双位错滑移运动的晶体相场模拟*

2017-01-03 02:45杨瑞琳胡绪志卢强华高英俊
广西科学 2016年5期
关键词:相场晶界晶体

杨瑞琳,刘 瑶,胡绪志,卢强华,高英俊

(广西大学物理科学与工程技术学院,广西南宁 530004)



双位错滑移运动的晶体相场模拟*

杨瑞琳,刘瑶,胡绪志,卢强华,高英俊**

(广西大学物理科学与工程技术学院,广西南宁530004)

(College of Physical Science and Technology,Guangxi University,Nanning,Guangxi,530004,China)

摘要:【目的】研究晶体位错运动对材料加工力学性能的影响。【方法】应用改进晶体相场(Phase-field-crystal,PFC)模型,研究剪切应变作用下晶体的双位错的滑移运动特征。【结果】在应变作用下,体系的双位错只作滑移运动,运动方向平行且相反,保持匀速运动,不出现攀移运动;应变率较小时,位错作滑移运动,越过势垒需要一定孕育时间,此时滑移出现颠簸式运动特征;应变率较大时,位错滑移运动呈匀速直线运动。【结论】PFC模型能较好地用于研究位错在应变作用下的运动。

关键词:晶体位错滑移应变晶体相场

0 引言

【研究意义】材料内部的微观缺陷决定材料的宏观性能[1-2]。微观缺陷包括位错、空位、晶界、空洞和微裂纹等。通常这些微观缺陷是在纳米尺度上发生非平衡复杂动力学过程中生成[3]。金属材料的变形加工与材料的位错等微观缺陷运动有密切关系。在目前条件下,材料的原子尺度结构的演化很难被实验原位观测到。因此,计算机模拟实验已成为精确揭示这些微观缺陷运动的重要方法和实验补充[4]。【前人研究进展】相场法是当今研究微观缺陷结构演化的有效计算工具[5-6]。传统相场法[7-8]建立在平衡态均匀场基础上,该方法忽略了原子周期排列结构所产生的物理特性,因此难以反映晶体周期结构特性以及纳观尺度的缺陷行为,也无法从根本上揭示微观结构运动过程中的动力学机理。最近,基于泛函密度理论的晶体相场(Phase-field-crystal,PFC)模型[9-11]引入周期性局域密度场作为序参量,将晶相的密度场表示成周期性函数形式,进而通过该密度函数反映晶体的周期结构。该密度场很自然地与晶粒取向和位错的运动、弹性效应等物理特性自洽地联系起来[10]。现在,PFC模型已成功模拟了位错攀移、滑移和亚晶界湮没[11-12]、晶界位错预熔化[13]、异质外延生长[14]、晶体结构的相转变[15]、韧性材料的微裂纹扩展与连通[16]、纳米晶界结构设计[17]等。【本研究切入点】到目前为止,应用PFC模型详细研究双位错运动还未见报道。【拟解决的关键问题】应用改进PFC模型[18]研究晶体的双位错在剪应变作用下的滑移特征,揭示剪切应变作用对位错滑移的影响。

1 PFC模型与方法

1.1体系的自由能密度函数

按照文献[10]的做法,用原子密度函数表示相场变量,其表达式可写成

(1)

式中,等号右边第一项是原子的周期排列特征项,第二项是液相的原子无规项。参考文献[19]的思想和方法,本文在原始的PFC模型基础上,加入体系原子密度与外力场耦合的作用项,则体系无量纲的自由能函数可以写成

(2)

平衡时的三角晶体相的原子密度函数ρ可写成单模形式

(3)

式中,A0是固相原子密度的振幅;ρ0为液相的原子密度平均值。将式(4)代入式(2),对A0和q分别求导数,得到A0的表达式为

(4)

由体系的极小自由能密度函数可以得到二维体系不同相区的相图。按照计算相图的方法[10]得到的二维相图如图1所示。

L:液相区;S:条状相区;T:六角结构相区

L:Liquid phase;S:Stripe phase;T:Triangular phase

图1二维PFC相图

Fig.12D PFC phase diagram

1.2动力学方程

由于原子密度场ρ为保守场,所以演化的无量纲动力学方程满足Chan-Hilliard方程[14]

(5)

为求解复杂的动力学方程式(5),还必须将动力学方程在时间和空间进行离散化处理,即采用数值求解的办法。在本文的数值求解中,采用显型Euler迭代公式[8]

(6)

式中,Δt为离散时间步长。此外,为使数值解具有稳定性,需将Laplace算子作用考虑到次近邻格点[8]

(7)

