姚 森,张 霁,李杰庆,王元忠*,刘鸿高*
(1.云南农业大学农学与生物技术学院,云南昆明650201;2.云南省农业科学院药用植物研究所,云南昆明650200;3.云南省省级中药原料质量检测技术服务中心,云南昆明650200)
利用FTIR和化学计量学对牛肝菌亲缘关系的研究
姚 森1,2,张 霁2,3,李杰庆1,王元忠2,3*,刘鸿高1*
(1.云南农业大学农学与生物技术学院,云南昆明650201;2.云南省农业科学院药用植物研究所,云南昆明650200;3.云南省省级中药原料质量检测技术服务中心,云南昆明650200)
采用傅里叶变换红外光谱结合化学计量学对不同种牛肝菌亲缘关系进行研究,为该种群亲缘关系鉴定提供依据,同时为人工栽培牛肝菌奠定理论基础。采集12个种类72份牛肝菌样品的红外光谱,采用二阶导数(2D)、标准正态(SNV)变量和小波压缩(WC)等方法对牛肝菌的原始红外光谱进行优化处理,结合偏最小二乘判别分析(PLS-DA)建立鉴别模型。将PLS-DA得到的前8个主成分数据作为提取数据代入系统聚类分析(HCA),获得亲缘关系树状图。结果显示:12种牛肝菌的原始红外光谱较为相似,共有峰主要归属为蛋白质、多糖、纤维素和氨基酸等物质中O-H、C =O、C-O-H、C=O、C-C等官能团的吸收峰。对比不同优化处理的鉴别结果,发现2D+WC预处理方法对不同种类牛肝菌区分效果较好。HCA亲缘关系树状图表明,按照物种层面划分,中华牛肝菌和远东疣柄牛肝菌亲缘关系最近,且2种牛肝菌与圆花孢牛肝菌亲缘关系较近;深褐牛肝菌和美味牛肝菌亲缘关系较近;小美牛肝菌和美柄牛肝菌亲缘关系较近,且2种牛肝菌与栗色牛肝菌亲缘关系较近。傅里叶变换红外光谱法可应用于牛肝菌的亲缘关系分析,能为野生食用菌的亲缘关系研究提供一种新方法。
傅里叶变换红外光谱;偏最小二乘判别分析;系统聚类分析;牛肝菌;亲缘关系
牛肝菌属于大型真菌,为牛肝菌科和松塔牛肝菌科的统称,大部分品种可以食用,富含蛋白质、氨基酸、多糖、矿质元素、维生素等[1-3]。因其味道鲜美,营养丰富,口感细腻,是煲汤和火锅的优质食材,也可加工成糕点食用。牛肝菌兼具食药用价值,具有增强免疫、保护肝脏、降血脂、抗病毒、抗肿瘤及减肥的功效[4-6]。我国已报道的牛肝菌目中具菌管及菌褶类群的种类多达28属397种[7],可食用种类有199种,其中云南、四川、西藏、贵州等地可食用牛肝菌种类最为丰富[8],云南省已知的牛肝菌有224种,其中可食用的有144种[9-10]。据报道,2015年2月以来,在昆明、西双版纳等市场上已经有大量人工栽培牛肝菌出售,在此之前市场上销售均为野生牛肝菌[11];人工栽培的牛肝菌可以实现四季生长,产量高,平均日产能够达到500 kg[12]。由此可见,人工驯化栽培牛肝菌将会成为一种发展趋势。但是随着牛肝菌人工栽培的发展,会发生出菇率低、畸形菌、病害、虫害等问题,需要培育优种和抗病菌株。牛肝菌亲缘关系研究对培育高产、抗虫、抗病菌株有巨大帮助。近年来,关于牛肝菌亲缘关系的研究报道较少。因此,对牛肝菌进行亲缘关系研究具有重要意义。
目前,植物亲缘关系的研究方法除了简单的植物形态特征观察外,SRAP[13]、ISSR[14]、RAPD[15]、AFLP[16]等分子标记法应用广泛,但这些方法需要复杂的仪器设备和专业知识,操作繁琐、费时、费力。傅里叶变换红外光谱法(FTIR)具有快速、无损、准确等特点,所得图谱能宏观地表达被测样品化学信息,具有整体性[17]。在生物亲缘关系研究中,傅里叶变换红外光谱法得到了广泛应用,Hu等[18]采用FTIR结合离散小波变换和概率神经网络判别方法对2种葡萄进行了准确的分类鉴别;Demir等[19]釆用红外光谱结合层次聚类分析和主成分分析成功区分了小麦的耕作种与野生种;Jin等[20]采用FTIR结合离散小波变换对不同种类的柴胡进行了准确鉴别。