诸葛倩倩
摘 要:数学是一门具有抽象概括性的科学语言和工具,在整个自然科学和生命个体发展过程中具有重要的奠基性作用。数学涉及学生内在思维能力,是促进学生认知能力的重要基础。
关键词:情境 思维 理解 素养
一、创设真实情境,在思维调整状态中提升理解能力
俗话说得好:“兴趣是最好的老师。”没有兴趣,任何学习都将会失去动力。在数学学习过程中,只有设置必要的情境,浸润学生的思维与心灵,才能真正焕发学生的内在动力,提升课堂教学的整体性效益。
1.设置游戏情境,为发展理解能力奠定基础。教师要努力营造适切可感的认知情境,将学生的思维动力调整到最佳状态,给学生充足的认知准备,从而促进学生内在理解动力的产生。
以教学“能被3整除的数”,设置了这样的游戏情境:教师扮演了一个具有神奇魔力的人,并向学生夸下海口:“任何一个数字,都能在极短的时间内猜出是否能被3整除。”很多学生兴趣浓郁,接连报上数字,其中不乏8位的数字,但教师都轻松地化解。学生在几番验证之后,纷纷向教师求取秘诀。教师则故意买了关子,告诉学生秘诀就藏在了书本中。正是有了这样的情境浸润、动力支撑,学生内在的认知兴趣被充分激活,其内在思维意识也就处于较为亢奋的状态。
2.补充课外素材,为发展理解能力拓展资源。数学思维能力的历练仅凭借课堂、凭借一本简单的《数学》教材是远远不够的,还需要教师深入教材,为学生拓展、推荐与数学思维训练相关的课外读物。关键在于这些课外读物都借助鲜明可感的认知情境,对学生思维理解能力的提升具有重要的促进作用。
如在教学中,教师可以向学生推荐《小学数学图形中的奥秘》《数学学习古诗集》等书本,并引领学生将教材内容与书本中的内容进行紧密结合,让学生浸润在趣味性与知识性的熏陶营养中,促进学生认知能力的不断提升。
二、紧扣审题错误,在揣摩反思中提升理解能力
1.从题目逻辑关联入手,理清要素,保障理解能力提升。一是凸显核心语言,理清内在关联。不少学生由于对题型中相关核心词语的忽略,导致对题目意思的整体性错失,在理解层面出现感知的偏差,从而造成题目解读的错误。例如:王师傅要加工零件846个,5天已经完成了170个。如此下去,再修20天能够完成任务吗?不少学生先通过5天的工作量,来计算工作效率,随后计算20天的工作量为34×20=680个,最终对比任务总量,认为不能完成任务。因此,教师要引领学生紧扣这一点来对比“修”与“再修”之间的差异,并帮助他们在感受彼此差异的同时,在思维意识中建立相应的思维意识,促进学生认知能力的不断提升。
二是聚焦关键信息,剔除冗长资源。在不少题目中,有一些其实并没有实际意义的条件,也一并呈现在题目中,主要是会对学生的感知理解形成了较大程度的干扰。这就需要具有高超的思维辨析、理解能力,才能准确洞察已知条件的价值和性质。但在实践操作中,不少学生就落入陷阱,导致错误百出。例如这一道题:运送184只西瓜,大箩筐可以装26只西瓜,小箩筐能装12只西瓜,至少需要多少大箩筐?很显然,问题最后指向“多少只大箩筐”,其实与小箩筐就没有任何的关系。但不少学生都误认为,既然题目已经出示了这一信息,就应该在解决问题时将其用上。这其实是很多学生的正常思维,之所以出现这样的情况,主要在于学生凭借原始的经验与能力,难以辨析已知条件与所求问题之间的内在关联,难以真正把握题目的本质要害。
而在上述案例中,教师在这样的教学过程中,面对学生错误审题,不能厘清辨析条件与所问问题之间的联系,那就要让学生在反复思考、深入揣摩的过程中,对已知条件进行排除式考察与审视,才能真正强化学生对思维认知的体悟效果,促进学生认知能力的不断提升。
2.从题目的本质内涵入手,提领而顿,促进理解能力提升。学生思维意识的培养、理解能力的提升,还应该表现在对复杂问题提炼、梳理的能力上。有很多数学问题,在文字表述的过程中显得较为繁琐、冗长。虽然可以根据已知条件进行问题的解决,但这种表达方式对于学生准确洞察题意、寻求内在信息,形成了一定的障碍。有这样一道题:在一座长50米的游泳池里,小明与小军练习游泳。他们同时从游泳池的起点出发,当小明游到泳池的一半时,小军已经到达终点。随后,小军原路游回,与小明相对而游,在遇到小明之后再次游向终点,然后再次返回。如此往复,直到小明游到终点。请问,从出发的那一刻起到小明游到终点,小军一共游了多少米?
