占梦潮, 洪俊明, 邹璐鲜, 戴兰华, 陈向强, 谢小青
(1. 华侨大学 化工学院, 福建 厦门 361021;. 厦门市排水监测站, 福建 厦门 361005;3. 厦门水务中环污水处理有限公司, 福建 厦门 361005)
ASM2D模型的多模式AAO工艺模拟和优化
占梦潮1, 洪俊明1, 邹璐鲜1, 戴兰华2,3, 陈向强3, 谢小青3
(1. 华侨大学 化工学院, 福建 厦门 361021;. 厦门市排水监测站, 福建 厦门 361005;3. 厦门水务中环污水处理有限公司, 福建 厦门 361005)
利用活性污泥2D模型(ASM2D)构建厌氧-缺氧-好氧(AAO)多模式工艺的模型,通过灵敏度分析,对模型的动力学参数进行校正.通过改变工艺运行模式,排泥量、内回流比和外回流比,优化多模式AAO工艺.结果表明:该污水处理厂的最优工艺运行模式为改良式AAO模式;当控制排泥量为2 000 m3·d-1时,内回流比为100%,外回流比为50%,出水CODCr、氨氮和总氮质量浓度等指标均可达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准;经过模拟和比较,曝气能耗比原来节省28.7%,内回流能耗相比原来节省37.3%. 关键词: 多模式AAO工艺; ASM2D; 数学模拟; 工艺优化; 活性污泥
目前污水处理工艺大多依靠工艺工程师的经验运行,但污水处理过程非常复杂,不确定性因素较多.因此,可能导致工艺参数调整过于保守、运行成本高等问题,甚至存在一定的风险,无法达到最优工况,数值模拟方法是运用数学模型对各种实际问题进行研究的方法,并运用于污水处理工艺的运行模拟[1-4].活性污泥模型(ASM)是国际水协发布的关于活性污泥反应的动力学模型,近年来,污水处理厂开始采用ASM模型进行污水厂的设计、运营和控制模拟[5],运用ASM2D模型对AAO工艺进行模拟[6-9],优化运行工艺和成本.Guerrero等[10]利用ASM2D模型模拟AAO,UCT,MUCT,BDP和JHB工艺,得出JHB和MUCT工艺对磷的去除效果最好,而BDP和UCT工艺由于大量的硝酸盐进入厌氧区导致磷的去除率最低,适合反硝化过程.Kim等[11]运用ASM模型优化改良ABA2工艺曝气时间,使COD,TN和TP去除率分别达到89%,73%和82%,同时节约能耗.近年来,国内已有众多研究将模型成功地应用于污水处理厂模拟与优化控制研究,并取得良好的效果[12-15].活性污泥数学模型可作为一种辅助工具指导污水厂的运行,为污水厂的升级改造,优化运行提供指导[16].本文模拟某污水厂多模式AAO工艺模式,通过灵敏度分析优化模型参数.
某城市污水处理厂采用多模式AAO工艺,文中就3种常见AAO进行模拟.通过改变进水点,回流位点及控制阀门开度,可在常规、改良型和倒置AAO模式间切换.出水达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准[17],处理能力为15 万m3·d-1.
该污水处理厂分两期建设,由于建设和设计时间不同,设计参数取值略有不同.A,B组前面的构筑物都是八格方池,分别为预缺氧池(1号池)、厌氧池(2号池)、缺氧池(3~8号池)、好氧生物池(A,B1和B2池)、二沉池.合流并进行排泥.A组水量为5 万m3·d-1,厌缺氧段停留时间为6.56 h,有效容积为1.36 万m3.好氧段停留时间为7.64 h,有效容积为1.6 万m3,ρ(DO)为1.1 mg·L-1.B组水量为10 万m3·d-1,厌缺氧池有效容积为1.468 万m3,停留的时间为7.12 h.好氧池有效容积V=1.599 8 万m3,停留时间为7.6 h,ρ(DO)为1.6 mg·L-1.A,B组进水均采用分流,预缺氧池与厌氧池进水分配比为0.75.目前该污水厂是以改良AAO模式运行,A组内的回流量为3.326 4 万m3·d-1(回流比为150%),B组内回流量为9.968 4 万m3·d-1(回流比为100%).两组工艺的外回流分开回流,A组外回流比为50%,B组外回流比为50%.