本研究采用二阶导数(second derivative,SD)、标准正态(standard normal variate,SNV)变量和小波压缩(wavelet compression,WC)等方法对12个种72份牛肝菌样品的红外光谱进行优化处理,结合偏最小二乘判别分析(partial least squares discriiminate analysis,PLS-DA)、系统聚类分析(hierarchical cluster analysis,HCA)方法对其亲缘关系进行分析,为牛肝菌遗传学研究奠定理论基础,同时为分析野生食用菌亲缘关系提供一种简便、快捷的方法。
1.1 试验材料
2013年采自云南8个产地12个种类的72份牛肝菌子实体详细信息见表1,所有样品由云南农业大学刘鸿高教授鉴定。
1.2 试验仪器及参数
Frontier型傅里叶变换红外光谱仪(配备DTGS检测器,扫描范围为4 000~400 cm-1,扫描信号累加16次,分辨率为4 cm-1,美国Perkin Elmer公司)、KBr(分析纯,天津市风船化学试剂科技有限公司)、YP-2型压片机(上海市山岳科学仪器有限公司)、FW-100型高速粉碎机(天津市华鑫仪器厂)、0.180 mm标准筛盘(浙江上虞市道墟五四仪器厂)。
1.3 样品处理和光谱采集
样品采集后清洗干净,50℃烘干,粉碎后过0.180 mm标准筛,备用。按1∶100的比例,准确称取1.5 mg牛肝菌样品和150 mg KBr粉末,放入玛瑙研钵充分混合研磨成细粉,将细粉倒入压制磨具中压制成片。傅里叶红外光谱仪预热30 m in后测定光谱,样品重复测定2次,取平均光谱;扫描前使用空白样本扣除CO2和H2O的干扰。
1.4 数据处理
原始光谱通过OMNIC 8.0软件进行平均光谱、自动基线校正、平滑、纵坐标归一化等预处理。SIMCA-P+10.0软件对原始光谱进行预处理并进行PLS-DA分析,PLS-DA为有监督的模式识别,是一种将X变量分类标签作为Y变量的偏最小二乘回归方法[21-22]。采用SPSS 20.0软件对样品的主成分进行HCA分析。
傅里叶变换红外光谱仪所采集的光谱信息夹杂了背景噪音、散光等干扰信息[23]。为消除其他因素干扰,采用2D+SNV和2D+WC对光谱进行优化处理。二阶导数主要消除光谱中基线的平移和漂移(散射),并消除组分之间的相互干扰,提高分辨率和灵敏度[24-25]。标准正态变量主要消除固体颗粒大小,表面散射以及光程变化对漫反射光谱的影响[26-27]。小波压缩因其优越的时频局部化特性,可在基本不损失有效光谱信息条件下,压缩光谱数据,将压缩后变量作为校正模型输入变量,提高收敛速度,改善预测的精度[28]。
2.1 方法学考察
运用OMNIC 8.0软件的光谱检索功能,建立稳定性、精确度、重复性的光谱数据库,分别计算样品与数据库的匹配度,匹配值越高方法越可靠。经测定,本次试验的稳定性、精确度、重复性的匹配值分别在99.85%~99.91%、99.90%~99.91%、98.56%~99.87%,相对标准偏差的值分别为0.022 5%、0.004 1%、0.490 2%。测定结果表明,该试验稳定性好、精密度高、重复性高。
2.2 原始红外光谱分析
