左心辅助装置表层氧化钛薄膜与血液相容性的研究进展

2016-12-21 17:01田琨武亚东梁法禹
中国现代医生 2016年27期
关键词:钛合金血栓

田琨++武亚东++梁法禹

[摘要] 钛及钛合金,由于其表面自然形成了一层薄的氧化钛膜,因而具有较好的血液相容性。钛合金制备的左心辅助装置对挽救心力衰竭患者生命有十分重要的作用。本文简述了生物材料表面形成血栓的机制,并综述了氧化钛薄膜的研究进展及应用现状,同时对生物材料的前景进行了展望。分析表明钛及其合金具有良好的生物相容性主要归功于表面附着的氧化层。

[关键词] 氧化钛薄膜;血液形容性;血栓;生物材料;钛合金

[中图分类号] R318.08 [文献标识码] A [文章编号] 1673-9701(2016)27-0163-03

心衰是各种心血管疾病的最终状态,具有很高的发病率和死亡率,药物治疗效果十分不佳,最终需要心脏移植治疗,然而令人惋惜的是,心脏供体的缺乏以及供体与患者之间的不匹配,使医生无可奈何[1],而左心辅助装置在心脏移植的过渡期及长期的使用过程中,对挽救患者生命起到了十分重要的作用[2-4]。但是左心辅助装置在使用过程中仍然会遇到十分多的问题,如感染、出血、血栓的形成以及心率失常等危险事件,其中尤以血栓形成最为严重,所以使用具有良好抗凝血性能的生物材料在心衰终末期的治疗中是十分重要的[5,6]。作为生物材料使用的钛及钛合金,由于其表面自然形成了一层薄的氧化钛膜,因而具有较好的血液相容性[7,8]。但这种自然形成的氧化膜却很薄,只有5~10 nm,因此会有很多的缺陷[9],而人工合成的氧化钛膜就会倍受关注。

1 生物材料表面形成血栓的机制

1.1 血液相容性的定义

血液相容性是指植入人体后的生物材料,不会导致血液的聚集,不会损伤血液的相关组分,也不会更换血液内环境的相关性质,故不会导致血液凝集、血液的溶血、血小板的损耗以及血小板的变质,也不会导致血液中相关蛋白的特性和结构的变化等,而这对于生物材料最终应用于患者是一个重要的指标。

1.2 血栓形成的机制

在临床应用中出现血栓是左心辅助装置面临的重要问题,尽管如此仍未能完全阐明血栓形成的明确机制。通过分析相关原因可能有以下几点:(1)具有预防血栓形成和抗凝血等保护机制是人完整的血管内皮细胞的特性,而非自身体内的生物材料表面则没有这些功能,故血栓来源的一方面是左室辅助装置的表面[10];(2)额外的剪切力作用,如在装置的进口部分和出口部分以及血泵内血液遭遇剪切力的时候,因为血液中的血小板、凝血途径以及免疫细胞可以通过这种剪切力被激活,导致血液在身体局部以及全身出现高凝集状态,进而形成了血栓在心室辅助泵和体内相关器官[11];(3)与血栓形成紧密相关的还有心室辅助泵内的流体力学特性,然而它们之间却又有十分复杂的关系,从而对血液内的不同成分造成不同的影响[12]。例如:在体的对比研究中发现,成人的心室辅助泵与小儿心室辅助泵,表现出了相似的几何形态,然而却由于不一样的体积大小而表现出不同的结局,小儿心室辅助泵形成了很多血栓,而成人的心室辅助泵却没有血栓形成[13]。另外还有很多相关方面的研究也证明了这一观点,说明减少血栓的形成可以通过流体力学分析技术改善心室辅助泵的研制;(4)血栓的形成也可以发生在血液低的剪切力和不流动的状态下,如在临床上发现了无血流的左心室内或通过左房插管也可导致血栓的形成;(5)心室辅助泵引起的感染也可导致血栓形成,如Holman WL等[14]研究发现,通过对HeartMate左心室辅助泵在临床上的研究,出现感染的患者合并有神经系统事件发生的概率为43%,分析出现此现象的原因很可能是血液中细菌和内毒素导致了血栓栓塞,还有一种原因是引起的血栓栓塞是通过凝血系统与炎症介质的互相作用。

经过几十年的研究探索,异物触发的凝血机制是目前许多研究者一致公认的。随着生物材料植入的应用,作为一种异物,尤其是心脏血管等植入材料,如左心室辅助泵,当其与血液接触时即开始了触发凝血机制的研究。当生物材料接触血液时,在其表面血栓形成的凝血机制是一个相当复杂的过程。首先发生在材料表面的是血浆蛋白的吸附,而使血细胞粘附和激活的是吸附的蛋白层,或通过血液中激活的凝血因子引发的凝血级联反应,从而导致血栓形成[15]。在此过程中,蛋白的吸附是最先发生的,而促使凝血发生的重要点则是作为第一凝血因子的纤维蛋白原在生物材料表面的吸附与激活,当材料表面吸附纤维蛋白原后,通过凝血酶原的激活作用,促使结构构象发生变化,从而导致内部电子的释放,进而对释放的电子进行转移,这样纤维蛋白原就会分解为纤维蛋白单体,而纤维蛋白丝状体则可在激活的血小板ⅩⅢ 因子的作用下聚合形成,进而收集血小板和红细胞,促使其凝集、变形,最后导致血栓形成[16]。

