祝灵平, 陈秀, 何蕴藉, 周思颖, 钟山亮, 赵建华, 唐金海
环状 RNA (circular RNA, circRNA) 在哺乳动物中广泛表达。许多研究表明,环状RNA与胃癌、结直肠癌、乳腺癌、食管癌、肝癌和卵巢癌等多种肿瘤的发生发展有直接或间接的关系。不少文献也证实环状RNA可调节转录和转录后基因的表达,可与蛋白质相互作用进而影响细胞周期进程、细胞衰老和凋亡等生命活动。随着RNA 测序技术和生物学分析的发展,不仅越来越多的环状RNA被发现,而且其具体的作用机制也逐渐被人们所熟知,环状RNA有望成为一种新颖的疾病诊断标志物。本文通过综合国内外有关环状RNA的研究进展,对环状RNA发展历史、起源、主要特征、功能及其参与肿瘤发展进行概述。
1976年,Sanger等[1]发现,类病毒基因组由单链、闭合RNA分子构成,类病毒能侵染植株并导致其死亡,而死亡植株体内发现了类病毒的基因组RNA。1979年,洛克菲勒大学Hsu 和 Coca-Prados 在电子显微镜下观察到真核细胞的胞质中有环状RNA的存在[2]。1993年,Capel等[3]在小鼠精子决定基因Sry中发现环状RNA转录过程。2006年,Houseley等[4]在果蝇中发现来自Muscleblind的未知环状转录本。2012年,Salzman等[5]通过RNA-Seq方法首次报道80个环状RNA。随着高通量测序技术的发展,大量环状RNA分子被相继发现。Jeck等[6]在人类成纤维细胞中检测出 25 000多种环状RNA;而Memczak等[7]通过结合RNA-seq数据和人白细胞数据库鉴定出1 950种人类环状RNA、1 903种小鼠环状RNA (其中81种与人类环状RNA相同) 和724种线虫环状RNA。
环状RNA的种类和形式多种多样,可以起源于基因组序列中任何区域,且同一基因位置产生的环状RNA也可以是不同类型[7-11]。不同于线性RNA,环状RNA是一组3’和5’ 端反向剪接形成共价闭合的环状结构,称为“backsplicing”[9, 12-15]。根据来源主要分为3类:内含子序列形成的环状RNA (circular intronicRNA, ciRNA),外显子序列形成的环状RNA(exonic circular RNA, ecircRNA) 以及内含子和外显子序列共同形成的环状RNA (exon-intron circular RNA, EIciRNA)[8,10, 16-17]。外显子环状RNA可以由一个或者多个外显子序列组成,主要存在于细胞质内,而内含子环状RNA主要分布在细胞核内[18-19]。由于环状RNA呈封闭环状结构,没有5’—3’的极性和多聚腺苷酸尾巴,故不易被核酸外切酶RNaseR降解,比线性RNA更稳定,进化也是保守的[20-21]。环状RNA广泛存在于人体细胞中,其数量甚至超过线性RNA的10倍。环状RNA具有组织和疾病特异性,在脑组织的含量高,尤其是神经突触中[5-6,22-23]。也有研究发现,环状RNA在细胞外泌体中富集,其可能机制是环状RNA不易被降解,可通过细胞分泌细胞外囊泡途径释放到胞外[24-25]。
一直认为,环状RNA是一种mRNA错误剪接体,是一类没有功能的结构,长期被忽视[3, 10, 26]。随着转录本研究的深入和RNA测序技术发展,环状RNA功能慢慢被了解。它们主要参与 miRNA 海绵吸附、转录调控、结合蛋白质、翻译和剪接等 5个方面的调节[27-33]。据报道,环状RNA在多种疾病(如心血管疾病[34]、阿尔茨海默病[35-36]、帕金森[37]等)和肝癌[38]、胃癌[39]、食管癌[40]、结肠癌[41]等肿瘤中发挥重要作用,参与这些疾病生理病理调节过程[42]。
3.1 环状RNA在肿瘤组织中异常表达 环状RNA在肿瘤组织中异常表达,与癌旁组织相比,环状RNA hsa_circ_002059[43]、hsa_circ_0000096[39]、has_circ_0001649[44]表达水平在胃癌组织中下调,而circPVT1[45]在胃癌组织中高表达。Hsa_circ_0000069[46]、hsa_circ_001569[47]、circ-BANP[41]表达水平在结肠癌组织中明显上调,而hsa_circ_001988[48]在结肠癌中低表达。Zhong等[49]在膀胱癌组织芯片中发现circTCF25高表达。Hsa_circ_0067934[40]在食管癌组织中上调,而cir-ITCH[50]在食管鳞癌组织中明显下调。 Xuan等[51]发现,hsa_circRNA_100855在喉癌组织中上调,而hsa_circRNA_104912在喉癌组织中下调。同样有研究发现hsa_circ_0005075[52]、circZKSCAN1[53]在肝癌组织中上调。
