Lipschitz函数和非光滑核奇异积分算子的交换子

2016-12-27 03:22谢佩珠
关键词:广州大学信息科学广州

谢佩珠

(广州大学 数学与信息科学学院, 广东 广州 510006)

Lipschitz函数和非光滑核奇异积分算子的交换子

谢佩珠

(广州大学 数学与信息科学学院, 广东 广州 510006)

交换子;Lipschitz函数; 非光滑核;Triebel空间

0 Introduction

Inthispaper,weassumethat(X,d,μ)isaspaceofhomogeneoustypewithinfinitemeasure,thatisμ(X)=∞.Forallcontinuousfunctionsfwithcompactsupport,thereexistsameasurablefunctionK(x,y)suchthat

Tf(x)=∫XK(x,y)f(y)dμ(y)

holdsforalmostallxnotinthesupportoff,thenwecallK(x,y)beanassociatedkernelofT.InRef.[1],DUONG,etal.havedefinedthesingularintegraloperatorwithnon-smoothkernel.AnoperatorTiscalledsingularintegraloperatorwithnon-smoothkernelifitsatisfiesthefollowing:

(i)Thereexists“generalizedapproximationstotheidentity” {At}t>0,whichsatisfythecondition(6)inSection1,suchthatT-AtThaveassociatedkernelskt(x,y)andwhend(x,y)≥c1t1/m,

(1)

holds for someγ,m>0 and

(ii) There exists “generalized approximations to the identity” {Bt}t>0, which satisfy the condition (6) in Section 1, such that the associated kernelsKt(x,y) ofT-TBtsatisfy

(2)

for ally∈X, wherec2andc3are positive constants.

In Ref.[2], DUONG, et al. have proved that ifTis a singular integral operator with non-smooth kernel and bounded onLq(X) for some 1

(3)

for 1

Throughout the paper, the letter “C” will denote (possibly different) constants that are independent of the essential variables.

1 Definitions and preliminary results

Letμbe a measure onXand letdbe a metric onX. Then we call topological spaceXto be a space of homogeneous type if it satisfies the doubling property, that is, there exists a constantC≥1, such that for all ballsB(x,r)={y∈X:d(y,x)

μ(B(x,2r))≤Cμ(B(x,r))<∞.

For the definition of homogeneous type space, one can see Ref.[9], Chapter 3.

Using the doubling property, we can obtain that there existC,n>0 such that

μ(B(x,λr))≤Cλnμ(B(x,r))

(4)

holds for allλ>1. The parameternis a measure of the dimension of the space. We can also obtain that there existCandN,0≤N≤nsuch that for allx,y∈Xandr>0

(5)

holds. Indeed, using triangle inequality ofdand (4), we can obtain (5) withN=n. It is easy to see that for the Euclidean spacesRn, we can letN=0.

Now, we define the Hardy-littlewood maximal functionMrf, 1≤r<∞. That is

Ifr=1,we denoteM1fbyMf.

“Generalized approximations to the identity” {At}t>0previously appeared in Ref.[1]. We call {At}t>0be “generalized approximations to the identity” if the associated kernelsat(x,y) ofAtsatisfy

(μ(B(x,t1/m)))-1s(d(x,y)mt-1)

(6)

wheremis a positive constant andsis a positive, bounded, decreasing function satisfying

(7)

for someζ>0, wherenandNare constants in (4) and (5).

Using (5) and (7), we have

(8)

Now we define Triebel spaces associated with “generalized approximations to the identity” {At,t>0}.

(9)

Wehavethefollowinglemmas.

Lemma1[10]For0<β<1, 1≤q<∞,wehave

ItiseasytoknowthattheaboveLemmasallhavetheircounterpartinspacesofhomogeneousXwithalmostidenticalproofswheneverμ(X)=∞.

Lemma3[1]Foreveryp∈[1,∞),thereexistsaconstantCsuchthatforeveryf∈Lp(X), Atf(x)≤CMf(x).

