赵 杏,钟一铭,杨京平,吕亚敏,王小鹏
浙江大学环境与资源学院环境保护研究所,杭州 310058
不同植茶年限土壤碳氮养分及胞外酶对干旱胁迫的响应
赵 杏,钟一铭,杨京平*,吕亚敏,王小鹏
浙江大学环境与资源学院环境保护研究所,杭州 310058
全球气候变暖导致的夏季干旱事件频发影响茶园生态系统生产力,而茶叶是我国南方主要的经济作物,因此研究干旱条件下不同植茶年限茶园土壤养分、生态酶活性及微生物生态变化具有重要意义。选取杭州市余杭区径山茶园3种不同植茶年限(10a、30a和50a)土壤和邻近的荒土为研究对象,研究不同水分(干旱组30% WFPS(water-filled pore space)和对照组55% WFPS)处理前、第7天和第14天的土壤碳氮养分(可溶性有机碳DOC,总有机碳TOC,微生物碳MBC,微生物氮MBN,铵态氮NH4-N,硝态氮NO3-N)和胞外酶活性(涉碳胞外酶:β-葡萄糖苷酶BG,涉氮胞外酶:N-乙酰氨基葡萄糖苷酶+亮氨酸氨基肽酶NAG+LAP)变化,探讨不同水分对不同植茶年限土壤生态系统的影响。结果表明,茶园土壤碳库及涉碳、涉氮胞外酶活性随着植茶年限增加先升高后降低(30a最高);土壤氮库养分随着植茶年限增加而增加。干旱处理增加了土壤TOC、NH4-N、NO3-N含量,而降低了土壤MBC含量、BG和NAG+LAP活性。处理前后植茶年限30a土壤DOC、MBN、NO3-N和涉碳、涉氮胞外酶含量最高,且其干旱组土壤DOC、TOC、MBC、MBN含量与对照组比变幅相对较小,可推断植茶年限30a左右的土壤微生态环境丰富,对外界环境变化的抵抗力较强。
茶园土壤;植茶年限;土壤养分;胞外酶活性;干旱
土壤是茶叶生长的载体,土壤质量对茶叶的产量和质量有直接作用,茶园施用大量化学氮肥在增加茶叶产量的同时,也加剧了土壤的酸化,使得土壤pH随植茶年限的增长逐渐降低[1-2],土壤养分利用受到限制[3]。为了分析土壤环境质量,越来越多的研究通过土壤的养分和土壤酶的活性整合分析来评价土壤质量[4-5]。土壤碳氮含量是土壤质量的重要指标,对土壤生产力和可持续利用以及环境保护有重要意义[6],土壤胞外酶和土壤微生物量在土壤有机残体分解和养分循环中有着重要作用[7], 是有效的评价土壤微生物分解能力、土壤肥力和土壤生态稳定性的指标[8-9]。此外,不同耕作年限对土壤养分有不同影响,岷江地区人工生态林的研究发现土壤有机碳和氮储量随着林龄的增长总体呈增加趋势[10]。也有研究表明,不同植茶年限的土壤理化性状有所不同[11],导致土壤碳氮养分和胞外酶活性有所差异,荒地种植茶树后,土壤微生物量碳和酶活性显著增加,随着植茶年限的增长表现出先增加后减少的趋势[12]。因此,茶园土壤的质量管理和土壤种植年限已成为茶园生态系统主要的研究焦点。
气候变化研究表明,过去30年中夏季极端气候出现的频率增加,夏季的平均温度逐年升高[13],而茶树是我国重要的经济作物之一,南方夏季持续高温和干旱将会导致茶叶产量低且品质差[14]。有研究表明,干旱降低土壤物质的流动性,从而减少微生物可用资源[15];干旱通过限制底物扩散和诱导微生物生理压力[15]对土壤微生物生物量和微生物多样性产生负面影响[16]。也有研究表明在全球变暖背景下,干旱过程中土壤净硝化速率在一定程度上受到抑制,土壤硝态氮含量降低[17];土壤中微生物活性和酶活性降低,土壤碳循环受阻[18],影响土壤中作物所需氮源和碳源养分供应。
综上所述,不同植茶年限土壤具有不同的生态环境,可能导致其对干旱事件的响应不同,然而不同植茶年限土壤碳氮养分和胞外酶活性以及其对干旱胁迫的响应尚不明确,因此,本研究比较不同植茶年限(10、30a和50a)的茶园和荒地土壤在不同水分(干旱组30% WFPS和对照组55% WFPS)处理前后土壤碳氮养分以及胞外酶活性变化,明确土壤质量指标随时间以及干旱胁迫的变化,促进对不同植茶年限土壤质量的综合评价。本试验研究数据结果将为促进全球气候变化条件下茶园产业的发展,保障茶园土壤生态系统健康,提高茶叶产量和质量提供理论依据。
1.1 试验地点和供试材料
