方汉贞,胡美玉,潘碧涛,潘希敏,赖英荣,江波*
原发性骶尾椎肿瘤以脊索瘤最常见,约占全部骶尾椎肿瘤的24.4%[1],占骶尾椎恶性肿瘤的48%~50%[1-2]。骶尾椎脊索瘤源自椎体、椎间盘髓核或骶前软组织内的残留脊索[3],与此部位常见的骨巨细胞瘤、神经鞘瘤在MRI表现上有相似性[4]。目前MRI是诊断骶尾椎肿瘤最主要的影像学方法,深入了解脊索瘤的MRI特征,有助于骶尾椎脊索瘤的MRI诊断与鉴别[5-6]。骶尾椎脊索瘤MRI常见表现的研究国内外已有报道,但对脊索瘤的脊椎三维侵犯、瘤周形态及动态增强MRI (dynamic contrast-enhanced magnetic resonance imaging,DCEMRI)的研究较少。笔者分析21例骶尾椎脊索瘤的常规MRI与DCE-MRI征象,结合手术病理,重点探讨骶尾椎脊索瘤的生物学行为特点、肿瘤边缘和瘤体信号与DCE-MRI特征及其病理学基础。
搜集中山大学附属第一医院2007年1月至2016年12月间经手术切除和组织病理学证实的骶尾椎脊索瘤21例。
高场超导MR成像系统扫描,1.5 T Philips Nova Dual扫描9例,3.0 T Siemens Trio扫描12例,应用相控阵脊柱线圈。增强MRI均由高压注射器(Ulrich Medical)控制,按 0.1 mmol/kg剂量、 3 ml/s速度经肘静脉注射钆喷替酸葡甲胺(Gd-DTPA),紧接20 ml生理盐水冲刷。扫描序列包括轴位T1WI、T2WI和矢状面T1WI、T2WI及增强后轴位、矢状与冠状扫描,于选择方向行脂肪抑制T1WI与T2WI扫描。5例于1.5 T上行DCE-MRI扫描,扫描方案为:自注射对比剂Gd-DTPA后30 min内,对选定层面连续扫描,扫描序列为矢状TSE-T1WI (TR 300 ms,TE 12 ms),层厚5 mm,矩阵114×256,扫描野175 mm×280 mm;单层扫描时间20 s,扫描间隔20 s,获取45个注射对比剂后不同时相的增强图。选取椎后肌做对照,ROI面积0.5~2.0 cm2,经T1-perfusion功能包获取脊索瘤和对照的时间信号曲线(time-signal intensity curve,TSIC)和最大强化斜率(wash in rate,WiR)、最大消退斜率(wash out rate,WoR)和强化峰值时间(time to peak,TTP)等指标。
(1)分析常规MRI表现,包括:骶尾椎脊索瘤在脊椎侵犯的上下、前后与左右三个方向的分布,瘤体的边缘与内部信号表现特征,瘤体最大径与瘤体边缘形态的关系。脊椎前后向侵犯,分椎前、脊椎(椎体和附件)、椎管内和附件后缘后侧。(2)分析DCE-MRI表现,比较脊索瘤与对照在TSIC和WiR、WoR、TTP方面的差异。(3)结合脊索瘤的手术大体标本和镜下HE染色表现,探讨MRI表现与病理改变的内在联系。(4)所有评阅由2名工作10年以上的放射科医师完成,不一致时由两人协商解决。
应用SPSS 17.0软件进行:(1)χ2检验统计分析。比较椎前、椎管内与椎后软组织肿块出现率,以P<0.05为差异有统计学意义。(2)t检验统计分析。病程和瘤体最大径以均数±标准差表示,比较“足突边缘”征阳性与阴性病例之间在病程和瘤体最大径方面的差异,以P<0.05为差异有统计学意义。
2.1.1 脊索瘤侵犯脊椎的空间分布
(1)受侵脊椎节段:21例脊索瘤侵犯的脊椎节段范围,自C4~S1。其中单椎的2例,分别为C1、S2;限于骶椎的12例,累及2~5个节段;跨骶尾椎的7例,累及2~7个节段(图1)。总共72节段中,S2~C1集中了65个。(2)与中线关系:21例中,19例瘤体中心在椎体中线,对称性向两侧骨内侵犯;1例中央偏左,1例中央偏右。(3)前后向侵犯:起于单椎的2例,1例有椎前而无椎管内及椎后侵犯,1例有椎管内而无椎前及椎后侵犯。21例中,椎前软组织肿块20例;椎管内20例,均为椎体破坏延续至椎管内硬膜外浸润,范围自局部浸润至上下瓜囊状蔓延不等;椎后方15例,均有椎前、椎管内侵犯(图2)。椎前、椎管内软组织肿块出现率,高于椎后(χ2=7.16,P=0.028)。
2.1.2 瘤体信号与边缘表现
以臀肌为参照,瘤体T1WI主体呈等肌信号,其中17例瘤内见散在高信号影,类圆形或片状。T2WI上瘤体以高信号为主,间以细条状、网格状及片状低信号影,其中11例可见瘤内多个结节状结构,部分呈旋涡状改变。注射对比剂后,瘤体不均质轻中度强化,部分区域无强化。T1WI上的高信号,在脂肪抑制T1WI上无减低,对应于T2WI上高、低两种信号改变。各例均见厚薄不均的肿瘤包膜,呈T1WI、T2WI低信号,中度强化,局部可见包膜被穿破(图3)。瘤体边缘,除腹侧呈光整弧形外,均呈浅分叶状或多结节状。21例中,18例边缘可见多发足状突起,即“足突边缘”征,呈小结节状及齿状改变,均发生于瘤体的上下缘、侧缘与后缘,嵌插样侵入椎旁肌群、骶髂骨(图4);另3例边缘光整,呈轻度分叶状改变。
