钟大康
[1.中国石油大学(北京) 油气资源与探测国家重点实验室,北京,102249;2.中国石油大学(北京) 地球科学学院,北京,102249]
致密油储层微观特征及其形成机理
——以鄂尔多斯盆地长6—长7段为例
钟大康1,2
[1.中国石油大学(北京) 油气资源与探测国家重点实验室,北京,102249;2.中国石油大学(北京) 地球科学学院,北京,102249]
鄂尔多斯盆地陇东地区长(延长组)6段和长7段富含大量致密油,但由于对其微观特征与成因缺乏深入了解,阻碍了该区致密油的有效开采。为此,根据岩石孔隙铸体薄片、场发射扫描电镜等技术,对研究区长6段和长7段致密油储层微观特征及其成因进行了深入研究。结果表明:研究区致密油储层形成于三角洲前缘远端远砂坝-席状砂及半深湖-深湖重力流沉积环境,岩石粒度细(主要为极细砂岩、粉砂岩、泥质粉砂岩及粉砂质泥岩)、杂基含量高(8%~10%),几种储集岩的孔隙均极不发育,面孔率低,平均1.8%,孔径小(平均30 μm),喉道细(平均0.08 μm),平均孔隙度9%,渗透率基本上都低于0.3×10-3μm2,物性差。孔隙类型主要为粒间杂基微孔、长石及岩屑溶孔、胶结物晶间微孔。不同岩石类型其微观特征存在差异。沉积环境决定了其粒度细、粘土杂基高,细粒高粘土杂基岩石抗压性差,强烈的压实作用导致大量的原生孔隙损失,孔喉变得更加细小;孔喉细小的岩石由于孔隙中各种流体离子的半渗透膜效应引起强烈的碳酸盐和粘土矿物胶结,尤其是伊利石搭桥状和丝网状胶结,使岩石孔隙度渗透率进一步变差,后期酸性流体也难以进入发生溶蚀作用;云母与水云母杂基及碳酸盐胶结物对石英的强烈交代导致岩石抗压性变差以及固体体积增加,最终导致岩石的致密化。
微观特征;形成机理;储层;致密油;鄂尔多斯盆地
随着我国对油气资源需求量的不断增长及石油工业的发展,油气勘探开发领域已经开始从常规油气资源延伸到非常规油气资源[1-12]。未来非常规油气资源在我国甚至全球都将是重要的战略接替资源。致密油是非常规油气资源中非常重要的一类,相对于页岩油、页岩气而言[13],它是赋存于致密砂岩或致密碳酸盐岩储层中的油,目前对致密油与致密油储层研究已经取得了较多的成果和认识[1-5,14-16],但总体上研究程度还是比较低。因此,通过对致密油储层微观岩石学与孔喉特征及形成机理的研究,对致密油的勘探与开发具有重要理论与现实意义[17-22]。
鄂尔多斯盆地西南部的陇东地区长(延长组)6段和长7段为致密油富集区,尤其是长63亚段至长72亚段,该地区主要为三角洲前缘远端、半深湖-深湖及重力流沉积,储集层孔隙度平均在9%,空气渗透率一般小于 0.3×10-3μm2,其内含有丰富的油气资源,但由于其孔隙度渗透率极差,油层压力系数低(0.75~0.85),每天仅0.8 t产量,基本无自然产能,注水后产量提高幅度小,常规压裂效果不好,开发难度大,难以进行经济开发。目前已落实长7段、长6段油层组致密油富集区面积达1 000多平方千米,经过对部分井实施水平井分段压裂改造后产量较为可观,该类油藏储量规模较大,展示了该类油藏良好的勘探开发前景。因此,开展对该地区长6段-长7段致密油储层成因机理研究对于寻找致密油油气资源具有重要意义。前人对长7段致密油储层研究较多,大部分人都集中在微观特征方面[23-28],还有部分研究者讨论了致密油储层的成岩作用及可动流体含量[29-40],然而研究致密油储层成因的学者很少。本文从致密油储层的形成沉积环境、岩石学特征、成岩作用等方面系统的分析了鄂尔多斯盆地陇东地区长6段-长7段致密油储层的形成机理,以便将来进一步指导该地区致密油的勘探与开发。
根据前人对沉积环境的研究,陇东地区长6段与长7段致密油储层形成于三角洲前缘远端及半深湖-深湖低能环境[41-50]。根据对40口井的岩心观察与130块岩石薄片观察及图像粒度分析,致密油储层的岩石类型主要为极细的细砂岩、粉砂岩、泥质粉砂岩及粉砂质泥岩,岩石学特征总体上表现为极细的特点。由于其粒度极细,因此,在沉积时沉积物基本上呈悬浮状态,故颗粒磨圆度低,且沉积条件与粘土的沉积条件非常接近,故在细砂和粉砂颗粒之间的孔隙中充填了较多的泥质或粘土杂基(图1)。颗粒成分中石英、长石与岩屑几者含量差别不大,石英的含量不如常规砂岩储层中那样占绝对优势,而且颗粒中,从岩心断面或表面可见闪闪发光的白云母和黑云母。云母的富集现象与该地区晚三叠世的变质岩与花岗岩母岩有关,镜下统计达6%,杂基成分中以水云母为主,含量高达10%(表1),正交偏光显微镜下呈较高的一级黄红干涉色(图1),这是这类岩石的总体特征,也是与常规砂岩储层的不同之处。
2.1 孔隙类型及发育状况
根据对长6段和长7段1 926个孔隙铸体薄片的观察统计,致密油储层孔隙很不发育,镜下仅能看见零星分布的小孔隙,面孔率极低,平均1.8%,孔隙类型以粒间孔(主要是粒间杂基微孔)和胶结物晶间孔为主,其次是长石溶孔,少量岩屑溶孔和粒间溶孔(图2,图3;表2),显微镜下仅见少量粒间微孔、粒内微孔,胶结物晶间孔较难识别,只有在扫描电镜下才可以识别出清楚的粘土矿物晶间孔。相比而言细砂岩的孔隙较大,镜下的可见孔隙也较多,面孔率可达3%;粉砂岩镜下的可见孔少,面孔率0~2%,平均0.8%,且孔隙小;泥质粉砂岩在薄片下几乎不见孔隙,面孔率小于1%(图2)。