供试土壤采自浙江大学余杭径山茶学基地,该基地位于杭州市余杭径山镇, 30°23′N,119°53′E。选择施肥情况相似,成土母质(第四纪红壤)相同的10—12a(Y10)、28—30a(Y30)和48—50a(Y50)植茶年限的茶园作为研究对象,同时选取茶园附近的荒地(CK)作为对照。于2013年5月从各茶园小区(每个类型3个)随机S形取5个位点表层0—10 cm土壤,除去石砾、碎屑以及植物根系,相同土壤样品混匀后过2mm筛。取部分保存用于生理生化指标测定;剩余土壤样品用于后续模拟试验。土壤本底性状指标见表1。
表1 土壤性质
1.2 试验处理
实验通过室内土壤培养,采用48个(2种含水量×2次取样时间×4种土壤样品×3次重复)7.5cm(直径)×10cm(高)的PVC管,底部包上纱布防止土壤掉落;每个PVC管中装入300 g新鲜土壤置于恒温培养箱,设置两水平土壤含水量30%(干旱组)和55% WFPS(对照组),25℃恒温培养两周,每天用注射器注射无菌纯水调节土壤水分,第7天和第14天破坏性取样。采集的土壤样品分两份,一份4℃保存,一份风干,用于相关指标检测分析。
1.3 测定方法
土壤pH采用雷磁pH复合电极测量水浸提(土∶水=1∶2.5)后的溶液;土壤总有机碳(TOC)、水溶性有机碳(DOC)采用Multi N/C 2100总有机碳分析仪测定;土壤氨氮(NH4-N)和硝氮(NO3-N)用2 mol/L KCl溶液浸提(土∶液=1∶5)后,分别用靛酚蓝比色法和紫外双波长比色法测定。土壤微生物碳氮(MBC和MBN)采用氯仿熏蒸进而用提取剂提取分别测定[19-20]。β-葡萄糖苷酶(BG)、N-乙酰氨基葡萄糖苷酶(NAG)和亮氨酸氨基肽酶(LAP)活性采用微平板荧光比色法测定,基质均购自sigma公司。采用多功能酶标仪(MD5,Molecular Devices)检测荧光,365 nm激发,460 nm检测荧光强度。每个样品重复8次,酶活性计算参照DeForest[21]。
1.4 数据处理与分析
实验数据通过Excel 2007计算,Origin 8.5制图。在SPSS 16.0中采用重复测量方差分析检验土壤水分、植茶年限和取样时间对土壤化学性状和胞外酶活性的影响。采用LSD检验比较每个时间点不同处理间差异;采用Pearson相关性分析检验土壤各指标之间的相关性。
2.1 水分处理前后不同植茶年限土壤碳库特征
茶园土壤中可溶解性有机碳(DOC)含量显著大于荒地土壤,干旱处理显著增高土壤DOC含量(P<0.05)。各土壤类型DOC含量顺序为 Y10≥Y30>Y50>Y0,Y10、Y30和Y50土壤DOC较Y0分别高86.93%、95.78%和58.96%(图1)。土壤总有机碳(TOC)含量随植茶年限增加而升高,处理前Y10、Y30和Y50土壤TOC分别是Y0土壤的2.29倍、2.72倍和6.23倍。干旱处理TOC含量显著高于对照处理(P<0.05)(图1)。
处理前Y10、Y30和Y50土壤微生物碳(MBC)较Y0分别高106.67%、85.39%和44.62%。处理7d后,干旱组MBC含量显著高于对照组。14d后各植茶年限土壤MBC含量为Y30>Y10>Y50>Y0(图2)。处理前土壤β-葡萄糖苷酶(BG)活性随植茶年限增加先升高后下降,Y10、Y30和Y50土壤BG活性分别是Y0土壤的2.92、4.19和1.25倍。处理后,Y10和Y30土壤BG活性大幅度降低,干旱组活性显著低于对照组(图2)。
2.2 水分处理前后不同植茶年限土壤氮库特征
处理前土壤硝态氮(NO3-N)含量和土壤铵态氮(NH4-N)含量随植茶年限增加而升高,NO3-N含量范围为3.72—43.41 g/kg,NH4-N含量范围为34.21—80.27 g/kg。7d和14d后土壤NO3-N含量升高,干旱组NO3-N含量显著高于对照组;土壤NH4-N含量呈升高趋势,干旱组显著高于对照组(图3)。
