人巨细胞病毒IE蛋白功能的研究进展

2017-01-13 06:19卢元元方峰
中华实验和临床病毒学杂志 2017年2期
关键词:染色质宿主磷酸化

卢元元 方峰

430030 武汉, 华中科技大学同济医学院附属同济医院儿科

·综述·

人巨细胞病毒IE蛋白功能的研究进展

卢元元 方峰

430030 武汉, 华中科技大学同济医学院附属同济医院儿科

人巨细胞病毒(Human cytomegalovirus, HCMV)感染普遍存在,根据社会经济状况不同,人群中血清学阳性率可达40%-100%不等。HCMV基因组约250kb,可编码多种蛋白质,但UL123编码的IE1和UL122编码的IE2是表达量最多且最重要的。IE1被认为是HCMV及宿主细胞基因表达的反式激活因子,也是病毒感染后最先合成的蛋白,对于低MOI感染时病毒基因的表达及复制不可或缺。IE2是HCMV溶解周期的主要活化因子,对病毒复制具有不可替代的作用。作为HCMV表达最丰富的蛋白,IE蛋白不仅在对抗宿主细胞的固有及特异性免疫方面有重要作用,还可通过多种机制影响病毒的潜伏及活化状态。

Fund programs: National Natural Science Foundation of China(81271807)

人巨细胞病毒(Human cytomegalovirus,HCMV)属疱疹病毒β亚科,其庞大的基因组使其可表达多种蛋白,通过各种机制抵抗宿主的抗病毒效应。HCMV感染在人群中广泛存在,大多呈潜伏感染状态,一般不引起明显病变,但免疫缺陷人群及孕妇感染HCMV可导致严重的机会性感染及新生儿小头畸形、听力障碍[1]。也有报道认为HCMV感染与器官移植成功率下降及慢性病的发生有一定联系[2]。IE蛋白是HCMV感染时最早表达且含量最丰富的蛋白质,在对抗宿主固有及特异性免疫方面有重要作用。本文阐述了HCMV IE蛋白参与对抗宿主免疫反应及病毒复制的相关机制,并对其在病毒的潜伏及活化中发挥的作用进行分析。

1 HCMV IE蛋白对抗宿主细胞固有免疫

1.1 HCMV IE1蛋白破坏干扰素(interferon,IFN)诱导的抗病毒效应 IFN信号为宿主抗病毒的第一道防线,可通过刺激固有免疫,促进及调节特异性免疫以发挥抗病毒效应。IFN活化可刺激多种干扰素刺激基因(Interferon stimulated gene,ISG)表达,其产物可抑制病毒蛋白合成、降解病毒核酸以发挥直接抗病毒效应,也可通过提高抗原提呈能力来促进特异性免疫反应。I型IFN(IFN-α/β)与其受体结合可导致受体及相关酪氨酸激酶磷酸化,促使转录激活子1(Signal transducer and activator of transcription 1,STAT1)与STAT2形成异源二聚体,STAT1-STAT2二聚体与干扰素释放调节因子9(Interferon Regulatory Factor 9,IRF9)形成干扰素刺激基因因子3 (Interferon-Stimulated Gene Factor 3, ISGF3)并定位至细胞核,与干扰素刺激反应元件结合以发挥抗病毒作用;II型IFN(IFN-γ)信号则通过与其受体结合形成磷酸化的STAT1同源二聚体并与细胞核内γ活化序列元件结合以活化相关基因表达[3]。IE1蛋白的C末端存在一个天然无序结构区,该区域以动态结构存在,但可稳定于某一结构以利于与STAT2结合,通过干扰ISGF3与相应DNA序列结合,从而抑制I型IFN信号活化[4]。早幼粒细胞性白血病蛋白(promyelocytic leukemia protein,PML)是早幼粒细胞白血病蛋白相关核小体(promyelocytic leukemia protein-associated nuclear bodies, PODs/ND10)的重要组分,通过调节ISGF3促进I型IFN诱导的ISG表达,而IE1可阻断PML的作用以逃避宿主的固有免疫应答反应[5]。II型IFN信号的阻断机制较为复杂,与病毒株种类有关。HCMV AD169株感染允许细胞时,其IE1蛋白并不改变IFN-γ信号中酪氨酸激酶(Jak1、Jak2)及STAT1的含量,STAT1磷酸化及核易位也不受影响。IE1虽可通过抑制STAT1二聚体与细胞核内γ活化序列元件的结合以干扰II型IFN信号,但与I型IFN信号不同的是,IE1并不直接作用于STAT1[3]。而HCMV Towne株则是通过抑制Jak1和STAT1磷酸化以阻断IFN-γ信号,其IE1蛋白与STAT1有无相互作用也存在争议[2]。