3.2 环状RNA参与肿瘤的增殖、转移、凋亡 环状RNA在癌症研究领域备受关注,多项研究表明,他们可以通过相关信号通路来影响细胞增殖、分化、转移和凋亡等发展过程。例如,叉形头盒 O3 环状 RNA(circRNA-forkhead box O3, circ-Foxo3) 能与缺氧诱导因子 (hypoxia inducible factor 1α, HIF1α) 和局部粘着斑激酶 (focal adhesion kinase, FAK) 相结合,这些蛋白质被捕获,它们的功能无法发挥,从而促进细胞衰老。circ-Foxo3能 与 细 胞 周 期 蛋 白 依 赖 性 激 酶 2 (cyclindependent kinase 2, CDK2) 和细胞周期蛋白依赖性激酶抑制剂 p21 形成三元复合物抑制 CDK2 的活性,将细胞阻滞在 G1/S 期,影响细胞周期进展,抑制细胞增殖[54-55]。circHIPK3可以海绵吸附miR-124调节基因如蛋白磷酸酶调节分子(protein phosphatase 1 regulatory subunit 13 like,iASPP)影响肿瘤细胞增殖[56-57]。此外,长非编码RNA和环状RNA可以在mRNA和蛋白水平上调节mir-671诱导上调凋亡相关因子caspase8和p38表达,促进神经元细胞凋亡[58]。早幼粒细胞白血病/视黄酸受体α(promyelocytic leukemia/retinoic acid receptorα,PML/RARA)和酸甲基转移酶2A(lysine methyltransferase 2A,MLL)基因融合、生产环状RNA(f-circm9和f-circpr)被敲除后会导致大量肿瘤细胞凋亡[59]。cir-ITCH可结合miR-7和miR-214增强E3泛素蛋白连接酶(itchy E3 ubiquitin protein ligase ,ITCH)表达,从而抑制Wnt/β-catenin信号通路[50]。同时,cZNF292下调被证实有助于降低核因子κb(nuclear factorκB,NF-κB)、转录因子E2F transcription factor 1(E2F1)、Sp1 transcription factor(SP1)、hypoxia inducible factor 1(HIF-1)、AP-1transcription factor subunit(AP-1)、信号转导和转录激活子3(signal transducer and activator of transcription 3,STAT3)、信号转导和转录激活子5(signal transducer and activator of transcription 5,STAT5),从而抑制肿瘤细胞生长[60-61]。环状RNA表达受到许多癌症相关通路和信号转导通路的影响,包括磷脂酰肌醇3激酶/Akt(Phosphoinositide 3-Kinase/Akt ,PI3K/Akt)和NFκB,转化生长因子β(transforming growth factorβ,TGF-β)等[62]。环状RNA可能在肿瘤发生、发展以及侵袭转移中发挥重要作用[46, 53, 63]。
随着RNA测序和其他检测技术的应用,我们注意到,环状RNA在许多肿瘤中差异表达现象很普遍,包括食管癌、胃癌、膀胱癌、结肠癌、肝细胞癌等肿瘤中环状RNA的表达。Li等[24]发现,外泌体中环状RNA(exosome circRNA, exo-circRNA)含量比细胞丰富,且性质稳定,而血清中多种 exo-circRNA 在癌症患者和健康人中具有明显差异表达,环状RNA可通过外泌体传递某种信号到远处靶细胞,从而可以初步实现肿瘤患者的早期诊断和鉴别诊断。由于环状RNA比线性RNA更稳定,起源于易种植肿瘤,环状RNA可以贮存在细胞囊泡中通过胞吐方式释放进入血液循环,使得环状RNA在临床创伤小、易于获得的采集体液 (如唾液、 血液等)中更容易被检测和被提取[64-65]。这些特点为环状RNA成为肿瘤诊断和靶向治疗标志物提供了临床优势。环状RNA有可能成为人类肿瘤中理想分子标志物,用于某些肿瘤的靶向治疗。
环状RNA可通过调控miRNA间接实现其功能,环状RNA 与miRNA 之间既存在竞争关系又存在协同关系,可以把环状RNA作为靶标来调控miRNA,进而调控一系列生命活动,他们之间的平衡对生物体至关重要。目前,虽然已有大量证据证明环状RNA参与基因的表达调控、肿瘤的发生和发展过程,但环状RNA大部分功能还是未知的,且探索环状RNA的工具也是有限的,因此更深入研究将面临着挑战。
[1] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976,73(11):3852-3856.
[2] Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979,280(5720):339-340.
[3] Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis[J]. Cell, 1993,73(5):1019-1030.
[4] Houseley JM, Garcia-Casado Z, Pascual M, et al. Noncanonical RNAs from transcripts of the Drosophila muscleblind gene[J]. J Hered, 2006,97(3):253-260.
[5] Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012,7(2):e30733.
[6] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157.
[7] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013,495(7441):333-338.
[8] Chen I, Chen CY, Chuang TJ. Biogenesis, identification, and function of exonic circular RNAs[J]. Wiley Interdiscip Rev RNA, 2015,6(5):563-579.