水分处理之前土壤微生物氮(MBN)随着植茶年限的增加而显著增加,Y30到Y50增幅最大约为63%。处理7d和14d后,土壤MBN含量显著降低(图4)。而水分处理之前土壤涉氮酶活性(NAG+LAP)随着植茶年限增加先升高后降低,Y30最高为21.79 mmol g-1h-1,但是Y50降低至和Y10水平16—17 mmol g-1h-1。水分处理后,各植茶年限土壤 NAG+LAP活性趋势不变,土壤NAG+LAP活性干旱组低于对照组(图4B)。
图1 各植茶年限土壤不同水分处理下可溶性有机碳和总有机碳变化Fig.1 Variations of DOC and TOC with different tea cultivation ages incubation at 30% and 55%WFPS30%和55%代表含水量30%和55%WFPS; 不同小写和大写字母分别代表同一时间30%和55%WFPS处理不同植茶年限土壤养分差异性显著,*代表同一时间相同茶龄不同水分处理间土壤养分差异性显著(P<0.05); 图中数据均为平均值±标准差(n=3)
图2 各植茶年限土壤不同水分处理下微生物碳和β-葡糖糖苷酶活性变化Fig.2 Variations of MBC and activities of BG with different tea cultivation ages incubation at 30% and 55%WFPS
图3 各植茶年限土壤不同水分处理下铵态氮和硝态氮变化Fig.3 Variations of soil ammonia and nitrate nitrogen with different tea cultivation ages incubation at 30%WFPS and 55%WFPS
图4 各植茶年限土壤不同水分处理下微生物氮和N-乙酰氨基肽酶+亮氨酸氨基肽酶活性Fig.4 Soil MBN content and activities of NAG+LAP with different tea cultivation ages incubation at 30% and 55%WFPS
2.3 土壤碳-氮库特征之间的关系
土壤涉碳、氮生化性质指标之间相关性特征如表2所示。除BG外,所有涉碳和氮指标均和pH呈极显著(P<0.01)负相关,这说明茶园土壤中pH值是土壤养分的限制因素。土壤NO3-N和NH4-N、TOC、MBC、DOC呈极显著(P<0.01)正相关,和BG呈显著(P<0.05)负相关。NH4-N和MBN呈极显著(P<0.01)负相关,和TOC、DOC呈极显著(P<0.01)正相关。MBN和NAG+LAP、TOC、BG之间极显著(P<0.01)正相关,NAG+LAP和BG、DOC和TOC、MBC、BG呈极显著(P<0.01)正相关。这说明干旱对涉碳酶和涉氮酶活性的抑制作用一致,进而影响土壤碳氮养分含量;同时土壤碳库和氮库的养分之间相互影响,一方的变化会直接影响另一方的特征。
表2 土壤涉碳氮生化性质之间的相关性分析
* 表示显著相关(P<0.05), **表示极显著相关(P<0.01); NO3-N:硝态氮 nitrate nitrogen; NH4-N:铵态氮 ammonia nitrogen; MBN:微生物氮 microbial biomass nitrogen; NAG+LAP:N-乙酰氨基肽酶和亮氨酸基肽酶活性 N-acetylglucosaminidase and l-leucine aminopetidase activity; TOC:总有机碳 Total organic carbon; MBC:微生物碳 microbial biomass carbon; BG:β-葡萄糖苷酶β-1,4-glucosidase activity; DOC:可溶解性有机碳 dissolved organic matter
本研究表明水分处理前土壤NH4-N、NO3-N、MBN以及TOC随植茶年限增长而升高,说明研究区植茶及茶园生产管理使土壤碳库、氮库养分积累。已有的研究报道表明果园土壤养分也表现出相似规律[22],最主要的原因是人为长期输入化肥造成土壤养分积累。而茶园土壤MBC和DOC随植茶年限增长而降低,这可能是由于植茶年限长的土壤酸化严重,土壤微生物活性降低从而降低有机矿化能力[12,23]。BG和NAG+LAP活性随植茶年限增长先升高后降低,有研究表明脲酶、蔗糖酶[24]、脲酶和磷酸酶[2]活性也随着人为耕作时间的增长呈现先增加后降低的趋势,这可能是由于植茶年限50a的土壤微生物量低、pH低等原因导致的,pH通过控制微生物的酶产物、离子化引起的酶构象变化以及基质的实用性来影响土壤酶活性[25]。可见适当年限的植茶耕作可以丰富土壤中养分含量以及茶园生态环境中的生化过程。