图1 鄂尔多斯盆地陇东地区长6段与长7段致密油储层岩石类型及其特征Fig.1 Reservoir rock types and their characteristics of Chang6 and Chang7 Members of the Yanchang Formation in Longdong area,the Ordos Basina.细砂岩,塔13井,长63亚段,埋深1 630.92 m,孔隙度6.56%,渗透率0.007×10-3 μm2;b.泥质粉砂岩,宁18井,长72亚段,埋深1 651.6 m;孔隙度8.6%,渗透率0.018×10-3 μm2;c.粉砂质泥岩,塔17井,长72亚段,埋深1 485 m,孔隙度8.6%,渗透率0.018×10-3 μm2;d,e,f分别为a,b,c的镜下薄片特征
层位成分含量/%石英长石岩屑云母杂基样品数/个长6334.828.216.16.07.71043长7136.224.617.46.29.7937长7236.724.218.95.39.3786长7332.725.818.54.712.1261
2.2 孔隙与喉道大小
根据铸体薄片、场发射电镜及CT扫描检测的孔隙大小数据可知,致密油储层的孔隙均较小,大部分都是在50 μm以下,且不同的岩石类型其孔隙大小不同。细砂岩、粉砂岩及泥质粉砂岩的孔隙大小及其分布范围存在一定差异,随粒度变细孔隙逐渐减小。细砂岩孔隙相对较大,以微米级的原生粒间孔、粒间溶孔和颗粒溶孔为主,孔径从几微米至百微米,其次为纳米级的石英长石粒内孔、云母层间孔及蚀变孔、粒间粘土晶间孔,峰值在20 μm左右。粉砂岩孔隙发育情况与细砂岩类似,微米孔及纳米孔均发育,但孔径整体变小,峰值下移至5 μm附近,纳米孔比例明显多于细砂岩,场发射扫描电镜下,孔隙类型包括长石粒内孔、云母层间孔及蚀变孔和粘土矿物晶间孔。随着粒度减小至粉砂质泥岩,孔隙类型基本上为纳米孔隙,包括泥级碎屑粒间孔、长石粒内孔、粘土晶间微孔和云母层间微孔,孔径分布于0.01 μm到10 μm,孔隙发育的峰值在0.5 μm左右(表3)。
根据高压压汞资料统计,致密油储层孔喉特征总体上表现为:喉道细,中值半径分布于0.010~0.494 μm。排替压力高:0.048~21.617 MPa。分选整体较好:分选系数0.033~3.924。连通性好-中等,最大进汞饱和度分布于60%~80%(图4;表4)。高压压汞喉道分布明显小于恒速压汞的喉道半径(喉道分布0.10~0.70 μm,喉道平均半径集中于0.20~0.46 μm),主要原因为高压压汞的最终进汞压力(超过30 MPa)远高于恒速压汞(小于10 MPa),因此其测量的喉道半径范围更广,可测出非常细小的喉道。
喉道大小明显受岩石粒度控制,根据薄片和扫描电镜等资料分析,中砂质细砂岩喉道半径最粗,最大连通喉道半径为0.37 μm,中值半径0.11 μm,其次为细砂岩,最大连通喉道半径为0.25 μm,中值半径0.099 μm;粉砂岩最细,最大连通喉道半径为0.21 μm,中值半径0.076 μm(图5)。
图2 鄂尔多斯盆地陇东地区长6段、长7段致密油储层孔隙类型Fig.2 Pore types of the tight oil reservoir rocks of Chang 6 and Chang7 members of Yanchang Formation in Longdong area,Ordos Basina.环78井,长63亚段,埋深2 561.8 m;b.午63井,长63亚段,埋深1 836.9 m;c.元65井,长72亚段,埋深2 277.37 m,细砂岩;d.镇86井、长7段,埋深2 414 m,高岭石晶间孔;e.耿43井,长7段,埋深2 416.9 m,高岭石晶间孔;f.黄170井,长63亚段,埋深2 399.33 m,高岭石晶间孔;g.耿292井;长71亚段,埋深2 481.01 m,高岭石、伊利石晶间孔;h.高38井,长73亚段;埋深2 125.46 m,伊利石丝网状晶间孔;i.庄179井,长 63亚段,埋深1 618.08 m,伊利石晶间孔
层位样品数/个分区面孔率/%粒间孔/%长石溶孔/%岩屑溶孔/%粒间溶孔/%晶间孔/%微裂隙/%长7159西部4.663.540.740.210.040.030.03451西南1.510.430.840.110.060.030.0245南部1.940.571.000.180.110.010.02165中部1.720.820.700.090.070.020.0124西北1.940.651.170.050.000.030.0532东北2.261.400.590.090.000.100.08长7235西部4.903.300.950.250.160.010.23444西南1.960.701.010.120.070.030.0229南部1.580.321.080.140.000.010.0237中部1.971.060.660.090.000.060.073西北0.730.000.500.000.000.230.00104东北2.331.071.080.100.010.040.04
图3 鄂尔多斯盆地陇东地区致密油储层铸体薄片面孔率分布及孔隙类型分布直方图Fig.3 Histogram of cast thin section porosity and pore types of the tight oil reservoir rocks of the Yanchang Formation in Longdong area,the Ordos Basin
除了喉道半径随粒径变化之外,孔喉连通性也随砂岩粒度减小而变差(图6)。统计显示,细砂岩最大进汞饱和度平均为75%,随着粒度减小最大进汞饱和度降低,至粉砂岩时降低为平均68.06%,而粒间水云母杂基含量较高的杂砂岩、粉砂质泥岩连通性更差,最大进汞饱和度一般小于40%(图6)。