表1 患者性别、年龄、症状及测量结果Tab. 1 Demographic, symptomatic data and measurements
表2 骶尾椎脊索瘤与对照的DCE-MRI指标比较Tab 2 Comparison of DCE-MRI indexes between sacrococcgeal chordoma and controls
图1 21例骶尾椎脊索瘤侵犯各节段的频数。图示各节段受脊索瘤侵犯例数,在S1~C5共10个节段中的分布情况。S4最多,17例;C5最少,1例Fig.1 The frequency of each vertebral segment invaded by chordoma in the 21 patients with sacrococcygeal chordoma. The graph indicates the distribution of number of chordoma invasion in each vertebral segment among the 10 segments from S1 to C5. Maximum occurs in S4 with 17, and minimum in C5 with 1.
扫描层面内瘤体各区域,随着时间延长,信号逐渐增强,30 min时强化最显著;对照轻度强化(图5)。脊索瘤TSIC为IV型,分两期:(1)上升期,为前7.5~10 min (平均9 min),瘤体信号缓慢上升,曲线凸面向上,平均强化速率40/min;(2)平台期,瘤体信号保持高强化,且仍有小幅上升,该段信号曲线近似直线,持续20.0~22.5 min (平均21.0 min)。对照TSIC呈Ⅲ型,曲线分界点时间平均6 min(图6)。DCE-MRI指标见表2。
图2 病例20。脊索瘤起于骶椎中线,矢状T1WI示肿瘤起自S4~5,椎前软组织肿块,向后侵入椎管(短箭)及椎后区(长箭) 图3 病例3。瘤体信号与包膜。A:轴位T1WI示瘤体结节状边缘,内部信号不均,见散在小片状高信号(黑箭)及稍高信号影(短箭);低信号包膜环绕瘤体(长箭)。B:轴位T2WI示瘤体以高信号为主,呈大小不一之多结节状,结节间见条索状低信号;T1WI上高信号对应T2WI上低信号(黑箭),T1WI上稍高信号对应T2WI上高信号(短箭);包膜呈低信号(长箭) 图4 病例9。瘤体边缘足状突起。轴位T1WI (A)上瘤体分叶状,前缘弧形,后缘呈结节状(长箭)、齿状(短箭)侵入骶后肌群;压脂T2WI冠状图(B)示瘤体下缘呈弧形、上缘多个齿状突起侵入椎后肌群(箭) 图5 病例2。DCE-MRI图,同一矢状面T1WI。瘤体平扫低信号(A);注射对比剂后3 min,瘤体两极轻度强化、中部无强化(B);30 min,全瘤明显强化(C)Fig.2 Patient No.20. Chordoma originating from sacral midline, sagittal T1-weighted image demonstrates the tumoral origin from level S4-5 with presacral soft-tissue mass and intra-spinal (short arrow) and post-vertebral (long arrow) invasion. Fig. 3 Patient No.3. tumoral signals and capsule. A: Axial T1-weighted image reveals the marginal lobulation, intra-tumoral heterogeneity of signals, and scattered foci of hyper-intensity (black arrow) and slightly hyper-intensity (short arrow), the hypo-intense capsule embraces the tumoral mass (long arrow). B: Axial T2-weighted image reveals the predominant hyper-intensity on