本研究进一步表明不同植茶年限土壤对干旱的响应也是不一致的。土壤水分、植茶年限、水分处理时间以及三者的交互作用直接影响到茶园土壤碳库和氮库养分含量以及涉碳、涉氮胞外酶活性。经过不同的水分处理,干旱组的土壤TOC、DOC、NH4-N和NO3-N含量比对照组高,这可能是由于干旱降低了土壤微生物的活性从而降低了微生物对土壤无机养分的利用程度[26],进一步影响土壤中碳和氮的氧化分解的释放态势[26],也可能在干旱条件下一些细菌合成了碳水化合物[27]。对照组NO3-N含量低于干旱组的一部分原因可能是湿润环境下土壤中反硝化作用更完全从而向空气中释放更多的N2[28]。Wang等[29]和Schindlbacher等[30]的研究结果表明土壤NO3-N浓度升高伴随着NH4-N浓度的降低,这与本研究的结果不一致,这可能是由于干旱条件下土壤矿化还在进行,但是会降低氨氧化古菌和氨氧化细菌丰度来抑制铵态氮向硝态氮转化导致的[29]。水分处理后,Y50土壤中NO3-N含量大于Y0却小于Y10和Y30含量,这可能是由于Y50土壤强酸性抑制了土壤硝化细菌活性[31]。水分处理后土壤中MBC含量显著减少,且MBN含量与NH4-N含量具有显著的负相关性,由此可以推测出土壤培养实验MBN可能被矿化转化成NH4-N;荒地土壤MBC含量变化不大,而茶园土壤MBC含量升高,植茶年限10a和30a的土壤含量增幅最大,这表明植茶年限短的土壤保持更高的活性,相似的研究结果表明种植年限久的果园微生态环境更贫乏[22]。干旱处理的土壤BG和NAG+LAP活性比对照组低,Zsolt等[32]研究也表明水分高的土壤BG和磷酸酶的活性更高;Y30土壤胞外酶处理前后活性表现更高,研究表明磷酸酶的活性和土壤温度、水分、pH有关[33],因此可推断不同植茶年限不同的土壤由于具有不同的pH,所以其酶活性对不同水分的响应也不同,Y30土壤为本研究范围内酶活性最适条件。土壤碳库和氮库养分具有显著相关性,干旱处理通过降低BG和NAG+LAP活性(加速植物源残渣的分解,提高微生物源DOC和活性氮的产生[34])和微生物的分解利用,进而影响土壤中碳库和氮库的转化。研究结果表明干旱对微生物分解利用养分的抑制作用大于对活性养分生成的抑制作用,而植茶年限为30a的土壤不仅具有相对高的养分含量,并且在干旱胁迫条件下微生态环境表现出更强的耐受力,可见在一定年限内茶园耕作有利用土壤养分积累以及土壤生态环境的多样性建立,但是当耕作年限过长,土壤质量降低,酸化成为土壤养分生化过程的限制因素,土壤质量降低,从而影响其对外界胁迫的抵抗力。
茶园土壤养分比荒地养分含量高,随着植茶年限的增长,碳库养分含量及涉碳涉氮胞外酶活性呈现先升高后降低的趋势,植茶年限30a土壤养分含量和酶活性达到最高;氮库养分随着植茶年限的增长呈现递增趋势。干旱对土壤碳、氮库养分和涉碳、涉氮胞外酶活性有显著性影响,干旱增加土壤有机碳、铵态氮、硝态氮含量,降低土壤微生物量含量、土壤胞外酶活性。处理前后植茶年限30a土壤可溶性有机碳、微生物氮、硝氮和涉碳涉氮胞外酶含量最高,且其干旱组土壤的可溶性有机碳、总有机碳微生物碳氮的含量与对照组相比变幅相对较小,可推断植茶年限30a左右的土壤微生态环境丰富,抵抗力强。因此,随着茶园植茶年限的增长,需要考虑茶园土壤的生物生化环境,采取合理的施肥和绿色覆盖等措施来提高茶园土壤环境。
[1] Han W Y, Kemmitt S J, Brookes P C. Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biology and Biochemistry, 2007, 39(7): 1468-1478.