为了对致密油储层进行分类评价,对长7段166个样品的物性和孔喉结构参数进行了因子分析,得到个11个参数之间的相关性系数(表5),总体上,与孔隙度和渗透率关系性较好的参数(相关性大于0.5)包括6个:最大孔喉半径(Rd)、排驱压力(pd)、中值半径(R50)、分选系数(Sp)、变异系数(Cv)、均值(DM)。
根据选取的孔隙度、渗透率及6个参数进行聚类分析,可以把研究区长6段、长7段致密油划分为Ⅰ,Ⅱ,Ⅲ和Ⅳ类,不同类型孔隙结构对应的变量见表6。将不同类型的数据投点于孔渗散点图可以发现,不同类型致密油储层其孔渗分布存在明显差异。
致密油储层中可动流体的多少是评价致密油储层的一项重要参数,为了分析其可动流体的多少,本次对27个长7段样品进行了核磁共振分析,结果表明长7段致密油砂岩可动流体饱和度分布于23.07%~63.97%,平均38.72%,长71和长72小层可动流体饱和度差异小,分别为38.53%和38.94%(表7)。
但不同岩石学特征砂岩T2谱及可动流体饱和度差异较大,细砂岩T2谱以双峰曲线形态为主(图8),说明大孔隙和束缚孔隙在细砂岩中均有发育,其可动流体主要分布于30%~70%,平均40.3%。粉砂质细砂岩、细砂质粉砂岩T2谱多为双峰-单峰或单峰,可动流体主要分布于30%~40%。粉砂岩T2谱基本上都是单峰,大孔隙极少,多为束缚孔隙,可动流体饱和度小于30%。
致密油储层中可动流体含量的多少主要受喉道半径的大小控制,孔喉半径越大,可动流体含量越高,而喉道大小与岩石粒度粗细密切相关。因此,一般粒度粗,分选好,杂基少的砂岩粒间孔隙保存好,可动流体饱和度也更高,粒度细,喉道小,可动流体含量越少,图8很清楚的说明了这一问题。
鄂尔多斯盆地三叠系长6段和长7段致密油储层的上述微观特征与特殊的沉积环境和岩石组构以及独特成岩演化有密切关系。
1) 低能沉积环境决定沉积物粒度细,杂基高,原始孔隙度和渗透率低。
长6段和长7段形成于三角洲前缘远端、半深湖-深湖重力流的特殊沉积环境,该环境决定了其岩石为细粒、多杂基的岩石类型,尤其是重力流沉积细砂岩及粉砂岩,这类岩石杂基含量高,岩石的孔隙度渗透率本身就很差。通过选取长7段细砂岩、粉砂岩的粒度中值及分选系数,应用Sneider图版估算出的研究区致密油储层的原始孔隙度分布范围为28%~41%,平均值为37.7%,原始渗透率大约在1×10-3~1.5×10-3μm2,显然对于未经压实和胶结的沉积物而言属于较差的原始物性。
表3 鄂尔多斯盆地陇东地区长6段、长7段不同粒度砂岩孔隙类型及孔径分布特征
层位长71(样品数148)长72(样品数130)范围平均范围平均排驱压力/MPa0048~2161734360069~86832980中值半径/μm0015~049400900010~03690090分选系数0033~302609690043~39241074
图5 鄂尔多斯盆地陇东地区致密油储层不同粒度砂岩最大连通喉道半径(a)及中值半径(b)分布统计Fig.5 Statistics of maximum connected pore throat radius(a) and medium pore throat radius(b) of sandstones with different grain sizes in the tight oil reservoirs in Longdong area,the Ordos Basin
图6 鄂尔多斯盆地陇东地区不同粒度致密油砂岩最大进汞饱和度统计Fig.6 Statistics of maximum mercury injection saturation of sandstones with different grain sizes in the tight oil reservoirs in Longdong area,the Ordos Basin
2) 细粒高杂基的岩石抗压性差,较容易出现强烈的压实作用,早期强烈的压实作用大大损失大量的粒间体积。
在埋藏过程中由于粒度细,云母颗粒和粘土杂基含量高,因而抗压性差,压实强烈,原生孔隙大量损失。根据大量的薄片观察可以看到颗粒紧密接触(图2,图7),粒间孔隙大部分由于压实作用而损失,将薄片下观察的杂基数据和物性分析数据结合,可知研究区致密油储层现今的粒间体积大部分都在15%以下(图9)。说明压实作用损失了大量的粒间体积,相比之下胶结作用损失的粒间体积较少。
表5 鄂尔多斯盆地陇东地区长7段孔隙结构参数相关关系
注:Φ为孔隙度;K为渗透率;Rd为最大孔喉半径;pd为排驱压力;R50为中值半径;P50为中值压力;Sp为分选系数;Cv为变异系数;DM为均值;Smax为最大进汞饱和度;We为退汞效率。
表6 鄂尔多斯盆地陇东地区延长组致密油储层孔隙结构参数聚类分析
注:括号内为该参数的平均值。
4) 强烈压实胶结后酸性流体难以进入发生强烈的溶蚀作用。
图8 鄂尔多斯盆地陇东地区不同粒度砂岩平均喉道半径及可动流体饱和度散点图Fig.8 Scattered diagram of average throat radius vs. movable fluid saturation of tight sandstone reservoirs withdifferent grain size in Longdong area,the Ordos Basin