1.2 HCMV IE2蛋白干扰IFN-β信号 HCMV感染时IFN-β的诱导需要IRF3和核转录因子(nuclear factor-κB,NF-κB)两者活化[6]。IRF3、NF-κB及其他转录因子募集至IFN-β启动子并形成增强子以利于前起始复合物的形成[7]。IE2虽不影响IRF3的磷酸化、二聚化、核内聚集及相应目的基因表达,但凝胶迁移分析证明IE2可有效抑制NF-κB与IFN -β启动子的结合,阻碍IFN -β和NF-κB依赖的基因表达。虽然目前尚未证明IE2可直接作用于NF-κB亚单位,但NF-κB与IE2存在共同的配体(如TATA结合蛋白、CBP、Jun),因此IE2可能通过与NF-κB亚单位或某一共同的必需配体结合以抑制NF-κB与其特异性DNA序列结合[6]。也有报道称IE2可抑制NF-κB诱导的相关基因表达,IE2作为NF-κB拮抗物,通过阻碍NF-κB依赖的基因表达以减少宿主细胞内促炎性趋化因子及细胞因子的表达从而抑制其抗病毒效应[6, 8]。

2 HCMV IE1可诱导ISG表达以促进病毒播散

病毒感染的宿主细胞经IFN信号诱导多种ISG表达,ISG几乎可作用于病毒生命周期的各个阶段从而发挥强大的抗病毒效应,但部分ISG的表达最终却在某种程度上促进了病毒的复制,提示病毒也可利用ISG以利于自身生长[9]。就HCMV而言,IE1可通过扰乱IFN-α/β或IFN-γ信号减少ISG活化,从而促进病毒复制,但IE1也可通过磷酸化的STAT1及NF-κB诱导ISG表达。这一看似矛盾的现象实际上仍是病毒对抗宿主细胞的策略之一,IE1诱导ISG表达虽然对宿主细胞的炎症及免疫反应有刺激作用,但HCMV可利用某些促炎性蛋白(如CXCL9、CXCL10、CXCL11)与相应受体的结合,募集更多的靶细胞至感染部位,这实际上有利于病毒的播散[10]。

3 小泛素样修饰体(small ubiquitin-like modifier,SUMO)调节HCMV IE蛋白功能

HCMV的IE1和IE2蛋白均可被SUMO共价修饰[11]。有报道称HCMV IE1的SUMO修饰型可促进IE2表达,有利于病毒复制,但IE1的SUMO修饰型不能与STAT2结合,削弱了IE1对I型IFN信号及ISG活化的抑制效应[12]。因此HCMV IE1对病毒感染的总体效应仍存在争议。HCMV IE2的SUMO化可增强其反式激活功能,促进病毒的溶解周期,但这也受到病毒株及感染情况的影响[11, 13]。IE2还可与SUM0相互作用序列(SUMO-interacting motif,SIM)非共价结合,对IE2的SUMO化十分重要[14]。此外,IE2的SUMO修饰型可调节IE1的功能:IE1的SUMO修饰型在感染早期阶段增加,但随后高表达的IE2及其SUMO修饰型又可下调IE1的SUMO化。鉴于IE1的SUMO化不利于病毒逃避宿主固有免疫反应,因此IE2通过抑制IE1的SUMO化最终促进了病毒的免疫逃逸反应[11]。

4 HCMV IE2蛋白参与病毒复制区的形成并影响其功能

HCMV感染时,PODs/ND10外周可作为病毒基因组定位及IE基因转录的位点。在感染极早期,IE2蛋白及UL112-113蛋白以点状结构定位于PODs附近并与其相互作用,最终形成病毒DNA复制区[15, 16]。染色质组装因子1(chromatin assembly factor-1,CAF1)主要负责将组蛋白装配至新合成的DNA,形成并维持其染色质结构。此外,CAF1还可与细胞周期S期的DNA复制叉相互作用,维持DNA聚合酶的持续合成能力,促进DNA合成。HCMV感染细胞时可促进CAF1表达,同时IE2蛋白可与CAF1的亚基相互作用,使CAF1易位至病毒DNA复制位点以促进病毒复制,而宿主细胞染色质则因缺失CAF1发生解聚;HCMV基因组虽因CAF1经历了染色质组装,但在病毒粒子形成时又可通过某种机制失去组蛋白,仍以DNA形式存在[17, 18]。

