任睿超,孙洁
(西北大学现代学院 基础部,陕西 西安 710130)
多滞量Lotka-Volterra竞争捕食系统的正周期解
任睿超,孙洁
(西北大学现代学院 基础部,陕西 西安 710130)
运用Mawhin重合度定理和积分不等式构造了有界开集,讨论了一类带任意多时滞的3种群非自治Lotka-Volterra竞争捕食系统,给出了正周期解存在的充分条件,在系数满足一定的条件时得到了周期振荡的结论.
Lotka-Volterra竞争系统;正周期解;Mawhin重合度定理
近年来,在多时滞非线性生物种群模型中,对于具有任意有限个滞量的研究正逐渐成为学者们关注的问题[1-8].文献[1]运用重合度定理讨论了一类带有多滞量的Lotka-Volterra3种群互惠系统的正周期解,本文在此基础上继续讨论3种群非自治Lotka-Volterra竞争捕食系统
的正周期解,其中:x( t)表示食饵种群密度;y1( t)和y2( t)表示2个竞争捕食种群密度;r( t)为食饵的出生率;r1( t)为捕食种群1的出生率,且d( t)为捕食种群2的自然死亡率(假设捕食种群2仅依赖于捕获食饵
定理1 若系统(1)满足条件:
则系统(1)必至少存在一个正ω周期解,其中:
同理,根据比较原理,有
再由式(9)和积分不等式,得
[1] 赵宏伟.带有多滞量的Lotka-Volterra三种群互惠系统的周期解[J].吉林大学学报:理学版,2011,49(6):1034-1038
[2] 赵明,程荣福.一类具生物控制和比率型功能反应的食物链系统周期解的存在性[J].吉林大学学报:理学版,2009,47(4):730-736
[3] 赵宏伟,王永曦,王锐.具有阶段结构和比率依赖的三种群混合模型的周期解[J].东北师大学报:自然科学版,2009,41(4):27-31
[4] 王欣欣.具双密制约和Non-monotonic型功能反应的捕食系统的周期性与全局稳定性[J].东北师大学报:自然科学版,2009,41(1):17-22
[5] Yang Fan,Jiang Daqing.Existence of Periodic Solutions of Multidelays Facultative Mutualism System[J].Chinese Journal of Engineering Mathematics,2002,19(3):64-68
[6] Chen Fengde,Shi Jinjin,Chen Xiaoxing,et al.Periodicity in Lotka-Volterra Facultative Mutualism System with several delays[J].Chinese Journal of Engineering Mathematics,2004,21(3):403-409
[7] 程荣福,常亮.具无限时滞和非单调功能性反应捕食系统的多周期解[J].吉林大学学报:理学版,2010,48(5):761-765
[8] Gaines R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations[M].Berlin:Springer-Verlay,1977
Positive periodic solutions of Lotka-Volterra competitive predator prey system with multiple delays
REN Rui-chao,SUN Jie
(Department of Basic Course,Xi'an Modern College of Northwest University,Xi'an 710130,China)
Mawhin's continuation theorem of coincidence degree and integral inequality were used to construct a bounded open sets,and the non autonomous Lotka Volterra predator-prey system of three species with arbitrary time delay was discussed by giving a sufficient condition for the existence of the positive periodic solutions in that if the coefficients satisfied certain conditions,periodic oscillation has been obtained.
Lotka-Volterra competitive system;positive periodic solution;Mawhin coincidence degree theorem
O175.12
A
10.3969/j.issn.1007-9831.2016.06.001
1007-9831(2016)06-0001-05
2016-04-01
2014陕西省教育厅专项科研计划项目(14JK2146)
任睿超(1985-),男,陕西西安人,讲师,硕士,从事微分方程与动力系统研究.E-mail:rrc8512@163.com