S L. The electrochemical response of vitamin B12at a graphene modified electrode and its analytical application [J]. Chinese Journal of Analysis Laboratory, 2014, 33(5): 614-617.

[6] 张勇, 杜慧琳, 程红芬, 等. 石墨烯修饰玻碳电极用于循环伏安法测定盐酸表阿霉素[J]. 理化检验(化学分册), 2015, 5(7): 1028-1031.

ZHANG Y, DU H L, CHENG H F, et al. Determintation of epirubicin hydrochloride by cyclic voltamming using graphene modified glassy carbon electrode [J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2015, 5(7): 1028-1031.

[7] 王毅, 于浩, 简选, 等. 直接电化学方法制备石墨烯修饰电极及对肼的检测[J]. 分析测试学报, 2012, 12(31): 1581-1585.

WANG Y, YU H, JIAN X, et al. Fabrication of graphene modified electrode by direct electrochemical method and its application in determination of hydrazine [J]. Journal of Instrumental Analysis, 2012, 12(31): 1581-1585.

[8] 张亚, 郑建斌. 石墨烯修饰玻碳电极在对苯二酚存在下选择性测定米吐尔[J]. 应用化学, 2016, 33(1): 103-107.

ZHANG Y, ZHENG J B. Graphene modified glassy carbon electrode for selective determination of metol in the presence of hydroquinone [J]. Chinese Journal of Applied Chemistry, 2016, 33(1): 103-107.

[9] 顾玲, 刘彦平. 氧化石墨烯修饰碳糊电极的方法溶出伏安法测定锌[J]. 化学研究与应用, 2016, 28(1): 36-41.

GU L, LIU Y P. Graphite oxide modified carbon paste electrode for determination of zinc by square wave stripping voltammetry [J]. Chemical Research and Application, 2016, 28(1): 36-41.

[10] 郭九言. 氧化石墨烯及其碳纳米管修饰电极在分析化学中的应用[D]. 郑州: 郑州大学, 2012.

GUO J Y. Application of graphene oxide and carbon nanotube modified electrode in electroanalytical chemistry [D]. Zhengzhou: Zhengzhou Unversity, 2012.

[11] 吴芳辉, 陈乐, 程立春, 等. 石墨烯修饰电极伏安法测定药物中的氧氟沙星[J]. 化学研究与应用, 2014, 26(5): 635-640.

WU F H, CHEN L, CHENG L C,et al. Application of graphene modified glassy carbon electrode for electrooxidative determination of ofloxacin in pharmaceutical samples [J]. Chemical Research and Application, 2014, 26(5): 635-640.

[12] 康辉, 罗民, 梁斌, 等. 掺氮杂石墨烯的溶剂热制备及对抗坏血酸氧化的电催化性能[J].功能材料, 2013, 44(18): 2607-2611.

KANG H, LUO M, LIANG B, et al. Hydrothermal synthesis of amino-doped graphene and its electrochemical behavior on ascorbic acid[J]. Journal of Functional Materials, 2013, 44(18): 2607-2611.

[13] 郑波. 氮掺杂石墨烯修饰电极的制备及对鸟嘌呤的电催化氧化[J]. 分析科学学报, 2012, 28(6): 780-784.

ZHENG B. Fabrication of N-doped graphene-modified electrode and its electrocatalytic oxidation of guanine [J]. Journal of Analytical Science, 2012, 28(6): 780-784.

[14] 崔凯, 汪家道, 冯东, 等. 纳米金颗粒在掺硼金刚石薄膜电极表面的自组装及其电化学性能分析[J]. 功能材料, 2015, 46(7): 7076-7080.

CUI K, WANG J D, FENG D, et al. Self-assembly of gold nanoparticles onto boron-doped diamond electrode and its electrochemical properties [J]. Journal of Functional Materials, 2015, 46(7): 7076-7080.

[15] 高秀秀, 王梦薇, 于锦华, 等. 氮掺杂石墨烯量子点的激发波长依赖性发光研究[J]. 化学研究, 2016, 27(3): 280-285.

GAO X X, WANG M W, YU J H, et al. Origin of excitation wavelength dependent photoluminescence of nitrogen-doped graphene quantum dots [J]. Chemical Research, 2016, 27(3): 280-285.

[16] 高丽, 吕逍雨, 杨海堂, 等. Au-Pd/石墨烯和 Au-Pd/碳纳米管催化电化学氧化甲酸[J]. 化学研究, 2015, 26(6): 570-574.