釆用OMNIC 8.0软件对72个牛肝菌子实体的红外光谱进行平滑、基线校正和纵坐标归一化等预处理。预处理样品的平均红外光谱如图1所示,不同种类牛肝菌的红外光谱较为相似,共有峰波数大致相同。红外光谱在3 300 cm-1附近的强吸收峰归属为蛋白质、多糖、纤维素等O-H伸缩振动或者蛋白质中的N-H伸缩振动;2 931 cm-1附近吸收峰主要为多糖、蛋白质等甲基对称伸缩振动;1 634 cm-1附近吸收峰为C=O伸缩振动,为蛋白质酰胺I带;1 480 cm-1附近归属为亚甲基的弯曲振动;1 400、1 319、1 253 cm-1等附近为多糖、蛋白质等的C-O-H弯曲振动和亚甲基的变形振动;1 078、1 057 cm-1附近分别为糖类的C-O和C-C伸缩振动;950~710 cm-1范围多个弱吸收峰,主要为糖类异构体的特征峰[29-30]。
2.3 偏最小二乘判别分析
对72个子实体样品的红外光谱进行偏最小二乘判别分析,其中图2A是经过2D+SNV预处理得到的三维图,图2B是经过2D+WC预处理得到的三维图。图2A中大部分样品被区分开,但是第1组样品出现聚类错误,图2B能够准确无误地将各种样品区分开。结果显示,与2D+SNV预处理相比,2D+WC对不同种类牛肝菌区分的效果较好。
2.4 系统聚类分析
将PLS-DA得到的前8个主成分作为红外光谱提取数据代入SPSS 20.0软件进行系统聚类分析。采用ward联接法,以Euclidean距离为度量标准进行计算,得到12种牛肝菌样品的亲缘关系树状图(图3)。亲缘关系树状图显示:中华牛肝菌和远东疣柄牛肝菌在距离系数为1处聚为一类。深褐牛肝菌和美味牛肝菌在距离系数为4处聚为一类。苦粉孢牛肝菌和灰褐牛肝菌在距离系数为2处聚为一类。小美牛肝菌和美柄牛肝菌在距离系数为2处聚为一类,但是有1个美柄牛肝菌样品存在聚类错误,可能是由生存环境的差异造成了化学成分积累的差异。圆花孢牛肝菌、中华牛肝菌和远东疣柄牛肝菌在距离系数为3处聚为一类。小美牛肝菌、美柄牛肝菌和栗色牛肝菌在距离系数为3处聚为一类。
根据物种层次划分,不同种类牛肝菌的聚类结果表明,中华牛肝菌和远东疣柄牛肝菌亲缘关系最近,并且2种牛肝菌与圆花孢牛肝菌亲缘关系较近;深褐牛肝菌和美味牛肝菌亲缘关系较近;小美牛肝菌和美柄牛肝菌亲缘关系较近,且2种牛肝菌与栗色牛肝菌亲缘关系较近。
采用傅里叶变换红外光谱法测定12个不同种类牛肝菌的红外光谱,12种牛肝菌的红外光谱相似度较高。对12种牛肝菌的红外光谱进行2D+SNV和2D+WC预处理,结合PLS-DA发现2D+WC预处理方法对牛肝菌种类鉴别效果优于2D+SNV。经2D+WC处理后,利用PLS-DA得到前8个主成分作为牛肝菌红外光谱提取数据代入到HCA,结果显示,中华牛肝菌和远东疣柄牛肝菌亲缘关系最近,并且2种牛肝菌与圆花孢牛肝菌亲缘关系较近;深褐牛肝菌和美味牛肝菌亲缘关系较近;小美牛肝菌和美柄牛肝菌亲缘关系较近,且2种牛肝菌皆与栗色牛肝菌亲缘关系较近。傅里叶变换红外光谱法可以应用于牛肝菌的亲缘关系研究并成为分析野生食用菌亲缘关系的新方法。
[1] 杜敏华,张英君,刘明星,等.野生牛肝菌多糖提取工艺的优化及其对自由基的清除作用[J].食品工业科技,2012,33(22):292-295.
[2] Wang X M,Zhang J,Wu L H,et al.A m ini-review of chemical composition and nutritional value of edible wildgrown mushroom from China[J].Food Chemistry,2014,151:279-285.
[3] Reis F S,Barros L,Martins A,et al.Chemical com position and nutritional value of the most widely appreciated cultivated mushrooms:An inter-species comparative study[J]. Food and Chem ical Toxicology,2012,50(2):191-197.