图1 污水处理厂工艺模拟流程图Fig.1 Simulated flow-sheet of the waste water treatment plant
模拟工艺流程图是根据污水厂实际运行工艺而进行设计的.污水处理厂工艺模拟流程图,如图1所示.针对选取的9,10,11月数据进行动态模拟,所有水质数据均来自于该污水处理厂的日常监测.
国际水协(IWA)给出了ASM2D中的动力学和化学计量参数的默认值,在实际污水处理工艺应用中,为了提高模拟结果的可信度,仍有许多参数需要重新校核[18].灵敏度是用来衡量参数变化对目标或系统状态产生影响程度的一个量化指标.活性污泥法数学模型参数灵敏度分析中最常用的是相对灵敏度,计算公式[19]为
(1)
将9,10,11这3个月进水组分数据输入模型中,进行动态模拟,并调节动力学参数,调节参数前和调节后的ρ(CODcr),ρ(TN),ρ(NH3-N)模拟结果,如图2所示.
(a) COD (b) TN (c) NH3-N图2 出水模拟值和实际值比较Fig.2 Comparison between the simulation and the real value of the effluent quality
图2(a)为ρ(CODcr)模拟值和ρ(CODcr)实测值的对比图.由图2(a)可知:模型模拟值与实测值变化趋势较为一致,模拟值基本能够很好地反应实测值ρ(CODcr)的变化.图2(b)为ρ(TN)模拟值和ρ(TN)实测值对比图.由图2(b)可知:ρ(TN)实测平均值为(14.42±2.18) mg·L-1,ρ(TN)模拟平均值为(20.46±3.64) mg·L-1.由图2(c)可知:ρ(NH3-N)模拟平均值为(6.34±2.11) mg·L-1;实测平均值为(2.09±0.90) mg·L-1.因此,需要对模型的动力学参数进行一定的调整.
对模拟结果影响较大的动力学参数,如表1所示.表1中:对ρ(CODcr)影响较大的参数有μPAO,KO2,qPP,其次为KA,Kpp;对ρ(TN)有影响的参数为μPAO,KO2,qPP,其他参数影响较小;影响ρ(NH3-N)较大的参数有qpp,μPAO,KO2,KA,其他参数影响较小,甚至无影响.
表1 灵敏度较高的动力学参数Tab.1 Kinetic parameters with higher sensitivity mg·L-1
调整聚磷菌(PAO)的最大生长速率μPAO由1.0至0.8.由于该参数可影响PHA的好氧生长,PHA只与PAO有关,且PAO可进行反硝化,调节该参数可改变出水ρ(TN)值.然后,通过调整氧的饱和/抑制系数KO2由0.2至0.1.由于改变异养菌的氧饱和抑制系数可改变异养菌的发酵过程,有利于硝化菌的生长,从而可调节出水氨氮值.参数调整后,对比图3(b)校准前和校准后数据,出水ρ(TN)模拟值(16.94±3.64) mg·L-1和实测值(14.42±2.18) mg·L-1更接近,ASM2D模型对氨氮的模拟值基本可以反映氨氮的降解趋势,氨氮模拟值(3.20±1.73) mg·L-1和实测值(2.09±0.90) mg·L-1也基本达到一致.经过参数校正后,模拟值与实测值的偏差率为34.7%,能模拟污水处理工艺运行的要求[20].
基于调整后的动力学参数模型,分别对不同的工艺模式、排泥量、内回流比和外回流比等运行参数进行优化.
5.1 不同运行模式下的AAO工艺
常规AAO法主要适用于污水处理厂氨氮和总磷进水质量浓度较低的情况,即可使出水水质达标;改良AAO法主要适用于污水处理厂进水总磷质量浓度较高,而氨氮质量浓度不高,且需要强化除磷的情况;倒置AAO法主要适用于污水处理厂进水氨氮较高,需要强化生物脱氮处理效果的情况,如果总磷的质量浓度过高也可通过化学除磷的方式进行处理[21].