式中,Δx为离散空间步长,j和n分别代表i的最近邻格点与次近邻格点。利用可视化函数imshow出原子密度函数ρ(x,y)分布图。

1.3样品制备

为方便起见,以FCC面心立方晶格的{111}平面作为模拟实验的结构体系。要在等效于{111}平面的二维六角原子晶格点阵中产生一对孤立的刃位错,可以利用六角结构的原子密度分布函数公式(4)来设置。在模拟区域上设置为双晶结构,晶界的取向差设为θ=0.65°。二个位错位于晶界上,该体系为双晶结构,且晶界上各有一个孤立位错,形成位错对(如图2红色的位错符号所示)。对于设定的r值,与之相应的ρ0取值如图1所示,取在液固两相共存的边界上。本研究详细的模拟参数如下:模拟区域设置为256⊿x*256⊿y,单元格子⊿x=⊿y=0.75,时间步长t=0.5,样品弛豫时间步数n=50 000;固相区的参数为(ρ0,r)=(0.364 2,-0.45),液相区的参数为(ρ0,r)=(0.469 5,-0.45),得到的具有晶界位错的样品如图2a所示。

1.4剪切应变的施加

PFC方法在固相与自由表面之间设置液相区域与之衔接[10],这样就可以模拟晶粒在剪切应力作用下的位错运动情况。图2b中给出了本模型施加剪切应变的示意图。本研究采用文献[19]给出的外力场的耦合方式,就可做到位错周围的原子克服Peierls势,实现位错攀移和滑移运动。

F1和F2为剪切应力,F1=-F2

F1and F2are the shear strain,F1=-F2

图2样品(a)及施加剪切应变的示意图(b)

Fig.2The sample (a) and exerting shear strain diagram (b)

2 结果与分析

图3样品在不同的剪切应变作用下位错位置随时间变化的曲线

Fig.3Samples at different shear strain under the dislocation position changes over time

图4体系在不同剪切应变作用下的自由能曲线

Fig.4Free energy of the system under the effect of different shear strain

3 结论

PFC模型能较好地用于研究位错在应变作用下的运动。在温度较低的条件下施加应变作用,当应变率较大时,体系的双位错只作滑移运动,运动方向平行且相反,保持匀速运动,不出现攀移运动;当应变率较小时,位错滑移运动过程越过势垒需要一定孕育时间,此时滑移出现颠簸式运动特征。这些结果与实验结果相符合。

参考文献:

[1]徐恒均,刘国勋.材料科学基础[M].北京:北京工业出版社,2001:265-279. XU H J,LIU G X.Fundamentals of Materials Science[M].Beijing:Beijing Industry Press,2001:265-279.

[2]胡赓祥,蔡珣,戎咏华.材料科学基础[M].3版.上海:上海交通大学出版社,2010:265-279. HU G X,CAI X,RONG Y H.Fundamentals of Materials Science[M].3rd edition.Shanghai:Shanghai Jiao Tong University Press,2010:265-279.

[3]BOBYLEV S V,OVID’KO I A.Transformations of faceted grain boundaries in high-Tcsuperconductors[J].Physical Review B,2003,67(13):132506.

[4]OVID’KO I A,SKIBA N V.Enhanced dislocation emission from grain boundaries in nanocrystalline materials[J].Scripta Materialia,2012,67(1):13-16.

[5]GUTKIN M Y,OVID’KO I A.Transformations of low-angle tilt boundaries in high-Tcsuperconductors[J].Physical Review B,2001,63(6):064515.

[6]张林,王绍青,叶恒强.大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究[J].物理学报,2004,53(8):2497-2502. ZHANG L,WANG S Q,YE H Q.Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching[J].Acta Physica Sinica,2004,53(8):2497-2502.

[7]ELDER K R,GRANT M.Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals[J].Physical Review E,2004,70(5):051605.

[8]ELDER K R,PROVATAS N,BERRY J,et al.Phasefi- eld crystal modeling and classical density functional theory of freezing[J].Physical Review B,2007,75(6):064107.

[9]BERRY J,GRANT M,ELDER K R.Diffusive atomistic dynamics of edge dislocations in two dimensions[J].Physical Review E,2006,73(3):031609.

[10]黄世叶,刘晓骅,谢森,等.剪切应力作用下位错运动的晶体相场模拟[J].广西科学,2015,22(4):400-406. HUANG S Y,LIU X H,XIE S,et al.Phase-field-crystal simulation of dislocation gliding under shear strain[J].Guangxi Sciences,2015,22(4):400-406.

[11]罗志荣,黄世叶,茹谢辛,等.晶体相场法模拟大角度晶界的变形过程[J].广西科学,2013,20(4):311-315. LUO Z R,HUANG S Y,RU X X,et al.Phase field crystal modeling for deformation process of high-angle grain boundaries[J].Guangxi Science,2013,20(4):311-315.

[12]BERRY J,ELDER K R,GRANT M.Melting at dislocations and grain boundaries:A phase field crystal study[J].Physical Review B,2008,77(22):224114.