5 HCMV IE蛋白对病毒潜伏状态的影响

HCMV感染虽然十分普遍,但大多不引起明显病变,提示HCMV可能通过某种机制以维持潜伏感染状态。

HCMV 的主要即刻早期启动子(major immediate early promoter,MIEP)调节IE1和IE2蛋白的表达,IE蛋白表达可诱发早期蛋白、晚期蛋白表达,最终引发病毒的溶解周期,因此HCMV潜伏感染的关键环节是MIEP的转录沉默。在正常潜伏感染者体内可发现MIEP与抑制性染色质相互作用,提示抑制性染色质修饰可能参与维持MIEP的沉默[19]。MIEP作为一强效启动子,在潜伏状态时仍可检测到低水平的IE2转录本,而宿主细胞的微小RNA(MicroRNA,miRNA)可作用于低水平的IE2转录本以阻碍IE2蛋白表达[20]。总体而言,MIEP的抑制性染色质修饰和宿主miRNA共同参与维持MIEP的沉默以确保HCMV的潜伏状态。随着细胞分化导致的miRNA含量下降以及促炎性细胞因子增多对抑制性染色质修饰的对抗,病毒又可重新出现活化感染状态,这也与骨髓造血组织作为HCMV主要的潜伏位点相符[21]。

IE1可抑制IL-6诱导的STAT3磷酸化及与核内DNA序列的结合,而IL-6对HCMV感染的活化具有重要调节作用,因此IE1很有可能通过干扰IL-6信号以维持病毒的潜伏状态[22, 23]。IE1存在两个独立的组蛋白结合区,即染色质锚链区(chromatin tethering domain,CTD)和C末端上游序列,两者可分别与组蛋白的H2A-H2B二聚体及H3-H4结合,以组蛋白为中介实现与核小体的结合并借此定位至宿主染色质[24]。卡波氏肉瘤病毒的DNA序列可与宿主染色质结合以利于潜伏状态时的核内滞留,EB病毒和乳头瘤病毒也可将其基因组锚链于细胞染色质,以在细胞分裂时有效保护病毒基因组,因此HCMV IE1蛋白与宿主染色质的结合也极有可能对潜伏感染时的病毒基因组有某种保护作用[25, 26]。

6 结语

随着对HCMV感染相关机制研究的深入,IE蛋白在发病及潜伏状态下所起的作用也越来越显著。作为HCMV感染时最早表达的蛋白,IE蛋白对于后续病毒基因的表达是必需的,对病毒在潜伏及活化感染之间的转换也有不可忽视的作用。IE1被认为是HCMV基因激活剂,可与多种核阻遏因子如PML、Daxx、Sp100等相互作用以削弱其对基因表达的抑制作用[27, 28]。HCMV感染细胞时可诱导S期蛋白质合成,而IE2则将细胞周期滞留于G1晚期或S早期,从而使细胞内环境维持在利于病毒复制的状态[29, 30]。HCMV虽可表达多种基因产物,但单独IE蛋白的表达已足够引发强烈的促炎及免疫刺激反应,对病毒整体的基因表达及宿主细胞均能够产生巨大影响,甚至在缺少病毒复制条件下,仍能引起相关病变[10]。因此,致力于IE蛋白功能的研究有助于深入理解HCMV感染相关疾病的发病机理,制定新的治疗方案。

[1] Amsler L, Verweij MC, Defilippis VR. The tiers and dimensions of evasion of the type I interferon response by human cytomegalovirus[J]. J Mol Biol,2013,425(24):4857-4871. doi:10.1016/j.jmb.2013.08.023.

[2] 高慧慧,陶然,俞惠民,等. 人巨细胞病毒潜伏感染机制的研究进展[Z]. 201682-87.

[3] Raghavan B, Cook C, Trgovcich J. The carboxy terminal region of the human cytomegalovirus immediate early 1 (IE1) protein disrupts type II inteferon signaling[J]. Viruses,2014,6(4):1502-1524 doi:10.3390/v6041502.

[4] Krauss S, Kaps J, Czech N, et al. Physical requirements and functional consequences of complex formation between the cytomegalovirus IE1 protein and human STAT2[J]. J Virol,2009,83(24):12854-12870. doi:10.1128/JVI.01164-09.