T2-weighted image, which presenting as multi-lobar figures of different sizes with inter-lobar hypo-intense streaks. The hyper-intensity and slightly hyper-intensity on T1-weighted image corresponds to the hypo-intensity (black arrow) and hyper-intensity (short arrow) on T2-weighted image, respectively. The capsule is hypo-intense (long arrow). Fig. 4 Patient No.9. Pod-like protrusions of tumoral margin. Axial T1-weighted image (A)demonstrates lobulated appearance of tumoral border, arc-shaped anterior border, and posterior border with nodular (long arrow) and dentate protrusions(short arrow) stretching into post-sacral muscles. Coronal fat-suppressed T2-weighted image (B) demonstrates arc-shaped inferior border and multi-dentate protrusions stretching into post-vertebral muscles (arrow) in upper border of the tumoral mass. Fig. 5 Patient No.2. DCE-MRI images at same sagittal section. The tumoral mass is displayed with pre-contrast hypo-intensity (A), and bipolar mild enhancement and middle portion no enhancement 3 minutes after contrast (B), and whole-mass obviously enhanced 30 minutes after contrast (C).
图6 骶尾椎脊索瘤DCE-MRI的TSIC,实线脊索瘤,虚线对照Fig.6 The TSIC of DCE-MRI of sacrococcygeal chordoma, full line for chordoma, dotted line for control.
术中见类圆形肿物,质地软或偏韧,瘤周血供丰富。瘤体籍包膜与邻近椎骨及筋膜粘连,连同包膜、受累椎骨完整切除。瘤体剖面呈灰白色、灰红色、灰褐色或灰黄色,质地不均,可见出血灶和黏液区(图7A)。镜下见纤维组织分隔的瘤细胞结节及结节间黏液样变,或黏液背景下巢状、条索状排列的瘤细胞(图7B)。瘤细胞立方形或多边形,胞浆丰富红染,胞核圆形居中,部分胞浆空泡状,形成液滴状细胞。免疫组化染色显示瘤细胞Vimentin、CK、EMA及S-100阳性,瘤细胞Ki-67 1%~3%阳性。21例病理诊断均为经典型脊索瘤。
图7 病例20,手术大体标本和镜下表现。A:瘤体与骶骨(星号)剖面,约4.5 cm×6.0 cm,示分叶状边缘、包膜(粗箭)和瘤内出血(宽箭)、黏液聚集区(细箭);B:病理示多结节样结构,红染纤维包绕瘤细胞巢(HE ×50)Fig.7 Patient No.20, surgical gross specimen and microscopic findings. A: Section of tumoral mass and sacrum (star) with the size of 4.5 cm×6.0 cm, display the lobulated margin, capsule (broad arrow), hemorrhage (wide arrow) and mucin collections (thin arrow); B: Multi-nodular pattern, redstained fibers circumscribe the tumoral cell nets (HE ×50).