图9 鄂尔多斯盆地陇东地区致密油储层粒间体积及压实作用与胶结作用减孔对比Fig.9 Correlation of intergranular pore volume with porosity reduction by compaction and cementation for the tight oil reservoirsin Longdong area,the Ordos Basin
由于早期压实强,原生孔大量损失,后期碳酸盐和粘土胶结,酸性水难以进入,加之云母与水云母杂基多,孔隙水偏碱性,故后期溶蚀弱,溶孔不发育。随着粒度变细,溶蚀越来越弱。从大量的岩石薄片和扫描电镜下观察,目前长6段和长7段粉砂岩细砂岩中溶蚀很不发育,溶孔极少,溶孔率基本上都低于1%(图2—图4)。
5) 致密油储层形成的另一个重要原因是云母颗粒与水云母杂基及碳酸盐胶结物对石英的强烈交代。
研究区长6段和长7段细砂岩粉砂岩中云母颗粒及水云母杂基含量高(表1),这些矿物均含有较多的碱金属K+离子,它们对石英颗粒有较强的交代作用,在显微镜下可见它们对石英颗粒造成了强烈的交代作用[34,36](图2,图7),在高倍镜下可见云母与水云母杂基对石英颗粒的“蚕食”现象,许多石英颗粒被“蚕食”后仅留下少量残余,这种交代作用将大大降低岩石的抗压能力,增强压实作用。另外,在显微镜下还可以见到粒间碳酸盐胶结物对石英的交代,这种交代作用在理论上整个岩石固体体积将增加62.7%,其结果是减少大量粒间孔隙体积,导致岩石变致密。
1) 鄂尔多斯盆地长6段和长7段致密油储层形成于三角洲前缘远端、半深湖-深湖重力流的低能环境,该环境决定沉积物粒度细,杂基高,岩性主要为极细砂岩,粉砂岩及泥质粉砂岩。储层具有孔喉细小、连通程度低、物性差的特点。
2) 细粒多杂基的岩石在埋藏过程中由于粒度细,云母颗粒和粘土杂基含量高,因而抗压性差,压实强烈,导致原生孔隙和原始粒间体积大量损失。
3) 细粒沉积物经强烈的压实作用导致孔喉变得极为细小,造成孔隙流体中各种金属阳离子和酸根阴离子出现半渗透膜效应引起强烈的碳酸盐和粘土矿物胶结,使岩石经压实后残余的粒间空间再次因胶结作用而进一步减少,孔隙度渗透率进一步变差。粘土尤其是伊利石在孔隙形成搭桥状和丝网状胶结,使岩石的渗透率大大降低。
4) 岩石经强烈的压实和胶结后孔隙和喉道都变得非常狭小,后期酸性流体难以进入发生明显的溶蚀作用,溶蚀弱;加之云母颗粒与水云母杂基及碳酸盐胶结物对石英的强烈交代降低岩石抗压性以及增加岩石固体体积,最终导致了储层致密化。
[1] 邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011:50-83. Zou Caineng,Tao Shizhen,Hou Lianhua,et al. Unconventional Petroleum Geology[M]. Beijing:Geological Publishing House,2011:50-83.
[2] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187. Zou Caineng ,Zhu Rukai,Wu Songtao,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33(2):173-187.
[3] 贾承造,邹才能,李建忠,等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报,2012,33(3):343-350. Jia Chengzao,Zou Caineng,Li Jianzhong,et al. Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica,2012,33(3):343-350.
[4] 杨华,李士祥,刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报,2013,34(1):1-11. Yang Hua,Li Shixiang,Liu Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica,2013,34(1):1-11.
[5] 姚泾利,邓秀芹,赵彦德,等.鄂尔多斯盆地延长组致密油特征[J].石油勘探与开发,2013,40(2):150-158. Yao Jingli,Deng Xiuqing,Zhao Yande,et al. Characteristic of tight oil in Triassic Yanchang Formation,Ordos Basin[J].Petroleum Exploration and Development,2013,40(2):150-158.
[6] 张兴良,田景春,王峰,等.致密砂岩储层成岩作用特征与孔隙演化定量评价——以鄂尔多斯盆地高桥地区二叠系下石盒子组盒8段为例[J].石油与天然气地质,2014,35(2):212-217. Zhang Xingliang,Tian Jingchun,Wang Feng,et al.Diagenetic cha-racteristics and quantitative porosity estimation of tight sandstone re-servoirs:a case from the 8th Member of Permian Xiashihezi Formation in the Gaoqiao region,Ordos Basin[J].Oil & Gas Geology,2014,35(2):212-217.