[4] 李月梅.食用菌的功能成分与保健功效[J].食品科学,2005,26(8):517-521.
[5] Roupas P,Keogh J,Noakes M,et al.The role of edible mushrooms in health:Evaluation of the evidence[J]. Journal of Functional Foods,2012,4(4):687-709.
[6] Giavasis I.Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals[J]. Current Opinion in Biotechnology,2014,26:162-173.
[7] 李泰辉,宋斌.中国牛肝菌分属检索表[J].生态科学,2002,21(3):240-245.
[8] 周在进,刘刚,任先培.不同产地小美牛肝菌的红外光谱聚类分析研究[J].激光与红外,2009,39(11):1158-1162.
[9] 戴玉成,周丽伟,杨祝良,等.中国食用菌名录[J].菌物学报,2010,29(1):1-21.
[10] 李泰辉,宋斌.中国食用牛肝菌的种类及其分布[J].食用菌学报,2002,9(2):22-30.
[11] 姬丹丹.云南:人工牛肝菌热销鲜品价格达120元/公斤[EB/OL].(2015-03-30)[2016-04-22].http:// ynsyj.yncoop.com/.
[12] 谢先斌.全球首家人工种植牛肝菌实现工厂化生产[EB/OL].(2015-04-27)[2016-04-22].http://www. bndaily.com/.
[13] Cheng Y,Ma X,Zhou K,et a l.Phylogenetic analysis of Festuca-Lolium com plex using SRAP markers[J]. Genetic Resources and Crop Evolution,2016,63(1):7-18.
[14] Kumar M,Chhokar V,Kumar A,et al.A comparative study of genetic diversity in chickpea based upon touchdown and non-touchdown PCR using ISSR markers[J].Chiang Mai Journal of Science,2015,42(1):117-125.
[15] Zargar S M,Farhat S,Mahajan R,et a l.Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean[J].Saudi Journal of Biological Sciences,2016,23(1):139-149.
[16] Yotsukura N,Maeda T,Abe T,et al.Genetic differences among varieties of Saccharina japonica in northern Japan as determ ined by AFLP and SSR analyses[J].Journal of Applied Phycology,2016,28(5):1-13.
[17] Alexandrakis D,Downey G,Scannell A G M.Rapid nondestructive detection of spoilage of intact chicken breast musc le using near-infrared and fourier transform m id-infrared spectroscopy and multivariate statistics[J].Food and Bioprocess Technology,2012,5(1):338-347.
[18] Hu J,Liu G,Zhao X,et al.Identification of two grape cultivars by FTIR combined with chemometrics[J].Agricultural Biotechnology,2015,4(2):14-16.
[19] Demir P,Onde S,Severcan F.Phylogeny of cultivated and w ild wheat species using ATR-FTIR spectroscopy[J].Spectrochim ica Acta Part A(Molecu lar and Biomolecular Spectroscopy),2015,135:757-763.
[20] Jin W,W an C,Cheng C.Study on the identification of radix bupleuri from its unofficial varieties based on discrete wavelet transformation feature extraction of atrftir spectroscopy combined with probability neural network[J].International Journal of Analytical Chemistry,2015.DOI:10.1155/2015/950209.
[21] Pérez-Enciso M,Tenenhaus M.Prediction of clinical outcome with microarray data:A partial least squares discriminant analysis(PLS-DA)approach[J].Human Genetics,2003,112(5/6):581-592.
[22] Gromski P S,Muhamadali H,Ellis D I,et al.A tutorial review:Metabolomics and partial least squaresdiscriminant analysis—a marriage of convenience or a shotgun wedding[J].Analytica Chimica Acta,2015,879:10-23.
[23] Hendler R W,Meuse CW,Gallagher T,et al.Stray light correction in the optical spectroscopy of crystals[J].Applied Spectroscopy,2015,69(9):1106-1111.
[24] Mezzetti A,Kish E,Robert B,et al.Assignment of IR bands of isolated and protein-bound peridinin in its fundamental and triplet state by static FTIR,time-resolved step-scan FTIR and DFT calculations[J].Journal of Molecular Structure,2015,1090:58-64.