[9] Chen LL, Yang L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015,12(4):381-388.
[10] Shen T, Han M, Wei G, et al.An intriguing RNA species-perspectives of circularized RNA[J].Protein Cell,2015,6(12):871-880.
[11] Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6):792-806.
[12] Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993,7(1):155-160.
[13] Sun X, Wang L, Ding J, et al. Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA[J]. FEBS Lett, 2016,590(20):3510-3516.
[14] Suzuki H, Aoki Y, Kameyama T, et al. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot[J]. Int J Mol Sci, 2016,17(10). pii: E1722.
[15] Zhang XO, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016,26(9):1277-1287.
[16] Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals[J]. Cell Rep, 2015,10(1):103-111.
[17] Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014,159(1):134-147.
[18] Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation[J]. Cell Rep, 2014,9(5):1966-1980.
[19] Talhouarne GJ, Gall JG. Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes[J]. RNA, 2014,20(9):1476-1487.
[20] Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J]. Nucleic Acids Res, 2006,34(8):e63.
[21] Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs[J]. Int J Mol Sci, 2014,15(6):9331-9342.
[22] Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed[J]. Mol Cell, 2015,58(5):870-885.
[23] Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes[J]. Brief Bioinform, 2016,pii: bbw081. [Epub ahead of print] .
[24] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015,25(8):981-984.
[25] Lasda E, Parker R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance[J].PLoS One, 2016,11(2):e0148407.
[26] Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J]. Cell, 1991,64(3):607-613.
[27] Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities[J]. RNA, 2010,16(11):2043-2050.
[28] Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges[J]. Curr Biol, 2010,20(19):R858-861.
[29] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013,495(7441):384-388.
[30] Chen LL. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016,17(4):205-211.
[31] Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs[J]. RNA Biol, 2016,13(1):34-42.
[32] Schneider T, Hung LH, Schreiner S, et al. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs[J]. Sci Rep, 2016,6:31313.