[7] 张凤奇,武富礼,蒙晓灵,等.不同类型低渗透储层有效厚度物性下限及其差异性成因——以陕北斜坡中部S地区中生界为例[J].石油与天然气地质,2015,36(4):555-562. Zhang Fengqi,Wu Fuli,Meng Xiaoling,et al.Porosity and permeabi-lity cutoffs for calculating effective thickness of different types of low-permeability reservoirs and causes of their differences:a case study of the Mesozoic in S region of central Shaanbei slope[J].Oil & Gas Geology,2015,36(4):555-562.
[8] 祝海华,钟大康,张亚雄,等.川南地区三叠系须家河组致密砂岩孔隙类型及物性控制因素[J].石油与天然气地质,2014,35(1):65-76. Zhu Haihua,Zhong Dakang,Zhang Yaxiong,et al.Pore types and controlling factors on porosity and permeability of Upper Triassic Xujiahe tight sandstone reservoir in Southern Sichuan Basin[J].Oil & Gas Geology,2014,35(1):65-76.
[9] 田景春,刘伟伟,王峰,等.鄂尔多斯盆地高桥地区上古生界致密砂岩储层非均质性特征[J].石油与天然气地质,2014,35(2):183-189. Tian Jingchun,Liu Weiwei,Wang Feng,et al.Heterogeneity of the Paleozoic tight sandstone reservoirs in Gaoqiao Area of Ordos Basin[J].Oil & Gas Geology,2014,35(2):183-189.
[10] 王峰,陈蓉,田景春,等.鄂尔多斯盆地陇东地区长4+5油层组致密砂岩储层成岩作用及成岩相[J].石油与天然气地质,2014,35(2):199-206. Wang Feng,Chen Rong,Tian Jingchun,et al.Diagenesis and diagenetic facies of the Chang 4+5 tight sandstone reservoirs in Longdong area,Ordos Basin[J].Oil & Gas Geology,2014,35(2):199-206.
[11] 张翔,田景春,杜本强,等.蜀南观音场地区须家河组砂岩致密化与成藏匹配关系[J].石油与天然气地质,2014,35(2):231-237. Zhang Xiang,Tian Jingchun,Du Benqiang,et al.Matching between sandstone tightening and hydrocarbon accumulation of the Xujiahe Formation,Guanyinchang area in southern Sichuan Basin[J].Oil & Gas Geology,2014,35(2):231-237.
[12] 陈敬轶,贾会冲,李永杰,等.鄂尔多斯盆地伊盟隆起上古生界天然气成因及气源.[J].石油与天然气地质,2016,37(2):205-209 Chen Jingyi,Jia Huichong,Li Yongjie,et al.Origin and source of na-tural gas in the Upper Paleozoic of the Yimeng Uplift,Ordos Basin.[J].Oil & Gas Geology,2016,37(2):205-209.
[13] 吴建国,刘大锰,姚艳斌.鄂尔多斯盆地渭北地区页岩纳米孔隙发育特征及其控制因素[J].石油与天然气地质,2014,35(4):542-550. Wu Jianguo,Liu Dameng,Yao Yanbin.Sedimentary characteristics of the Cretaceous Denglouku Formation in the southeast uplift of the southern Songliao Basin[J].Oil & Gas Geology,2014,35(4):542-550.
[14] 祝海华,钟大康,姚泾利,等.鄂尔多斯西南地区长7段致密油储层微观特征及成因机理[J].中国矿业大学学报,2014,43(5):853-863. Zhu Haihua,Zhong Dakang,Yao Jingli,et al. Microscopic characte-ristics and formation mechanism of Upper Triassic Chang 7 tight oil reservoir in the southwest Ordos Basin[J]. Journal of China University of Mining & Technology,2014,43(5):853-863.
[15] 牛小兵,冯胜斌,刘飞,等.低渗透致密砂岩储层中石油微观赋存状态与油源关系——以鄂尔多斯盆地三叠系延长组为例[J].石油与天然气地质,2013,34(3):288-293. Niu Xiaobing,Feng Shengbin,Liu Fei,et al. Microscopic occurrence of oil in tight sandstones and its relation with oil sources—a case study from the Upper Triassic Yanchang Formation,Ordos Basin[J]. Oli & Gas Geology,2013,34(3):288-293.
[16] 徐蕾,师永民,徐常胜,等.长石族矿物对致密油储渗条件的影响——以鄂尔多斯盆地长_6油层组为例[J].石油勘探与开发,2013,40 (4):448-454. Xu Lei,Shi Yongmin,Xu Changsheng,et al. Influence of feldspars on the storage and permeability conditions in tight oil reservoirs:A case study of Chang-6 oil layer group,Ordos Basin[J]. Petroleum Exploration and Development,2013,40 (4):448-454.
[17] 王明磊,张遂安,关辉,等.致密油储层特点与压裂液伤害的关系——以鄂尔多斯盆地三叠系延长组长7段为例[J].石油与天然气地质,2015,36(5):848-854. Wang Minglei,Zhang Sui’an,Guan Hui,et al.Relationship between characteristics of tight oil reservoirs and fracturing fluid damage:A case from Chang 7 Member of the Triassic Yanchang Fm in Ordos Basin[J].Oil & Gas Geology,2015,36(5):848-854.