GAO L, LV X Y, YANG H T, et al. Effect of graphene and carbon nanotubes supported Au-Pd nanoparticles for electrocatalytic oxidation of formic acid [J]. Chemical Research, 2015, 26(6): 570-574.

[17] ARDELEAN M, MANEA F, VASZILCSIN N, et al. Electrochemical detection of sulphide in water/ seawater using nanostructured carbon-epoxy composite electrodes [J]. Analtical Methods, 2014, 6(13): 4775-4782.

[18] 罗红霞, 李南强, 施祖进, 等. (C70)2-对叔丁基杯[8]芳烃化学修饰电极对卤代酸的电催化行为[J]. 化学学报, 2002, 60(3): 389-392.

LUO H X, LI N Q, SHI Z J, et al. Investigation of the electrocatalytic behavior of halogenated acids at a (C70)2-p-tert-calix[8] arene chemically modified electrode [J]. Acta Chimica Sinca, 2002, 60(3): 389-392.

[19] 李南强. 富勒烯与环糊精、杯芳烃超分子络合物化学修饰电极电催化作用的研究[J]. 化学传感器, 2001, 21(3): 19-20.

LI N Q. Study on the electrocatalytic effect of fullerene and cyclodextrin and calixarene supramolecular complex chemically modified electrode [J]. Chemical Sensors, 2001, 21(3): 19-20.

[20] 韩清, 陈艳玲, 周闻云, 等. 双酚A在介孔碳修饰电极上的电化学行为及其测定[J]. 分析测试学报, 2009, 28(3): 337-341.

HAN Q, CHEN Y L, ZHOU W Y, et al. Electrochemical behavior of bisphenola at ordered mesoporous carbon modified glassy carbon electrode and its determination [J]. Journal of Instrumental Analysis, 2009, 28(3): 337-341.

[21] 董绍俊. 化学修饰电极在分析化学中的应用[J]. 分析化学, 1988, 16(10): 951-960.

DONG S J. Application of chemically modifide electrode to analytical chemistry[J]. Chinese Journal of Analtical Chemistry, 1988, 16(10): 951-960.

[22] 王歌云, 王宗花, 肖素芳, 等. 碳纳米管修饰电极对多巴胺和肾上腺素的电分离及同时测定[J]. 分析化学, 2003, 31(11): 1281-1285.

WANG Y G, WANG Z H, XIAO S F, et al. Electrocatalytic separation for dopamine and epinephrine at multi-wall carbon nanotube modified electrode and simultaneous determination [J]. Chinese Journal of Analytical Chemistry, 2003, 31(11): 1281-1285.

[23] 刘佣军, 吴立生, 师真, 等. 对硫磷在单壁碳纳米管/金-四氧化三铁纳米粒子复合材料修饰电极上的电化学响应及其测定[J]. 分析试验室, 2012, 31(1): 21-25.

LIU Y J, WU L S, SHI Z, et al. Sensitive electrochemical response and analysis of parathion at a SWNT/Au-Fe3O4modified electrode [J]. Chinese Journal of Analysis Laboratory, 2003, 2012, 31(1): 21-25.

[24] 潘艳, 张莉萍, 张克营, 等. 聚苯乙烯磺酸钠/单璧碳纳米管复合膜修饰电极对体系中抗坏血酸、尿酸、多巴胺的电分离研究[J] . 安徽师范大学学报(自然科学版), 2007, 30(50): 575-579.

PAN Y, ZHANG L P, ZHANG K Y, et al. Studies on electro-separation of ascorbic acid, dopamine and uric acid using poly(styrene sulfonic acid)soium salt/single-wall carbon nanotube modified glassy carbon electrode [J]. Journal of Anhui Normel University(Natural Science), 2007, 30(50): 575-579.

[25] 王朝霞, 陈美凤, 马心英. 石墨烯修饰玻碳电极用于循环伏安法测定抗坏血酸[J]. 理化检验(化学分册), 2012, 48(3): 321-327.

WANG C X, CHEN M F, MA X Y. Use of modified glassy carbon electrode in cyclic voltammetric determination of ascorbic acid [J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2012, 48(3): 321-327.

[26] 王峻敏, 范哲锋. 石墨烯复合材料修饰电极对硝基苯酚同分异构体的检测[J]. 分析试验室, 2015(9): 1086-1089.

WANG J M, FAN Z F. Simultaneous determination of nitrophenol isomers based on graphene composite materials [J]. Chinese Journal of Analysis Laboratory, 2015(9): 1086-1089.