[33] Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine[J]. Cell Res, 2017,27(5):626-641.
[34] Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016,37(33):2602-2611.
[35] Zhao Y, Alexandrov PN, Jaber V, et al. Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) is Linked to Deficits in a Natural Circular miRNA-7 Sponge (circRNA; ciRS-7)[J]. Genes (Basel), 2016,7(12). pii: E116.
[36] Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD)[J]. Front Genet, 2013,4:307.
[37] Junn E, Lee KW, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7[J]. Proc Natl Acad Sci U S A, 2009,106(31):13052-13057.
[38] Xu L, Zhang M, Zheng X, et al. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2017,143(1):17-27.
[39] Li P, Chen H, Chen S, et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer[J]. Br J Cancer, 2017,116(5):626-633.
[40] Xia W, Qiu M, Chen R, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation[J]. Sci Rep, 2016,6:35576.
[41] Zhu M, Xu Y, Chen Y, et al. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer[J]. Biomed Pharmacother, 2017,88:138-144.
[42] Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013,73(18):5609-5612.
[43] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015,444:132-136.
[44] Li WH, Song YC, Zhang H, et al. Decreased Expression of Hsa_circ_00001649 in Gastric Cancer and Its Clinical Significance[J]. Dis Markers, 2017,2017:4587698.
[45] Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer[J]. Cancer Lett, 2017,388:208-219.
[46] Guo JN, Li J, Zhu CL, et al. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer[J]. Onco Targets Ther, 2016,9:7451-7458.
[47] Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J]. Oncotarget, 2016,7(18):26680-26691.
[48] Wang X, Zhang Y, Huang L, et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances[J]. Int J Clin Exp Pathol, 2015,8(12):16020-16025.
[49] Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma[J]. Sci Rep, 2016,6:30919.
[50] Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J].Oncotarget,2015,6(8):6001-6013.
[51] Xuan L, Qu L, Zhou H, et al. Circular RNA: a novel biomarker for progressive laryngeal cancer[J]. Am J Transl Res, 2016,8(2):932-939.
[52] Shang X, Li G, Liu H, et al. Comprehensive Circular RNA Profiling Reveals That hsa_circ_0005075, a New Circular RNA Biomarker, Is Involved in Hepatocellular Crcinoma Development[J]. Medicine (Baltimore), 2016,95(22):e3811.
[53] Yao Z, Luo J, Hu K, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways[J]. Mol Oncol, 2017,11(4):422-437.
[54] Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016,44(6):2846-2858.
[55] Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis[J]. Oncogene, 2016,35(30):3919-3931.
[56] Chen J, Xiao H, Huang Z, et al. MicroRNA124 regulate cell growth of prostate cancer cells by targeting iASPP[J]. Int J Clin Exp Pathol, 2014,7(5):2283-2290.
[57] Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016,7:11215.
[58] Nan A, Chen L, Zhang N, et al. A novel regulatory network among LncRpa, CircRar1, MiR-671 and apoptotic genes promotes lead-induced neuronal cell apoptosis[J]. Arch Toxicol, 2017,91(4):1671-1684.
[59] Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations[J]. Cell, 2016,165(2):289-302.
[60] Boeckel JN, Jaé N, Heumüller AW, et al. Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA[J]. Circ Res, 2015,117(10):884-890.
[61] Yang P, Qiu Z, Jiang Y, et al. Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/β-catenin signaling pathway[J].Oncotarget,2016,7(39):63449-63455.
[62] Ahmed I, Karedath T, Andrews SS, et al. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma[J]. Oncotarget, 2016,7(24):36366-36381.
[63] Xin Z, Ma Q, Ren S, et al. The understanding of circular RNAs as special triggers in carcinogenesis[J]. Brief Funct Genomics, 2017,16(2):80-86.
[64] Memczak S, Papavasileiou P, Peters O, et al. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood[J]. PLoS One, 2015,10(10):e0141214.
[65] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015,61(1):221-230.