[13]陈成,陈铮,张静,等.晶体相场法模拟异质外延过程中界面形态演化与晶向倾侧[J].物理学报,2012,61(10):108103. CHEN C,CHEN Z,ZHANG J,et al.Simulation of morphological evolution and crystallographic tilt in heteroepitaxial growth using phase-field crystal method[J].Acta Physica Sinica,2012,61(10):108103.

[14]YU Y M,BACKOFEN R,VOIGT A.Morphological instability of heteroepitaxial growth on vicinal substrates:A phase-field crystal study[J].Journal of Crystal Growth,2011,318(1):18-22.

[15]ARAFIN M A,SZPUNAR J A.A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies[J].Corrosion Science,2009,51(1):119-128.

[16]高英俊,罗志荣,黄创高,等.晶体相场方法研究二维六角相向正方相结构转变[J].物理学报,2013,62(5):050507. GAO Y J,LUO Z R,HUANG C G,et al.Phase-field-crystal modeling for two-dimensional transformation from hexagonal to square structure[J].Acta Physica Sinica,2013,62(5):050507.

[17]高英俊,罗志荣,黄礼琳,等.韧性材料的微裂纹扩展和连通的晶体相场模拟[J].中国有色金属学报,2013,23(7):1892-1899. GAO Y J,LUO Z R,HUANG L L.Phase-field-crystal modeling for microcrack propagation and connecting of ductile materials[J].The Chinese Journal of Nonferrous Metals,2013,23(7):1892-1899.

[18]卢成健,蒋丽婷,王玉玲,等.晶体相场法模拟小角度晶界的位错结构及其演化[J].广西科学,2013,20(4):316-320. LU C J,JIANG L T,WANG Y L,et al.Simulating structure of dislocation and its evolution in low angle grain boundary by phase field crystal method[J].Guangxi Science,2013,20(4):316-320.

[19]HIROUCHI T,TAKAKI T,TOMITA Y.Effects of temperature and grain size on phase-field-crystal deformation simulation[J].International Journal of Mechanical Sciences,2010,52(2):309-319.

[20]COLOMBO D,MASSIN P.Fast and robust level set update for 3D non-planar X-FEM crack propagation modelling[J].Computer Methods in Applied Mechanics and Engineering,2011,200(25/26/27/28):2160-2180.

(责任编辑:陆雁)

Phase-field-crystal Simulation of Double Dislocation Gliding

YANG Ruilin,LIU Yao,HU Xuzhi,LU Qianghua,GAO Yingjun

Key words:crystal dislocation,gliding,strain,phase-field-crystal

Abstract:【Objective】The effects of crystal dislocation movement on mechanical behaviors of materials processing are studied.【Methods】The feature of the gliding of double dislocation under shear strain are simulated by the improved phase-field-crystal(PFC).【Results】The simulation results show that the double dislocation of the system only glides without climbing under stress,and keeps moving at a constant speed,while their directions are parallel,but opposite.When the strain rate is small,it requires a certain incubation time to overcome the barrier,therefore,the slipping of dislocation looks like a bumpy way.When the strain rate is larger,the dislocation glides uniformly in a straight line,while the strain rate is relatively smaller,the gliding is of the bumpy motion.【Conclusion】PFC model can be well used to study the dislocation movement under the effect of strain.

收稿日期:2016-07-25

作者简介:杨瑞琳(1992-),女,硕士研究生,主要从事纳米材料设计与模拟实验研究。

中图分类号:TG111.2

文献标识码:A

文章编号:1005-9164(2016)05-0443-05

修回日期:2016-08-02

*国家自然科学基金项目(51161003),广西自然科学基金重点项目(2012GXNSFDA053001)和广西大学大创项目(201610593220,201610593218)资助。

**通信作者:高英俊(1962-),男,教授,博士生导师,主要从事材料纳微结构的设计与模拟实验研究,E-mail:gaoyj@gxu.edu.cn。

广西科学Guangxi Sciences 2016,23(5):443~447

网络优先数字出版时间:2016-11-21【DOI】10.13656/j.cnki.gxkx.20161121.015

网络优先数字出版地址:http://www.cnki.net/kcms/detail/45.1206.G3.20161121.1546.030.html

猜你喜欢
相场晶界晶体
晶界工程对316L不锈钢晶界形貌影响的三维研究
基于截断球状模型的Fe扭转晶界的能量计算
运动晶界与调幅分解相互作用过程的相场法研究*
“辐射探测晶体”专题
基于子单元光滑有限元的混凝土相场损伤模型研究
基于相场模型的一维拉杆脆性断裂分析
铸件凝固微观组织仿真程序开发
基于COMSOL的相场模拟研究
基于修正球形双晶模型的金属Al晶界能分子动力学计算