[2] Xue D, Yao H Y, Huang C Y. Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant and Soil, 2006, 288(1/2): 319-331.
[3] 李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16.
[4] Badiane N N Y, Chotte J L, Pate E, Masse D, Rouland C. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology, 2001, 18(3): 229-238.
[5] Gil-Sotres F, Trasar-Cepeda C, Leirós M C, Seoane S. Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 2005, 37(5): 877-887.
[6] Shaffer M J, Ma L W, Hansen S. Modeling Carbon and Nitrogen Dynamics for Soil Management. Florida: CRC Press, 2001: 672-672.
[7] Enowashu E, Poll C, Lamersdorf N, Kandeler E. Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil. Applied Soil Ecology, 2009, 43(1): 11-21.
[8] Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biology and Biochemistry, 1999, 31(5): 769-777.
[9] Caldwell B A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 2005, 49(6): 637-644.
[10] 罗达, 冯秋红, 史作民, 李东胜, 杨昌旭, 刘千里, 何建社. 岷江干旱河谷区岷江柏人工林碳氮储量随林龄的动态. 应用生态学报, 2015, 26(4): 1099-1105.
[11] 薛冬. 茶园土壤微生物群落多样性及硝化作用研究[D]. 杭州: 浙江大学, 2007.
[12] Yao H, He Z, Wilson M J, Campbell C D. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 2000, 40(3): 223-237.
[13] Hansen J, Sato M, Ruedy R. Perception of climate change. Proceeding of the National Academy Sciences of the United States of America, 2012, 109(37): E2415-E2423.
[14] 付晓青, 陈佩, 秦志敏, 肖润林, 杨知建. 遮荫处理对丘陵茶园生态环境及茶树气体交换的影响. 中国农学通报, 2011, 27(8): 40-46.
[15] Schimel J, Balser T C, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 2007, 88(6): 1386-1394.
[16] Hueso S, Garcia C, Hernandez T. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biology and Biochemistry, 2012, 50: 167-173.
[17] 徐冰鑫, 陈永乐, 胡宜刚, 张志山, 李刚, 李梦茹, 陈栋. 干旱过程中荒漠生物土壤结皮-土壤系统的硝化作用对温度和湿度的响应——以沙坡头地区为例. 应用生态学报, 2015, 26(4): 1113-1120.
[18] Allison S D, Treseder K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 2008, 14(12): 2898-2909.
[19] Ross D J. Influence of sieve mesh size on estimates of microbial carbon and nitrogen by fumigation-extraction procedures in soils under pasture. Soil Biology and Biochemistry, 1992, 24(4): 343-350.
[20] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[21] DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186.
[22] Qian X, Gu J, Sun W, Li Y D, Fu Q X, Wang X J, Gao H. Changes in the soil nutrient levels, enzyme activities, microbial community function, and structure during apple orchard maturation. Applied Soil Ecology, 2014, 77: 18-25.
[23] Wardle D A. A comparative-assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews of the Cambridge Philosophical Society, 1992, 67(3): 321-358.
[24] 董燕, 董坤, 郑毅, 田芝花, 鲁耀, 汤利. 种植年限和种植模式对设施土壤微生物区系和酶活性的影响. 农业环境科学学报, 2009, 28(3): 527-532
[25] Tabatabai M A. Soil enzymes // Weaver R W, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A, eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison: Soil Science Society of America, 1994: 775-833.
[26] Muhr J, Franke J, Borken W. Drying-rewetting events reduce C and N losses from a Norway spruce forest floor. Soil Biology and Biochemistry, 2010, 42(8): 1303-1312.
[27] Kohler J, Caravaca F, Roldán A. Effect of drought on the stability of rhizosphere soil aggregates ofLactucasativagrown in a degraded soil inoculated with PGPR and AM fungi. Applied Soil Ecology, 2009, 42(2): 160-165.
[28] Davidson E A, Swank W T, Perry T O. Distinguishing between nitrification and denitrification as sources of gaseous nitrogen-production in soil. Applied and Environmental Microbiology, 1986, 52(6): 1280-1286.