[27] 鲁莉华, 龚良玉. 氢氧化镍/多壁碳纳米管复合材料的溶剂热法制备及电容性能[J]. 化学研究, 2012, 23(4): 74-77.

LU L H, GONG L Y. Synthesis of Ni(OH)2/multi-walled carbon nanotubes composites via solvothermal method and their capacitive performance[J]. Chemical Research, 2012, 23(4): 74-77.

[28] 李春兰, 朱旭, 徐茂田. 布洛芬在石墨烯/DNA/纳米金修饰电极上的电化学行为及测定[J]. 分析测试学报, 2013, 32(12): 1497-1501.

LI C L, ZHU X, XU M T. Electrochemical behavior and determination of ibuprofen at graphene/DNA/gold nanoparticles modified electrode [J]. Journal of Instrumental Analysis, 2013, 32(12): 1497-1501.

[29] FIGUEIREDO-FILHO L C S, SARTORI E R, FATIBELLO-FILHO O. Electroanalytical determination of the linuron herbicide using a cathodically pretreated boron-doped diamond electrode: comparison with a boron-doped diamond electrode modified with platinum nanoparticles [J]. Analtical Methods, 2015, 7(2): 643-649.

[30] 陈凯玉, 朱宁, 戴玮, 等. 修饰掺硼金刚石电极循环伏安法检测尿酸[J]. 光电子·激光, 2013, 24(5): 1026-1031.

CHEN K Y, ZHU N, DAI W, et al. Detection of uric acid with modified boron-doped diamond electrodes by cyclic voltammetry [J]. Journal of Optoelectronics. Laser, 2013, 24(5): 1026-1031.

[31] 刘艳丽, 朱胜男, 齐玉冰, 等. 富勒烯修饰电极微分脉冲伏安法测定盐酸克伦特罗[J]. 理化检验: 化学分册, 2013, 49(6): 669-672.

LIU Y L, ZHU S N, QI Y B, et al. Differential pulse voltammetric determination of clenbuterol with fullerene modified electrode [J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2013, 49(6): 669-672.

[32] 林凡允. 有序介孔碳修饰电极对多巴胺和硝基苯的电催化研究[D]. 长春: 东北师范大学, 2007.

LIN F Y. Study of electrocatalysis dopamine and nitrobenzene at a glassy carbon electrode electrode modified with ordered mesporous carbon [D]. Changchun: Northeast Normal University, 2007.

[33] QI B, PANG X, GUO L P. Ordered mesoporous carbon functionalized with polythionine for electrocatalytic application [J]. Electroanalysis, 2009, 21(7): 875-880.

[34] 万谦, 肖国光, 杨平华, 等. 基于碳纳米管修饰电极的酶生物传感器研究进展[J]. 化工中间体, 2009, 12: 1-5.

WAN Q, XIAO G G, YANG P H, et al. Advances in the study of enzyme biosensors based on carbon nanotube modified electrodes [J]. Journal of Chemical Inter-mediates, 2009, 12: 1-5.

[35] 蔡称心, 陈静, 陆天虹. 碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移[J]. 中国科学(B辑), 2003, 33(6): 511-518.

CAI C X, CHEN J, LU T H. Direct electron transfer of glucose oxidase on carbon nanotube modified electrode [J]. Science in China(Series B), 2003, 33(6): 511-518.

[36] 高秦. 石墨烯修饰电极在葡萄糖传感器中的应用研究[D]. 银川: 宁夏大学, 2015.

GAO Q. Study on the application of graphene modified electrode in glucose sensor[D]. Yinchuan: Ningxia University, 2015.

[37] 于小雯, 盛凯旋, 陈骥, 等. 基于石墨烯修饰电极的电化学生物传感器[J]. 化学学报, 2014, 72(3): 319-332.

YU X A, SHENG K X, CHEN Y, et al. Electrochemical biosensing based on graphene modified electrodes [J]. Acta Chimica Sinica, 2014, 72(3): 319-332.

[38] 夏前芳, 罗丹, 李在均. 石墨烯基葡萄糖生物传感器的电化学制备及应用[J]. 化学学报, 2012, 70(19): 2079-2084.

XIA Q F, LUO D, LI Z J. Electrochemical fabrication and application of the glucose biosensor based on gra-pheme [J]. Acta Chimica Sinica, 2012, 70(19): 2079-2084.

[39] 郑龙珍, 李引弟, 熊乐艳, 等. 石墨烯-聚多巴胺纳米复合材料制备过氧化氢生物传感器[J]. 分析化学, 2012, 40(1): 72-76.