[18] 刘春燕.致密碎屑岩储层“甜点”形成及保持机理——以鄂尔多斯盆地西南部镇泾地区延长组长8油层组为例[J].石油与天然气地质,2015,36(6):873-879. Liu Chunyan.Formation and preservation mechanism of sweet spot in tight clastic reservoirs—A case study of Chang 8 oil layer of Yanchang Formation in Zhenjing area,southwest Ordos Basin[J].Oil & Gas Geology,2015,36(6):873-879.
[19] 赵向原,曾联波,祖克威,等.致密储层脆性特征及对天然裂缝的控制作用——以鄂尔多斯盆地陇东地区长7致密储层为例[J].石油与天然气地质,2016,37(1):62-71. Zhao Xiangyuan,Zeng Lianbo,Zu Kewei,et al.Brittleness characteristics and its control on natural fractures in tight reservoirs:A case study from Chang 7 tight reservoir in Longdong area of the Ordos Basin[J].Oil & Gas Geology,2016,37(1):62-71.
[20] 周翔,何生,陈召佑,等.鄂尔多斯盆地代家坪地区延长组8段低孔渗砂岩成岩作用及成岩相.[J].石油与天然气地质,2016,37(2):155-164. Zhou Xiang,He Sheng,Chen Zhaoyou,et al.Diagenesis and diagenetic facies of low porosity and permeability sandstone in Member 8 of the Yanchang Formation in Daijiaping area,Ordos Basin.[J].Oil & Gas Geology,2016,37(2):155-164.
[21] 周翔,何生,陈召佑,等.鄂尔多斯盆地代家坪地区延长组8段低孔渗砂岩成岩作用及成岩相.[J].石油与天然气地质,2016,37(2):155-164. Zhou Xiang,He Sheng,Chen Zhaoyou,et al.Diagenesis and diagenetic facies of low porosity and permeability sandstone in Member 8 of the Yanchang Formation in Daijiaping area,Ordos Basin.[J].Oil & Gas Geology,2016,37(2):155-164.
[22] 邵晓岩,田景春,樊勇杰,等. 鄂尔多斯盆地马坊地区延长组长8油层组油藏特征与富集规律[J].石油与天然气地质,2015,36(2):203-208. Shao Xiaoyan,Tian Jingchun,Fan Yongjie,et al. Characteristics and accumulation pattern of oil reservoirs in the 8th member of the Yangchang Formation in Mafang area,Ordos Basin[J].Oil & Gas Geology,2015,36(2):203-208.
[23] 赵继勇,刘振旺,谢启超,等.鄂尔多斯盆地姬塬油田长7致密油储层微观孔喉结构分类特征[J].中国石油勘探,2014,19(5):73-39.Zhao Jiyong,Liu Zhenwang,Xie Qichao,et al. Micro pore throat structural classification of Chang 7 tight oil reservoir of Jiyuan Oilfield in Ordos Basin[J]. China Petroleum Exploration,2014,19(5):73-39.
[24] 冯胜斌,牛小兵,刘飞,等.鄂尔多斯盆地长7致密油储层储集空间特征及其意义[J].中南大学学报(自然科学版),2013,44(11):4574-4580. Feng Shengbin,Niu Xiaobin,Liu Fei,et al. Characteristic of Chang 7 tight oil reservoir space in Ordos Basin and its significance[J]. Journal of Central South University(Science and Technology),2013,44(11):4574-4580.
[25] 吴浩,郭英海,张春林,等.致密油储层微观孔吼结构特征及分类——以鄂尔多斯盆地陇东地区三叠统延长组长7段为例[J].东北石油大学学报,2013,37(6):12-17. Wu Hao,Guo Yinghai,Zhang Chunlin,et al. Characteristics and classifications of micro-pore structure in tight oil reservoir:A case study of the Triassic Yanchang formation Chang7 in Longdong area,Ordos Basin[J]. Journal of Northeast Petroleum University,2013,37(6):12-17.
[26] 尤源,牛小兵,冯胜斌,等.鄂尔多斯盆地延长组长7致密油储层微观孔隙特征研究[J].中国石油大学学报(自然科学版),2014,38(6):18-23. You Yuan,Niu Xiaobing,Feng Shengbin,et al. Study of pore features in Chang7 tight oil reservoir,Yanchang layer,Ordos Basin[J]. Journal of China University of Petroleum(Edition of Natural Science),2014,38(6):18-23.
[27] 王明磊,刘玉婷,张福东,等.鄂尔多斯盆地致密油储层微观孔喉结构定量分析[J].矿物学报,2015,35(3):318-322. Wang Minglei,Liu Yuting,Zhang Fudong,et al. Quantitative analysis of microscopic pore-throat structure of tight oil reservoir in Ordos Basin[J]. Acta Mineralogica Sinica,2015,35(3):318-322.
[28] 周翔,何生,刘萍,等.鄂尔多斯盆地代家坪地区长6致密油储层孔隙结构特征及分类评价[J].地学前缘,2016,23(3):253-265. Zhou Xiang,He Sheng,Liu Ping,et al. Characteristics and classification of tight oil pore structure in reservoir Chang6 of Daijiaping area,Ordos Basin[J]. Earth Science Frontiers,2016,23(3):253-265.
[29] 田建锋,高永利,张蓬勃,等.鄂尔多斯盆地合水地区长7致密油储层伊利石成因[J].石油与天然气地质,2013,34(5):700-707. Tian Jianfeng,Gao Yongli,Zhang Pengbo,et al. Genesis of illite in Chang 7 tight oil reservoir in Heshui area,Ordos Basin[J]. Oil & Gas Geology,2013,34(5):700-707.