[5] Kim Y, Ahn J. Positive role of promyelocytic leukemia protein in type I interferon response and its regulation by human cytomegalovirus[J].PLOS Pathogens,2015,11(3):e1004785. doi:10.1371/journal.ppat.1004785.

[6] Taylor RT, Bresnahan WA. Human cytomegalovirus IE86 attenuates virus- and tumor necrosis factor alpha-induced NF B-dependent gene expression[J]. J Virol,2006,80(21):10763-10771. doi:10.1128/JVI.01195-06.

[7] Taylor RT, Bresnahan WA. Human cytomegalovirus immediate-early 2 gene expression blocks virus-induced beta interferon production[J]. J Virol,2005,79(6):3873-3877. doi:10.1128/JVI.79.6.3873-3877.2005.

[8] Gealy C, Humphreys C, Dickinson V, et al. An activation-detective mutant of the human cytomegalovirus IEp86 protein inhibits NF-B-mediated stimulation of the human interLeukin-6[J]. Virology,2007,88(9):2435-2440. doi:10.1099/vir.0.82925-0.

[9] Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions[J]. Current Opinion in Virology,2011,1(6):519-525.doi:10.1016/j.coviro.2011.10.008.

[10] Knoblach T, Grandel B, Seiler J, et al. Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-gamma[J]. PLoS Pathog,2011,7(4):e1002016. doi:10.1371/journal.ppat.1002016.

[11] Kim ET, Kim YE, Kim YJ, et al. Analysis of human cytomegalovirus-encoded SUMO targets and temporal regulation of SUMOylation of the immediate-early proteins IE1 and IE2 during infection[J]. PLoS One,2014,9(7):e103308. doi:10.1371/journal.pone.0103308.

[12] Scherer M, Reuter N, Wagenknecht N, et al. Small ubiquitin-related modifier (SUMO) pathway-mediated enhancement of human cytomegalovirus replication correlates with a recruitment of SUMO-1/3 proteins to viral replication compartments[J]. J General Virolo,2013,94(Pt_6):1373-1384. doi:10.1099/vir.0.051078-0.

[13] Berndt A, Hofmann-Winkler H, Tavalai N, et al. Importance of covalent and noncovalent SUMO interactions with the major human cytomegalovirus transactivator IE2p86 for viral infection[J]. J Virol,2009,83(24):12881-12894. doi:10.1099/vir.0.051078-0.

[14] Kim ET, Kim YE, Huh YH, et al. Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth[J]. J Virolo,2010,84(16):8111-8123. doi:10.1128/JVI.00459-10.

[15] Ahn JH, Jang WJ, Hayward GS. The human cytomegalovirus IE2 and UL112-113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10)[J]. J Virol,1999,73(12):10458-10471.

[16] Dimitropoulou P, Caswell R, Mcsharry BP, et al. Differential relocation and stability of PML-body components during productive human cytomegalovirus infection: Detailed characterization by live-cell imaging[J]. Euro J Cell Biol,2010,89(10):757-768. doi:10.1016/j.ejcb.2010.05.006.

[17] Lee SB, Lee CF, Ou DS, et al. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2[J]. Cell Res,2011,21(8):1230-1247. doi:10.1038/cr.2011.53.

[18] Lee SB, Ou D SC, Lee CF, et al. Gene-specific Transcriptional Activation Mediated by the p150 Subunit of the Chromatin Assembly Factor 1[J]. J Biological Chemistry,2009,284(21):14040-14049. doi:10.1074/jbc.M901833200.

[19] Sinclair J. Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms,2010,1799(3-4):286-295. doi:10.1016/j.bbagrm.2009.08.001.

[20] O'Connor CM, Vanicek J, Murphy EA. Host MicroRNA Regulation of Human Cytomegalovirus Immediate Early Protein Translation Promotes Viral Latency[J]. J Virol,2014,88(10):5524-5532. doi:10.1128/JVI.00481-14.

[21] Poole E, Sinclair J. Sleepless latency of human cytomegalovirus[J]. Med Microbiolo Immun,2015,204(3):421-429. doi:10.1007/s00430-015-0401-6.

[22] Reitsma JM, Sato H, Nevels M, et al. Human Cytomegalovirus IE1 Protein Disrupts Interleukin-6 Signaling by Sequestering STAT3 in the Nucleus[J]. J Virol,2013,87(19):10763-10776. doi:10.1128/JVI.01197-13.