不同模式AAO工艺的出水水质变化的模拟,如图3所示.由图3可知:3种工艺模式下ρ(CODcr)的去除,最优者为倒置AAO工艺,其次为常规AAO工艺.因为倒置AAO工艺缺氧池位于厌氧区前面,反硝化菌可以优先获得碳源,所以其碳源消耗比其他工艺更快,进而出水ρ(CODcr)更低.
对于TP的去除率,最优者为改良型AAO工艺,这是因为其在厌氧区前端有一个预缺氧区.回流污泥先经过预缺氧区消耗部分溶解氧后,再流入厌氧区,从而减少带入厌氧区的溶解氧量,这样可以改善厌氧区的厌氧环境,保证厌氧区的释磷效果,好氧区的吸磷能力也相应得到增强[22],故其除磷能力相对更强.而倒置AAO除磷能力相对较弱,主要是由于大部分碳源分配到缺氧池,影响厌氧池中聚磷菌厌氧释磷及好氧吸磷的作用[23].
图3 不同模式AAO工艺下的出水水质Fig.3 Effluent quality under different AAO processes
5.2ρ(DO)值的影响
ρ(DO)值对模拟出水效果的影响,如图4所示.由图4可知:ρ(DO)从0.5 mg·L-1增加至2.0 mg·L-1时,此时有机物的消耗速率明显地加快,微生物会在有氧的条件下,利用有机物进行有氧代谢合成新的细胞,好氧池硝化菌也可以更好地将氨氮氧化为硝态氮.因此,出水ρ(CODcr)降低,出水ρ(TN)和ρ(NH3-N)下降.出水ρ(TP)反而升高,这是因为ρ(DO)增加,好氧池中NO3-增多,导致回流至前端的NO3-增多,影响聚磷菌厌氧释磷.因此,污水厂好氧段最优的ρ(DO)为1.0 mg·L-1,此时出水ρ(CODcr),ρ(TP),ρ(NH3-N)和ρ(TN)均指标达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准.通过对ρ(DO)和鼓风机曝气能耗进行核算,工艺优化后曝气能耗可节省28.7%(相比污水厂A组1.1 mg·L-1和B组1.6 mg·L-1).利用污水处理厂2013年12月进水数据进行溶解氧质量浓度调整验证,优化后的模型ρ(DO)设为1.0 mg·L-1.
5.3 排泥量的影响
活性污泥工艺对磷的去除主要是通过排放高含磷污泥而实现的,如排泥量过少,除磷效果差,同时造成污泥中磷的重新释放,降低除磷效果[24-25].排泥过多,则回流至预缺氧池的污泥较少,进入厌氧池的污泥减少,导致脱氮效果减弱,但是排泥过多也会导致后续的污泥处理费用增加.不同排泥量条件下的出水水质,如图5所示.
图4 不同ρ(DO)下水质的变化 图5 不同排泥量下的出水水质Fig.4 Effluent quality of simulation Fig.5 Effluent quality of simulation under different ρ(DO) under different sludge volume
由图5可知:排泥量增加,出水ρ(CODcr)和ρ(TP)下降,但出水ρ(TN)和ρ(NH3-N)反而上升.出水ρ(TP)的降低,主要是排泥除磷(污泥中含有大量的聚磷菌);而排泥量增加也会导致相应的外回流污泥减少,ρ(TN)和ρ(NH3-N)增加.因此,综合考虑两方面的影响,排泥量应该设置在2 000 m3·d-1,这和污水处理厂原来设置值一致.
5.4 回流比的影响
模拟内回流比为50%,100%,150%,200%条件下的污染物去除效果,结果如图6所示.A,B组不同外回流比的出水水质,结果如图7所示.