[25] He J,Tang Y,Wang SY.Differences in morphological characteristics of bamboo fibres and other natural cellulose fi-bres:Studies on X-Ray siffraction,solid state13C-CP/MAS NMR,and second derivative FTIR spectroscopy data[J].I-ranian Polymer Journal,2007,16(12):807-818.
[26] DeJong S A,O´Brien W L,Lu Z,et al.Optimization of gap derivatives for measuring blood concentration of fabric using vibrational spectroscopy[J].Applied Spectroscopy,2015,69(6):733-748.
[27] Genkawa T,Shinzawa H,Kato H,et al.Baseline correction of diffuse reflection near-infrared spectra using searching region standard normal variate(SRSNV)[J]. Applied Spectroscopy,2015,69(12):1432-1441.
[28] Grinsted A,Moore J C,Jevrejeva S.Application of the cross wavelet transform and wavelet coherence to geophysical time series[J].Nonlinear Processes in Geophysics,2004,11(5/6):561-566.
[29] 刘飞,王元忠,杨春艳,等.红外光谱结合判别分析对三七道地性及产地的鉴别研究[J].光谱学与光谱分析,2015,35(1):108-112.
[30] Calamari L,Ferrari A,Minuti A,et a l.Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on fourier transform mid-infrared spectroscopy:Preliminary results[J].BMC Veterinary Research,2016.DOI:10.1186/s12917-015-0621-4.
Genetic Relationship of Bolete Mushrooms by FTIR Combined with Chemometrics
YAO Sen1,2,ZHANG Ji2,3,LI Jieqing1,WANG Yuanzhong2,3*,LIU Honggao1*
(1.College of Agronomy and Biotechnology,Yunnan Agricultural University,Kunming 650201,China;2.Institute of Medicinal Plants,Yunnan Academy of Agricultural Sciences,Kunming 650200,China;3.Yunnan Technical Service Center for Quality Testing of Chinese Medicine Raw Materials,Kunm ing 650200,China)
In order to establish a new method for identifying the genetic relationships and provide theoretical basis for artificial cultivation of boletemushrooms,fourier transform infrared(FTIR)spectroscopy combined with Chemometrics was used to study the genetic relationships among different species of bolete mushrooms samp les.A total of 72 infrared spectra of 12 different species of boletes were collected and processed by using second derivative(2D),standard normal variate(SNV)and wavelet compression(WC). Then the processed spectra were used to establish a discrim ination model based on partial least squares discriminant analysis(PLS-DA).H ierarchical cluster analysis was performed by the method of betweengroups linkage and Euclidean distance according to the eight principal components which were obtained by PLS-DA and the results of HCA were displayed as dendrograms.The results showed that all of the original infrared spectra were similar.The common absorption peakswere mainly assigned to the functional groups of O-H,C=O,C-O-H,C=O and C-C of protein,polysaccharide,fibres and amino acid. Comparing the discrimination results of samples with spectra processed by different methods,better discrimination could be accomplished when the spectra were processed by 2D+WC.From the clustering results of different species,Boletus sinicus and Leccinum eχtremiorientale had the closest relationship andthese two species were close to Heimioporus retisporus.B.obscureumbrinus and B.edulis had a close relationship while the relationship between B.speciosus and B.calopus was also close and both of these two mushrooms were similar to B.umbriniporus.The results suggest that FTIR can be used in the study of genetic relationship of bolete mushrooms,which may provide a new method for studying the genetic relationship of wild edible mushrooms.
fourier transform infrared spectroscopy;partial least squares discriminant analysis;hierarchical cluster analysis;boletes;genetic relationship
S646.3
A
1004-3268(2017)01-0110-06
2016-06-23
国家自然科学基金项目(31260496,31460538)
姚 森(1992-),男,河北唐山人,在读硕士研究生,研究方向:牛肝菌光谱指纹图谱。E-mail:yaosen0402@163.com
*通讯作者:王元忠(1981-),男,云南怒江人,助理研究员,硕士,主要从事药用真菌研究。E-mail:boletus@126.com刘鸿高(1974-),男,云南楚雄人,教授,硕士,主要从事食用菌研究。E-mail:honggaoliu@126.com