(1)纵向进犯:自C4~S1的9个节段脊椎均可发生脊索瘤,以S2~C1节段最多见,占全部的90%。Sung等[7]报告的30例骶尾椎脊索瘤中,60%跨骶尾椎发生,S1为最常受累节段。(2)骨质破坏以椎体中线为中心。骨质破坏始于椎体中央,并向两侧对称性侵犯。本组90%具此特征,这与脊索残留的分布规律是一致的。(3)椎前、椎管内侵犯。椎前与椎管内侵犯是椎体骨质破坏的延续,本组发生率均为95%。椎前、椎管内及椎后软组织肿块出现率的差异,说明相对于向脊椎后侧侵犯,脊索瘤更易于侵犯至脊椎前侧。脊索瘤的三维侵犯形式,有别于骨巨细胞瘤、神经鞘瘤的偏心性生长[8-10]及骨巨细胞瘤的嗜椎后侵犯[5]。
本组所有病例均见瘤周包膜,说明病灶的生长比较缓慢,瘤体边缘纤维血管反应性增生形成假包膜。同时,85%的病例出现“足突边缘”征,提示其浸润性生长及术后易复发性,此表现与侵袭性纤维瘤病类似[11],但在骨巨细胞瘤和神经鞘瘤未见此征。“足突边缘”征有两方面意义。其一,该征阳性的瘤体最大径超过阴性者,而二者病程相近,说明该征的出现提示瘤体相对快速生长。其二,即该征产生的组织环境。瘤体腹侧面向盆腔软组织结构,其边缘光整,呈膨胀性生长;而在面向骨及肌群等韧性组织时,常常出现足状突起,反映出对抗性的侵袭性生长。Ruggieri等[12]对骶尾椎脊索瘤手术切除范围与局部复发关系的研究发现,边缘广泛切除患者的局部复发率显著低于边缘切除不全者,认为术前肿瘤边缘的精确界定对预后有重要意义。因此,用MRI确定脊索瘤边界时,需特别注意对“足突边缘”征的观察。
T2WI高信号的组织学基础是瘤细胞和瘤间黏液,信号强度同黏液含量、瘤细胞的密度及胞浆发育程度有关。网格状纤维穿行于瘤细胞和黏液区,产生了脊索瘤特征性边缘低、中央高的分叶状T2WI表现。此种表现,异于骨巨细胞瘤、神经鞘瘤的T2WI混杂高信号[4,11]。等肌信号背景上散在的条状、片状高信号灶为其T1WI信号特点,本组中81%见此征象。此T1WI高信号中对应于T2WI上高信号区的,是瘤内聚集的高浓度黏液;而对应于T2WI上低信号区的,则是瘤内出血[13]。
DCE-MRI能反映组织的微血管密度与细胞功能特点[14-15]。在TSIC 9 min的上升期内,瘤体信号慢速增强,WiR仅0.75/s,与低微血管密度的骨骼肌接近。上升期后瘤体信号仍以更慢速增强,持续至30 min,此时骨骼肌内的对比剂已廓清。脊索瘤为低微血管密度肿瘤,组织形式呈纤维分隔的小叶状结构,小叶内为黏液和液滴状瘤细胞[16]。黏液系由瘤细胞胞浆分泌而来,其主要成分是黏蛋白[17]。因此,脊索瘤除纤维血管等间质外,黏液和黏蛋白为其主要成分。这种持续缓慢强化,可能是对比剂分子在黏液、瘤细胞内渗透、聚集以及与黏蛋白结合的结果。
病例样本数不够大,为本文之不足。本研究揭示了骶尾椎脊索瘤的三维侵犯特性,瘤体边缘形态特征与意义。T2WI高信号和缓慢、持续强化,基于共同的物质基础:瘤组织内的黏液与黏蛋白。对上述特性的整合与运用,将有助于骶尾椎脊索瘤的诊断与鉴别。脊索瘤缓慢、持续强化的确切机理,有待深入研究。
[References]
[1] Guo W, Li DS, Wei R, et al. Epidemiological study of 790 consecutive primary sacral tumors treated in a single center. Chin J Spine Spinal Cord, 2014, 24(11): 971-978.郭卫, 李大森, 蔚然, 等. 单中心原发骶骨肿瘤790例的流行病学分析. 中国脊柱脊髓杂志, 2014, 24(11): 971-978.