图6 不同内回流比下的出水水质 图7 不同外回流比下的出水水质Fig.6 Effluent quality of simulation under Fig.7 Effluent quality of simulation under different internal reflux ratio different external reflux ratio
由图7可知:外回流比从50%增加至200%时,出水的ρ(CODcr)由20.72 mg·L-1增加至29.87 mg·L-1;而总磷质量浓度则由1.12 mg·L-1增加至2.21 mg·L-1;总氮则由17.50 mg·L-1下降至14.64 mg·L-1,总氮降低19.4%;氨氮由5.69 mg·L-1降低值2.09 mg·L-1,且在外回流比100%时降至最低5.4 mg/L.外回流比的增大并没有使得COD的去除率进一步增加,可能是因为回流比过大,导致污泥在各个反应器的沉积降低了有机物的去除.总磷增加比较明显,这是由于回流污泥中含有大量的硝化液,使得反硝化作用也在厌氧池中进行,从而与释磷菌争夺碳源,影响除磷效果(特别是进水碳源较少时),导致出水TP增加.而氨氮和总氮质量浓度的下降,是因为回流污泥量大,反硝化作用更加充分,氮的去除较高.随着污泥回流比的增大,运行费用也将增加.综合各项水质指标,建议该污水厂A,B组外回流比控制在50%,这和污水处理厂设定值一致.
以ASM2D模型为基础,对污水厂AAO工艺进行模拟,通过灵敏度的分析,校正动力学参数,使得出水的ρ(CODcr),ρ(NH3-N)和ρ(TN)模拟值与实际值基本一致.改良AAO模式为最优的工艺模式,在ρ(DO)设置为1.0 mg·L-1时,排泥量可以控制在2 000 m3·d-1,内回流比均为100%,外回流比50%的出水水质最佳;同时,ρ(DO)能耗相比原来节省28.7%,内回流能耗相比原来降低37.3%.通过工艺优化,ρ(DO)、排泥量、内回流比和外回流比整体能耗相比原来下降了27.3%.
[1] 刘芳,陈秀华,顾国维.简化活性污泥数学模型在城市污水厂中的应用[J].环境工程,2005,23(2):33-36.
[2] 赵胤.龙游县污水处理厂二期改扩建工程设计[J].给水排水,2015,41(3):44-48.
[3] 商巧巧,董晓清,李朝林.污水处理厂运营管理评价模型及其工程应用研究[J].环境科学与管理,2015,40(4):175-178.
[4] 李悦,张金松,邓仁健.基于ASM2d的MSBR工艺脱氮除磷优化运行诊断与改造[J].给水排水,2015,41(5):39-42.
[5] MARTIN C,VANROLLEGHEM P A.Analysing, completing, and generating influent data for WWTP modelling: A critical review[J].Environmental Modelling and Software,2014,60:188-201.
[6] Machado V C,LAFUENTE J,BAEZA J A.Activated sludge model 2d calibration with full-scale WWTP data: Comparing model parameter identifiability with influent and operational uncertainty[J].Bioprocess and Biosystems Engineering,2014,37(7):1271-1287.
[7] ZHOU Zhen,SHEN Xuelian,JIANG Luman,etal.Modeling of multimode anaerobic/anoxic/aerobic wastewater treatment process at low temperature for process optimization[J].Chemical Engineering Journal,2015,281:644-650.
[8] GUERRERO J,GUISASOLA A,COMAS J,etal.Multi-criteria selection of optimum WWTP control setpoints based on microbiology-related failures, effluent quality and operating costs[J].Chemical Engineering Journal,2012,188:23-29.
[9] ZHANG Rui,XIE Wenming,YU Hanqing,etal.Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method[J].Bioresource Technology,2014,157:161-165
[10] GUERRERO J,FLORES-ALSINA X,GUISASOLA A,etal.Effect of nitrite limited reactive settler and plant design configuration on the predicted performance of simultaneous C/N/P removal WWTPs[J].Bioresource Technology,2013,136:680-688.
[11] KIM H,LIM H,WIE J,etal.Optimization of modified ABA2 process using linearized ASM2 for saving aeration energy[J].Chemical Engineering Journal,2014,251:337-342.
[12] 高扬,邵青.基于ASM2D模型对龙王嘴污水处理厂的工艺模拟[J].给水排水,2014,40(2):117-121.
[13] 赵松浩,毛献忠,李钦鼎.基于对流扩散方程和ASM2D的氧化沟耦合模型研究[J].给水排水,2014,40(增刊1):425-429.