[30] 杨圣方,喻建,高永利.合水地区长7致密油储层伊利石成因分析[J].西安石油大学学报(自然科学版),2014,29(1):21-26. Yang Shengfang,Yu Jian,Gao Yongli.Origin analysis of illite in Chang 7 tight oil reservoir in Heshui area[J]. Journal of Xi'an Shiyou University( Natural Science Edition),2013,34(5):700-707.
[31] 祝海华,钟大康,姚泾利,等.碱性环境成岩作用及对储集层孔隙的影响——以鄂尔多斯盆地长7段致密砂岩为例[J].石油勘探与开发,2015,42(1):51-59. Zhu Haihua,Zhong Dakang,Yao Jingli,et al. Alkaline diagenesis and its effects on reservoir porosity:A case study of Upper Triassic Chang 7 tight sandstones in Ordos Basin[J],NW China[J]. Petroleum Exploration and Development,2015,42(1):51-59.
[32] 时建超,屈雪峰,雷启鸿,等.致密油储层可动流体分布特征及主控因素分析——以鄂尔多斯盆地长7储层为例[J].天然气地球科学,2016,27(5):827-834. Shi Jianchao,Qu Xuefeng,Lei Qihong,et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir:A case study of Chang 7 reservoir in Ordos Basin[J]. Natural Gas Geoscience,2016,27(5):827-834.
[33] 钟大康,祝海华,孙海涛,等.鄂尔多斯盆地陇东地区延长组砂岩成岩作用及孔隙演化[J].地学前缘,2013,20(2):61-68. Zhong Dakang,Zhu Haihua,Sun Haitao,et al. Diagenesis and poro-sity evolution of sandstones in Longdong Area,Ordos Basin[J]. Earth Science Frontiers,2013,20(2):61-68.
[34] 杨华,钟大康,姚泾利,等.鄂尔多斯盆地陇东地区延长组砂岩储层孔隙成因类型及其控制因素[J].地学前缘,2013,20(2):69-76. Yang Hua,Zhong Dakang,Yao Jingli,et al. Pore genetic types and their controlling factors in sandstone reservoir of Yanchang Formation in Longdong Area,Ordos Basin[J]. Earth Science Frontiers,2013,20(2):69-76.
[35] 钟大康,祝海华,孙海涛,等. 鄂尔多斯盆地陇东地区延长组砂岩成岩作用及孔隙演化[J]. 地学前缘,2013,20(2):61-68. Zhong Dakang,Zhu Haihua,Sun Haitao,et al. Diagenesis and poro-sity evolution of sandstones in Longdong Area,Ordos Basin[J]. Earth Science Frontiers,2013,20(2):61-68.
[36] 邓秀芹,刘新社,李士祥. 鄂尔多斯盆地三叠系延长组超低渗透储层致密史与油藏成藏史,石油与天然气地质,2009,30(2):156-161.Deng Xiuqin,Liu Xinshe,Li Shixiang. The relationships between compacting history and hydrocarbon accumulation history of the super-low permeability reservoirs in the Triassic Yangchang Formation in the Ordos Basin[J]. Oil & Gas Geology,2009,30(2):156-161.
[37] 郭正权,齐亚林,楚美娟,等. 鄂尔多斯盆地上三叠统延长组储层致密史恢复[J]. 石油实验地质,2012,34(6):594-603. Guo Zhengquan,Qi Yalin,Chu Meijuan,et al. Recovery of compact history of Yanchang reservoir in Upper Triassic,Ordos Basin[J]. Petroleum Geology & Experiment,2012,34(6):594-603.
[38] 王芳,冯胜斌,何涛,等.鄂尔多斯盆地西南部延长组长7致密砂岩伊利石成因初探[J].西安石油大学学报:自然科学版,2012,27(4):19-22. Wang Fang,Feng Shengbin,He Tao,et al. Study on origin of illite in Chang 7 tight sandstone of Yanchang Formation in the southwest of Ordos Basin[J]. Journal of Xi'an Shiyou University( Natural Science Edition),2012,27(4):19-22.
[39] 田建锋,刘池洋,王桂成,等.鄂尔多斯盆地三叠系延长组砂岩的碱性溶蚀作用.地球科学,2011,36(1):103-110. Tian Jianfeng,Liu Chiyang,Wang Guicheng,et al. Alkaline dissolution of sandstone in the Triassic Yanchang Formation in the Ordos Basin[J]. Earth Science-Journal of China University of Geos-ciences,2011,36(1):103-110.
[40] 钟大康,周立建,孙海涛,等.储层岩石学特征对成岩作用及孔隙发育的影响—以鄂尔多斯盆地陇东地区三叠系延长组为例[J].石油与天然气地质,2012,33(6):890-899. Zhong Dakang,Zhou Haijian,Sun Haitao,et al. Influences of petrologic features on diagenesis and pore development:an example from the Triassic Yanchang Formation in Longdong area,Ordos Basin[J]. Oli & Gas Geology,2012,33(6):890-899.
[41] 杨华,窦伟坦,刘显阳,张才利. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报,2010,28(2):254-263. Yang Hua,Dou Weitan,Liu Xianyang,et al. Analysis on sedimentary faces of member 7 in Yanchang Formation of Triassic in Ordos Basin[J]. Acta Sedmentologica Sinica,2010,28(2):254-263.