ZHENG L Z, LI Y D, XIONG L Y, et al. Preparation of H2O2biosensor based on graphene-polydopamine nanomaterials [J]. Chinese Journal of Analytical Chemistry, 2012, 40(1): 72-76.

[40] 李俊华, 邝代治, 冯永兰, 等. 基于氧化石墨烯/碳纳米管复合薄膜修饰电极制备L-色氨酸电化学传感器[J]. 分析化学, 2013, 41(1): 98-104.

LI J H, KUANG D Z, FENG Y L, et al. Preparation ofL-tryptophan electrochemical sensor based on graphene oxide/carbon nanotubes nanocomposite modified electrode [J]. Chinese Journal of Analyical Chemistry, 2013, 41(1): 98-104.

[41] 祝敬妥, 张卉, 徐静娟, 等. 辣根过氧化物酶在壳聚糖和无掺杂金刚石纳米粒子共沉积膜上的固定及其直接电化学[J]. 分析科学学报, 2009, 25(1): 1-5.

ZHU J T, ZHANG H, XU J J, et al. Direct electrochemistry of HRP immobilized on a composite film through electrochemical codepositing chitosan and UND on glassy carbon electrode [J]. Journal of Analytical Science, 2009, 25(1): 1-5.

[42] 李拂晓, 蔡细丽, 郑成凤, 等. 基于单壁碳纳米管-十二醛复合材料的DNA电化学传感器[J]. 分析测试学报, 2013, 32(4): 414-419.

LI F X, CAI X L, ZHENG C F, et al. A DNA electrochemical biosensor based single-walled carbin nanotube-dodecyde composite material modified electrode[J]. Journal of Instrumental Analysis, 2013, 32(4): 414-419.

[43] VEERAKUMAR P, MADHU R, CHEN S M, et al. Porous carbon-modified electrodes as highly selective and sensitive sensors for detection of dopamine [J]. Analyst, 2014, 139(19): 4994-5000.

[44] 史娟兰, 汪庆祥, 陈建平, 等. 基于富勒烯衍生物修饰玻碳电极的DNA电化学传感器[J]. 化学学报, 2011, 69(17): 2015-2020.

SHI J L, WANG Q Y, CHEN J P, et al. Electrochemical DNA biosensor based on the immobilization of probe DNA on a fulleropyrrolidine derivative modified glassy carbon electrode [J]. Acta Chimica Sinica, 2011, 69(17): 2015-2020.

[责任编辑:刘红玲]

Application of carbon nanomaterials to modified electrodes

GU Fei, BAO Changhao, HUANG Rongping, MA Jingfang, LI Yuan, LI Mei, CHENG Han*

(CollegeofPharmacy,South-CentralUniversityforNationalities,Wuhan430074,Hubei,China)

Carbon nanomaterials have received great interest because of their unique mechanical, electrical, and chemical properties. Especially, some kinds of novel carbon materials including carbon nanotubes and graphene due to great specific surface area, high conductivity, and good biocompatibility become research focus. Carbon nanomaterials have showed their unique advantages for modified electrodes in electrochemical field. Carbon nanomaterial modified electrode has high sensitivity, selectivity and good medium ellect. This paper mainly review the research and application of carbon nanomaterials including carbon nanotubes, graphene, fullerene, and nanodiamond to modified electrodes.

carbon nanomaterials; modified electrode; craphene; carbon nanotubes; fullerene

2016-11-10.

国家自然科学基金(21205144),中央高校基本科研业务费专项资金自科重点项目(CZZ16004),中南民族大学大学生创新创业训练计划(20171052409).

谷 飞(1995-),男,研究方向为药物分析.*

,E-mail:chenghan@mail.scuec.edu.cn.

O657.1

A

1008-1011(2017)02-0263-06

猜你喜欢
玻碳电催化碳纳米管
PVP-CdS修饰玻碳电极电化学氧化法测定微量盐酸黄连素
Ti基IrO2+Ta2O5梯度化涂层电极的制备及其电催化性能
姜黄素在玻碳电极上的电化学行为研究
电催化氧化法处理抗生素制药废水的实验研究
腌菜中亚硝酸盐的电化学检测
填充床电极反应器在不同电解质中有机物电催化氧化的电容特性
模拟生物膜上识别食品中铝离子毒性机理的研究
碳纳米管阵列/环氧树脂的导热导电性能
电催化氧化技术深度处理染料废水研究
拓扑缺陷对Armchair型小管径多壁碳纳米管输运性质的影响