[14] 陈文亮,吕锡武,姚重华,等.五箱一体化活性污泥工艺的数学模拟与校正[J].化工学报,2015,66(1):393-401.
[15] 李佟,李军,朱向东,等.利用ASM2D模型模拟高碑店污水处理厂的工艺运行[J].中国给水排水,2010,26(3):39-41.
[16] 王文英,黄勇,顾晓丹,等.活性污泥数学模型在污水处理中的研究进展[J].工业水处理,2014,4(7):1-4.
[17] 国家环境保护总局. 城镇污水处理厂污染物排放标准: GB 189180-2002 [S]. 北京:中国环境标准出版社,2002:3-5.
[18] 朱向东,郝二成,甘一萍,等.ASM2D模型在北京高碑店污水处理厂的应用[J].给水排水,2007,33(4):101-104.
[19] 董姗燕,姚重华.单级活性污泥过程数学模型ASM2D参数的灵敏度分析[J].环境化学,2005,24(2):129-133.
[20] 高志广.城市污水脱氮除磷过程模拟及工艺优化运行研究[D].上海:同济大学,2007:123.
[21] 鄢卫东.广州市炭步镇污水处理厂多模式AAO工艺的设计与运行[J].中国给水排水,2012,28(20):52-54.
[22] 杨志泉,周少奇,何伟,等.改良A2/O工艺生物脱氮除磷应用研究[J].中国给水排水,2010,26(1):79-82.
[23] 姚重华,王国华,谭学军,等.两点进水在倒置AAO流程除磷中的作用[J].环境污染与防治,2010,32(12):43-47.
[24] 李曈,郝瑞霞,刘峰,等.A/A/O工艺脱氮除磷运行效果分析[J].环境工程学报,2011,9(8):1729-1734.
[25] 曾武,周少奇,余建恒.A2/O工艺处理混合污水脱氮中试研究[J].水处理技术,2008,34(10):53-56.
[26] HU Z,WENTZEL M C,EKAMA G A.Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems[J].Water Research,2002,36(19):4927-4937.
(责任编辑: 陈志贤 英文审校: 刘源岗)
Multi-Mode AAO Process Simulation and Optimization Based on ASM2D Model
ZHAN Mengchao1, HONG Junming1, ZOU Luxian1,DAI Lanhua2,3, CHEN Xiangqiang3, XIE Xiaoqing3
(1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;2. Drainage Monitoring Station, Xiamen 361005, China;3. General Water of Xiamen Sewage Company Limited, Xiamen 361005, China)
Activated sludge model No 2D (ASM2D) has been used to establish the model of multi-mode anaerobic-anoxic-oxic (AAO) process. The kinetic parameters of the model were calibrated through the sensitivity analysis, and the sludge discharge capacity, the interior return ratio and external reflux ratio were adjusted in order to optimize the operation of multi-AAO process. The results showed that the optimal process operation of sewage treatment plant was the Modified AAO mode. If the capacity of sludge discharge was controlled to 2 000 m3·d-1, the interior return ratio could be 100%, the external reflux ratio 50%, and the concentrations of the effluentρ(CODcr),ρ(NH3-N) andρ(TN) all below the threshold values set out by the Chinese legislation ofDischargeStandardofPollutantsforMunicipalWastewaterTreatmentPlants: GB 18918-2002 Class 1B. Meanwhile, after simulations and comparisons, the aeration energy consumption decreased by 28.7%, and the consumption of the internal reflux energy dropped by 37.3% compared to those of the past. Keywords: multi-mode anaerobic-anoxic-oxic process; activated sludge model No 2D; mathematical modeling; process optimization; activated sludge
10.11830/ISSN.1000-5013.201701013
2015-09-28
洪俊明(1974-),男,副教授,博士,主要从事水污染控制的研究.E-mail:jmhong@hqu.edu.cn.
国家水体污染控制与治理科技重大专项资助项目(2012ZX07313-001-08); 福建省高校产学研重大项目(2014Y4006); 福建省厦门市科技计划项目(3502Z20140057, 3502Z20151256)
X 703
A
1000-5013(2017)01-0069-06