[23] Trilling M, Le VT, Rashidi-Alavijeh J, et al. "Activated" STAT proteins: a paradoxical consequence of inhibited JAK-STAT signaling in cytomegalovirus-infected cells[J]. J Immunol,2014,192(1):447-458. doi:10.4049/jimmunol.1203516.

[24] Mucke K, Paulus C, Bernhardt K, et al. Human Cytomegalovirus Major Immediate Early 1 Protein Targets Host Chromosomes by Docking to the Acidic Pocket on the Nucleosome Surface[J]. J Virol,2013,88(2):1228-1248. doi:10.1128/JVI.02606-13.

[25] Ohsaki E, Ueda K. Kaposi's Sarcoma-Associated Herpesvirus Genome Replication, Partitioning, and Maintenance in Latency[J]. Frontiers in Microbiol,2012,3. doi:10.3389/fmicb.2012.00007.

[26] Feeney KM, Parish JL. Targeting mitotic chromosomes: a conserved mechanism to ensure viral genome persistence[J]. Proceedings of the Royal Society B: Biological Sciences,2009,276(1662):1535-1544. doi:10.1098/rspb.2008.1642.

[27] Cosme RC, Martinez FP, Tang Q. Functional interaction of nuclear domain 10 and its components with cytomegalovirus after infections: cross-species host cells versus native cells[J]. PLoS One,2011,6(4):e19187. doi:10.1371/journal.pone.0019187.

[28] Kim YE, Lee JH, Kim ET, et al. Human Cytomegalovirus Infection Causes Degradation of Sp100 Proteins That Suppress Viral Gene Expression[J]. J Virol,2011,85(22):11928-11937. doi:10.1128/JVI.00758-11.

[29] Paladino P, Marcon E, Greenblatt J, et al. Identification of Herpesvirus Proteins That Contribute to G1/S Arrest[J]. J Virol,2014,88(8):4480-4492. doi:10.1128/JVI.00059-14.

[30] Martínez F, Tang Q. Identification of Cellular Proteins that Interact with Human Cytomegalovirus Immediate-Early Protein 1 by Protein Array Assay[J]. Viruses,2014,6(1):89-105. doi:10.3390/v6010089.

(本文编辑:唐浏英)

Research progress in function of human cytomegalovirus IE protein

LuYuanyuan,FangFeng

DepartmentofPediatrics,TongjiHospital,TongjiMedicalCollege,HuazhongUniversityofScienceandTechnology,Wuhan430030,China

FangFeng,Email:ffang@tjh.tjmu.edu.cn

Human cytomegalovirus (HCMV) infection is widespread. According to different economic conditions, the serology positive rate among people ranges from 40% to 100%. HCMV belongs to the β-herpesvirus subfamily, the virus contains an amazing enormous genome of approximately 250 kb that encodes over 200 and perhaps as many as 751 protein products. Notably, IE1 encoded by UL123 and IE2 encoded by UL122 are the most abundant and important among them.IE1 is a powerful transcription activator, which is also the first expressed protein after HCMV infection. Contrast to high MOI, IE1 is essential to virus replication when HCMV is in a low input.IE2 is important for inducing cytolysis effects, which also has an irreplaceable role for viral replication.IE proteins have involved in many mechanisms to resist the innate and adaptive immune responses to cytomegalovirus infection. What’s more, IE proteins are believed to have a role in regulating virus latency and reactivation state.

Human cytomegalovirus; IE proteins; Interferon; Replication; Latency

方峰,Email:ffang@tjh.tjmu.edu.cn

10.3760/cma.j.issn.1003-9279.2017.02.022

国家自然科学基金(81271807)

人巨细胞病毒;IE蛋白;干扰素;复制;潜伏

2016-04-29)

猜你喜欢
染色质宿主磷酸化
染色质开放性与动物胚胎发育关系的研究进展
T69E模拟磷酸化修饰对Bcl-2与Nur77相互作用的影响
GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析
哺乳动物合子基因组激活过程中的染色质重塑
病原体与自然宿主和人的生态关系
龟鳖类不可能是新冠病毒的中间宿主
豚鼠卵母细胞体外成熟过程中生发泡染色质构型的变化
磷酸化肽富集新方法研究进展
MAPK抑制因子对HSC中Smad2/3磷酸化及Smad4核转位的影响
抓住自然宿主