[29] Wang H, Yang J P, Yang S H, Yang Z C, Lv Y M. Effect of a 10 degrees C-elevated temperature under different water contents on the microbial community in a tea orchard soil. European Journal of Soil Biology, 2014, 62: 113-120.
[30] Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. Journal of Geophysical Research Atmospheres, 2004, 109(D17): D17302.
[31] Wang H, Xu R K, Wang N, Li X H. Soil Acidification of Alfisols as Influenced by Tea Cultivation in Eastern China. Pedosphere, 2010, 20(6): 799-806.
[32] Kotroczó Z, Veres Z, Fekete I, Krakomperger Z, Tóth J A, Lajtha K, Tóthmeresz B. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology and Biochemistry, 2014, 70: 237-243.
[33] Kang H J, Freeman C. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biology and Biochemistry, 1999, 31(3): 449-454.
[34] Lipson D A, Schmidt S K. Seasonal changes in an alpine soil bacterial community in the colorado rocky mountains. Applied and Environmental Microbiology, 2004, 70(5): 2867-2879.
The response of soil nutrients (carbon and nitrogen) and extracellular enzyme activities to drought in various cultivation ages from tea orchards
ZHAO Xing, ZHONG Yiming, YANG Jingping*, LÜ Yamin,WANG Xiaopeng
InstituteofEnvironmentalProtection,CollegeofEnvironmentalandResourceScience,ZhejiangUniversity,Hangzhou310058,China
Frequent summer droughts, caused by climate change, have negatively affected the productivity and quality of tea orchard soil. Tea (CamelliasinensisL.) is an important cash crop in southern China, therefore it is important to examine soil nutrients, enzyme activity, and microbial community structural shifts under such summer drought conditions in various cultivation ages. In this study, the pot method was utilized to investigate the soil quality of various cultivation ages of 0, 10, 30, and 50 years. These pots were incubated at 25oC and given two different water treatments (30% and 55% WFPS (water-filled pore space)). Throughout the incubation period, soil samples were taken to measure the soil carbon, nitrogen content, and extracellular enzyme activities at 0, 7, and 14 days. The results indicated that prior to the incubation period, nitrate nitrogen, ammonia nitrogen, microbial nitrogen, and the total organic carbon in the soil increased with cultivation age. The microbial carbon and the extracellular enzyme activities (β-1,4-glucosidase activity related to soil carbon and N-acetylglucosaminidase and l-leucine aminopetidase activity related to soil nitrogen) were highest at the cultivation age of 30. Soil samples taken under drought conditions, displayed increased extracellular enzyme activities, soil organic carbon, soil nitrate nitrogen, and ammonia nitrogen contents while soil microbial carbon and extracellular enzyme activities declined. The soil samples taken from a cultivation age of 30 exhibited a relatively high amount of dissolved organic carbon, microbial nitrogen, nitrate nitrogen, and soil extracellular enzyme activities throughout all incubation periods. The drought conditions had a significant influence on the contents of soil nitrate nitrogen, ammonia nitrogen, total organic carbon, and microbial carbon. Furthermore, the correlation analysis of soil carbon and nitrogen related biochemical properties indicated that the carbon and nitrogen soil nutrients affected one another. The results of the study indicated that a 30-year cultivation of the tea tree had a positive effect on the accumulation of soil nutrients but tea tree cultivation for almost 50 years produced an inferior micro-ecological environment. Thus, to improve the soil environment in tea orchards, measures such as balancing fertilization and green cover, should be considered.
tea orchards; cultivation age; soil nutrients; extracellular enzyme; drought
高等学校博士学科点专项科研基金资助项目(20130101110127);水体污染控制与治理科技重大专项资助项目(2014ZX07101-012)
2015-08-09;
日期:2016-06-13
10.5846/stxb201508091678
* 通讯作者Corresponding author.E-mail: jpyang@zju.edu.cn
赵杏,钟一铭,杨京平,吕亚敏,王小鹏.不同植茶年限土壤碳氮养分及胞外酶对干旱胁迫的响应.生态学报,2017,37(2):387-394.
Zhao X, Zhong Y M, Yang J P, Lü Y M,Wang X P.The response of soil nutrients (carbon and nitrogen) and extracellular enzyme activities to drought in various cultivation ages from tea orchards.Acta Ecologica Sinica,2017,37(2):387-394.