2 The proof of the main results

ItisprovedinRef.[1]thatifTisanoperatorboundedonL2(X)andsatisfying(i)and(ii)inSection0,thenTisboundedonLp(X)forall1

ProofofTheorem1

Foranarbitraryfixedx∈X,chooseaballB(x0,r)whichcontainsx.Fixf∈Lp(X),p>1andletf1=f2Bandf2=f-f1.Choosetworealnumbersrandsgreaterthan1suchthat1

[b,T]f=(b-bB)Tf-T((b-bB)f1)-T((b-bB)f2),

and

AtB[b,T]f=AtB((b-bB)Tf)-

AtBT((b-bB)f1)-AtBT((b-bB)f2),

I+II+III+IV+V.

Letr′ be the dual ofrsuch that 1/r+1/r′=1. Using the Holder inequality and Lemma 2, we have

By Lemmas 2, 3 and theLpboundedness ofT,

Similarly, by Lemmas 1, 2, 3, and theLpboundedness ofT, we obtain

WenowconsiderthetermV.Usingtheassumption(i),wehave

We now take the supremum over allBsuch thatx∈B, andLpthe norm of both sides, we conclude that

TheTheorem1isproved.

[1] DUONG X T, MCINTOSH A. Singular integral operators with non-smooth kernels on irregular domains[J]. Rev Mat Iberoamer, 1999, 15(2): 233-265.

[2] DUONG X T, YAN L X. Commutators of BMO functions and singular integral operators with non-smooth kernels[J]. Bull Austral Math Soc, 2003, 67(2): 187-200.

[3] JANSON S. Mean oscillation and commutators of singular integrals operators[J]. Ark Mat, 1978, 16(1): 263-270.

[4] CHANILLO S. A note on commutators[J]. Indiana Univ Math J, 1982, 31(1): 7-16.

[5] BRAMANTI M, CERUTTI M. Commutators of singular integrals on homogeneous spaces[J]. Bull Un Mat Ital, 1996, 10(4): 843-883.

[6] CHEN Y P, ZHU K.Lpbounds for the commutators of oscillatory singular integrals with rough kernels[J]. Abstract Appl Anal, 2014, 2014(6):1-8.

[7] CHEN Y P, DING Y.Lpbounds for the commutators of singular integrals and maximal singular integrals with rough kernels[J]. Trans Amer Math Soc, 2015, 367(3): 1585-1608.

[8] LI P T, MO Y, ZHANG C Y. A compactness criterion and application to the commutators associated with Schrödinger operators[J]. Math Nachr, 2015(2), 288:235-248.

[9] COIFMAN R R, WEISS G. Analyse harmonique non-commutative sur certains espaces homognes[M]. Berlin: Springer, 1971.

[10]PALUSZYNSKI M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss[J]. Indiana Univ Math J, 1995, 44(1): 1-18.

【责任编辑: 周 全】

Commutators of Lipschitz functions and singular integral operators with non-smooth kernels

XIE Pei-zhu

(School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

O174Documentcode:A

Foundation items: Supported by NNSF of China (11401120); Foundation for Distinguished Young Teachers in Higher Education of Guangdong Province (YQ2015126); Foundation for Young Innovative Talents in Higher Education of Guangdong (2014KQNCX111); Innovation Program of Higher Education of Guangdong(2015KTSCX105).

1671- 4229(2016)05-0027-04

O

A

Received date: 2016-04-26; Revised date: 2016-05-06

Biography: XIE Pei-zhu(1982-), female, lecturer. E-mail: xiepeizhu82@163.com

Keywords:commutators;Lipschitzfunctions;non-smoothkernels;Triebelspaces

猜你喜欢
广州大学信息科学广州
山西大同大学量子信息科学研究所简介
没有叫停!广州旧改,还在稳步推进……
117平、4房、7飘窗,光大来惊艳广州了!
潘卓彤作品
史云昊作品
9000万平!超20家房企厮杀! 2020年上半年,广州“旧改王”花落谁家?
三元重要不等式的推广及应用
多彩广州
基于文献类型矫正影响因子在信息科学与图书馆学期刊中的实证分析
梁振华影视创作论