[2] Healey JH, Lane JM. Chordoma: a critical review of diagnosis and treatment. Orthop Clin North Am, 1989, 20(3): 417-426.
[3] Yakkioui Y, van Overbeeke JJ, Santegoeds R, et al. Chordoma: the entity. Biochim Biophy Acta, 2014, 1846 (2): 655-669.
[4] Si MJ, Wang CS, Ding XY, et al. Differentiation of primary chordoma, giant cell tumor and schwannoma of the sacrum by CT and MRI. Eur J Radiol, 2013, 82(12): 2309-2315.
[5] Gerber S, Ollivier L, Leclère J, et al. Imaging of sacral tumours.Skeletal Radiol, 2008, 37(4): 277-289.
[6] Walcott BP, Nahed BV, Mohyeldin A, et al. Chordoma: current concepts, management, and future directions. Lancet Oncol, 2012,13(2): e69-e76.
[7] Sung MS, Lee GK, Kang HS, et al. Sacrococcygeal chordoma: MR imaging in 30 patients. Skeletal Radiol, 2005, 34(2): 87-94.
[8] Liao JS, Lu Y, Ding XY, et al. X-ray, CT and MRI findings of sacrococcygeal chordoma. J Pract Radiol, 2012, 28(3): 412-416.廖金生, 陆勇, 丁晓毅, 等. 骶尾椎脊索瘤X线、CT和MRI表现. 实用放射学杂志, 2012, 28(3): 412-416.
[9] Pongsthorn C, Ozawa H, Aizawa T, et al. Giant sacral schwannoma:a report of six cases. Ups J Med Sci, 2010, 115(2):146-152.
[10] Jiang B, Yang XF, Lai YR, et al. MRI evaluation of the histopathological characteristic of limb soft-tissue aggressive fibromatosis. Chin J Radiol, 2009, 43(2): 141-145.江波, 杨献峰, 赖英荣, 等. 肢体软组织侵袭性纤维瘤病组织病理特征的MRI研究. 中华放射学杂志, 2009, 43(2): 141-145.
[11] Pan W, Wang Z, Lin N, et al. Clinical features and surgical treatment of sacral schwannomas. Oncotarget, 2017, 8(23): 38061-38068.
[12] Ruggieri P, Angelini A, Ussia G, et al. Surgical margins and local control in resection of sacral chordomas. Clin Orthop Relat Res,2010, 468(11): 2939-2947.
[13] Farsad K, Kattapuram SV, Sacknoff R, et al. Best Cases from the AFIP: sacral chordoma. Radio Graphics, 2009, 29(5): 1525-1530.
[14] Zhao PF, Gao Y, Niu GM. The research progress of MR diagnosis of spondylitis caused by brulles infection. Chin J Magn Reson Imaging,2016, 7(8): 625-629.赵鹏飞, 高阳, 牛广明. 布氏杆菌性脊柱炎磁共振的研究进展. 磁共振成像, 2016, 7(8): 625-629.
[15] Kim JK, Hong SS, Choi YJ, et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI:usefulness for prostate cancer detection and localization. J Magn Reson Imaging, 2005, 22(5): 639-646.
[16] Liu ZJ, Ji ZM, Zheng SS, et al. The observation of histochemistry,electronic microscope and tissue culturation of chordoma. Chin J Orthop, 1986, 6(3): 188-191.刘子君, 吉重敏, 郑树森, 等. 脊索瘤的组化、电镜及组织培养的观察. 中华骨科杂志, 1986, 6(3): 188 -191.
[17] Hu WH, Li F, Li HA, et al. The clinicopathologic and immunohistochemical study of chordomas. J Shihezi Med College,1996, 18(1): 8-10.胡文浩, 李峰, 李洪安, 等. 脊索瘤的临床病理和免疫组织化学观察. 石河子医学院学报, 1996, 18(1): 8-10.