[42] 李相博,付金华,陈启林,等. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展,2011,26(3):286-294. Li Xiangbo,Fu Jinhua,Chen Qinlin,et al. The concept of sandy debris flow and its application in the Yanchang Formation deep water sedimentation of the Ordos Basin[J]. Advances in Earth Science,2011,26(3):286-294.
[43] 邹才能,赵文智,张兴阳,等. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J]. 地质学报,2008,82(6):813-825. Zou Caineng,Zhao Wenzhi,Zhang Xingyang,et al. Formation and distribution of shallow-water deltas and central-basin sandbodies in Large open depression lake basins[J]. Acta Geologica Sinica,2008,82(6):813-825.
[44] 邹才能,赵政璋,杨华,等. 陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J]. 沉积学报,2009,27(6):1065-1075. Zou Caineng,Zhao Zhengzhang,Yang Hua,et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedmentologica Sinica,2009,27(6):1065-1075.
[45] 廖纪佳,朱筱敏,邓秀芹,等. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘,2013,20(2)29-39. Liao Jijia,Zhu Xiaomin,Deng Xiuqin,et al. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong Area in Ordos Basin[J]. Earth Science Frontiers,2013,20(2)29-39.
[46] 杨华,邓秀芹.构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响[J].石油勘探与开发,2013,40(5):513-520. Yang Hua,Deng Xiuqin.Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events,Ordos Basin[J]. Petroleum Exploration and Development,2013,40(5):513-520.
[47] 邓秀芹,蔺防晓,刘显阳,等.鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J].古地理学报,2008,10(2):159-166. Deng Xiuqin,Lin Fangxiao,Liu Xianyang,et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography,2008,10(2):159-166.
[48] 杨华,刘自亮,朱筱敏,等.鄂尔多斯盆地西南缘上三叠统延长组物源与沉积体系特征[J].地学前缘,2013,20(2):10-18. Yang Hua,Liu Ziliang,Zhu Xiaomin,et al. Provenance and depositional systems of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin[J]. China. Earth Science Frontiers,2013,20(2):10-18.
[49] 武富礼,李文厚,李玉宏,等.鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J].古地理学报,2004,6(3):307-315. Wu Fuli,Li Wenhou,Li Yuhong,et al. Delta sediments and evolution of the Yanchang Formation of Upper Triassic in Ordos Basin[J]. Journal of Palaeogeography,2004,6(3):307-315.
[50] 魏斌,魏红红,陈全红,等.鄂尔多斯盆地上三叠统延长组物源分析[J].西北大学学报:自然科学版,2003,33(4):448-450. Wei Bin,Wei Honghong,Chen Quanhong,et al. Sediment provenance analysis of Yanchang Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2003,33(4):448-450.
(编辑 张亚雄)
Micro-petrology,pore throat characteristics and genetic mechanism of tight oil reservoirs—A case from the 6thand 7thmembers of Triassic Yanchang Formation in the Ordos Basin
Zhong Dakang1,2
[1.StateKeyLaboratoryofPetroleumResourcesandProspecting,ChinaUniversityofPetroleum,Beijing102249,China; 2.CollegeofGeosciences,ChinaUniversityofPetroleum,Beijing102249,China]
The 6thand 7thmembers of Yanchang Formation (Chang 6 and Chang 7) contain a large number of tight oil in the Longdong area of Ordos Basin. However,poor understanding of their microscopic characteristics and genesis has hindered the exploitation of tight oil. The current study attempts to investigate the pore throat characteristics and genesis of tight oil reservoirs of Chang 6 and Chang 7 members of Yanchang Formation on the basis of pore cast thin section,field emission electron microscopy (FE-SEM) and so on. The results show that the tight oil reservoirs were deposited in distal bar and sheet sand of delta front and gravity flow of semi-deep to deep lake,and the tight oil reservoir rocks with fine grain size and high matrix content (8%-10%) consist of very fine sandstones,siltstones,pelitic siltstones and silty mudstones. These reservoir rocks have very poorly developed pores,low thin section porosity averaging at 1.8%,small pore radius averaging at 30 μm,fine throat radius averaging at 0.08μm,low porosity averaging at 9% and low permeabi-lity of less than 0.3×10-3μm2. The main pore types of the tight oil reservoirs are micropore of intergranular matrix,dissolution pore of feldspars and rock fragments and intercrystalline pore of cements. The microscopic characteristics of different oil reservoir rocks are different. The low-energy sedimentary environment is decisive in determining the fine grain size and high matrix content of the reservoir sandstones,which have weak resistance to compaction in early burial stage,hence,significant amount of original pore volume is lost,and the pore throat sizes become smaller. In the reservoir rocks with tiny pore throats,the strong carbonate and clay mineral cementation (especially the bridging and network-like cementation of illite),caused by semi-permeable membrane effects of ions,further reduce the porosity and permeability of the reservoir rocks,preventing the later acidic fluid dissolution and formation of secondary porosity. In addition,the strong replacement of quartz by detrital micas grain,hydromuscovite matrix and carbonate cement lowers the resistance of the reservoir rocks and increases the solid volume,finally leading to the tightening of the reservoir rocks.
microscopic characteristic,formation mechanism,reservoir,tight oil,Ordos Basin
2016-07-20;
2016-12-20。
钟大康(1961—),男,教授,碎屑岩储层。E-mail:zhongdakang@263.net。
国家科技重大专项(2016ZX05002-004-009);国家自然科学基金项目(41072104)。
0253-9985(2017)01-0049-13
10.11743/ogg20170106
TE122.2
A