很多学生一读题目,就已经被彻底转晕了脑袋。反反复复呈现,甚至有不少教师都要将题目读上一两遍,才能开始解决问题。事实上,这一道题如果紧扣题目的本质,找准小明与小军两者之间的速度关系,就抓住了这道题的命脉,起到提领而顿、百毛皆顺的教学效果。因此,教师引领学生深入题目,剔除冗长的表达语言,从中提炼出最重要的核心要素,引领学生拨云见日,探寻题目中所蕴藏的两个条件:其一,小军游泳的速度是小明的两倍;其二,不管他们的速度如何,两人所耗费的时间是相同的。由此,我们可以清晰地看到小明从泳池一端游到另一端,一共为50米;而相同的时间里,小军则应该游了100米。
通过这样的深入感知与巧妙梳理,原本看似异常复杂的问题就变得清晰明了。教师正是引领学生通过删繁就简的方式,尝试着从繁杂的浓雾中观看精美之“花”,收到了较好的教学效果。
三、依托思维质态,在构建结构中提升理解能力
1.质疑问难,拓展适用范围。爱因斯坦曾经说过:“提出一个问题比解决一个问题更重要。”由此可见,学生质疑能力是促进学生思维意识以及理解能力的一条重要渠道。这一理念对于数学课堂教学同样具有重要的促进价值。
以教学“乘法的分配律”为例,在教师的鼓励下,学生对这一部分内容进行了质疑:“‘乘法的分配律一定要求是两个数的和乘以相同的数吗?”这样的问题一方面体现了学生对“乘法的分配律”形式的观察及自身的思考结构,另一方面也暴露了学生对“乘法的分配律”认知上的局限性。此时,教师就紧扣学生提出的这一问题,让学生尝试运用三、四个数,甚至更多的数与同一个数字相乘,其结果也是相同的,从而让学生意识到“乘法的分配律”并不仅仅局限在两个数之和上。在这样的基础上,教师引领学生拓展思维,尝试从两个或两个以上的数之差与同一个数字相乘,同样适用于“乘法的分配律”的法则。
在这样的教学过程中,学生通过自身的质疑问难,转变了思维的方向,拓展了思维的能力,高效凸显了学生思维认知的内在过程,有效地提升了课堂教学的整体性效益。
2.修缮完整,聚焦核心要旨。当我们的题目在表述上存在一定的问题时,教师就可以引领学生对其语言以及相关信息进行必要的修缮。教师可以通过缩减的方式来剔除表述中过于臃肿的内容,使其内容更加清晰;教师也可以运用前后语义不太易于理解的地方,进行必要的拓展扩充,更好地呈现题目中的数量关系,从而为学生的认知理解保驾护航。
例如在教学“分数应用题”这一内容时,很多的题目往往描述非常简洁,比如增加了45%、降价了31%等,这对于学生寻找“分数应用题”中最为关键的一步——寻找单位“1”,造成了一定的障碍。这就需要教师在教学中进行悉心指导,找准课堂教学彼此之间的数量关系,从而夯实学生之间的内在联系,搞清题目中到底哪个才是单位“1”。只有这样的深入探究,学生才能在开启自身理解能力的基础上寻找到解决问题的根本策略和方法,从而为提升课堂教学的整体性效益奠基。
总而言之,每一个教师都应该本着对孩子生命意识健康发展的高度,让学生无论是面对数学材料,还是习题训练,都要从小处着手,在教学中努力培养学生的认知意识,促进学生认知能力的不断提升。
参考文献:
[1]孔涛涛.浅议如何密切联系小学数学教学与生活[J].数学教学通讯,2014(13).
[2]林朝琼.生活化角度下的小学数学教学策略探究[J].数学学习与研究,2014(24).
责任编辑:邓 钰