2 氧化钛薄膜目前的研究现状

近十多年来对氧化钛薄膜的血液相容性已经实行了十分系统与完善的研究,包含了不同的晶体结构(如:金红石、锐矿钛、板矿钛型)[17,18]、不同的化学组成成分(非化学计量的氧化钛膜,如掺入了铊、磷等)[19]、不同的物理化学特征(如半导体、静态及动态表面张力)[20]以及对蛋白粘附与变性、血小板激活与粘附、凝血因子的激活等的影响,还包括模拟的近似体内的植入试验。研究已经发现,通过对生物材料的表面进行相应的表面改性,薄膜形成的厚度、半导体的特性以及表面所产生的张力是影响氧化钛薄膜血液相容性的重要因素。如Chen JY等[19]、Huang等[8]研究发现薄膜掺杂氢、铊、磷等元素或者增加氧化钛薄膜的厚度,血液相容性也会随之增强;Takemoto等[21]也专研于对氧化钛薄膜血液相容性的干扰条件,发现氧化钛薄膜的成分构成以及薄膜厚度很大程度上会干扰血小板的附着,以至于会远超表面亲水性的干扰,并随着不断增加薄膜的厚度,从而展现出很好的血液相容性;Huang等[8,22]使用许多制备薄膜的技术制备了一连串的氧化钛薄膜,发现一种具有宽禁带宽度的n型半导体是具有氧缺位的非化学计量比的TiO2-X薄膜的共同特性,可以明显的抑制纤维蛋白原γ链C端398-411序列的暴露,进而减少了血栓的形成;Wang等[20]制备的氧化钛薄膜,是使用离子束增强沉积技术,而其是一种n型半导体薄膜,表现为含氧的缺失,表面张力的色散分量的贡献较小,而极性分量的贡献较大,其粘附的血小板数量也很少,说明氧化钛薄膜表现出了良好的血液相容性;Tsyganov等[23,24]制备了很多种结构的氧化钛薄膜,利用了金属等离子体浸没离子注入和沉积的相关技术,发现金红石型氧化钛薄膜被磷注入其中后,其在血小板粘附和凝血时间的试验中会表现出更好的血液相容性,由于磷离子被注入,且薄膜含有n型半导体的结构,从而抑制了电子从蛋白中转移到改变表面性状的材料表面,进而也抑制了生物材料表面会使黏附蛋白变性的发生,说明了其也表现出较好的血液相容性。

研究已经证实,随着氧化钛薄膜厚度的增加,且与蛋白之间有较低的界面能时,其表面粘附的血小板数量会相应减少,而决定界面能的关键因素是氧化钛薄膜的半导体特性,因此具有n型半导体结构的氧化钛薄膜或掺杂有氢、铊、磷等元素的氧化钛薄膜会有更好的血液相容性。

3 氧化钛薄膜目前的应用现状

钛及钛合金材料由于其表面形成的氧化钛钝化膜、良好的生物相容性、低弹性模量、高比强度、无毒无磁及其耐腐蚀性等特点,因此具有更适宜的生物医用特性。它广泛应用于人工关节(如髋、膝、肩、肘等关节)、骨创伤产品(如髓内钉、螺钉、固定板等)、脊柱矫形内固定系统、牙种植体、牙托、牙矫形丝、人工心脏瓣膜、人工心脏、介入性心血管支架、矫形器械等医用材料[25]。

目前二氧化钛还有一种特殊形式的存在,即介孔二氧化钛纳米材料,其孔径大小在2~50 nm之间,拥有非常有序的孔道结构,孔径分布规则,孔径尺寸变化范围较大,介孔形状多样,兼具光催化与介孔两个特点,并具有很好的生物相容性,因此很多生物医学研究者对此都具有很高的研究热情,其在骨修复与移植的研究,癌症的诊断与治疗等方面都取得了一定的进步[26]。如Bjurten等[27]通过实验验证了介孔二氧化钛纳米管能够非常好的改善成骨细胞的增殖和黏附,增强骨粘连的强度。张爱平等[28]运用涂覆法合成了锐钛矿型的介孔二氧化钛纳米薄膜,并通过实验验证了此纳米薄膜在紫外光照射下对胃癌细胞有很强杀伤力。Wu等[29]利用乙醇钛在乙醇中水解的方法合成了表面积大,生物相容性好的球形介孔二氧化钛纳米粒子,并将其用于癌症的诊断与治疗。

4 总结与展望

血液和材料之间由于极其复杂的相互作用,因此想要设计出具有完全血液相容性的生物材料对于我们是很困难的,并且以我们现在所掌握的相关技术和机制,距离了解其中的全部机制还需要做很多工作。目前在生物材料血液相容性方面的相关研究机制及如何提高生物材料的血液相容性方面国内外的很多研究学者已经作了十分深入细致的研究探索。我国近年也有很多的研究报道并取得了一定的成果,但与国外相比,我们的技术水平还比较薄弱。因此,我国有必要加强对氧化钛薄膜的研究投入,各个研究团体之间也应加大合作力度,早日研制出新颖的带有创新性的生物材料,使血液相容性的研制和生物材料的创新应用方面取得令人瞩目性的前景,促使我国在理论和应用领域方面达到国家先进水平,从而为人类的健康做出巨大的贡献。

[参考文献]

[1] Gass AL,Emaminia A,Lanier G,et al. Cardiac Transplantation in the New Era[J]. Cardiol Rev,2015,23(4):182-188.

[2] Krabatsch T,Potapov E,Soltani S,et al. Ventricular long-term support with implantable continuous flow pumps:On the way to a gold standard in the therapy of terminal heart failure[J]. Herz,2015,40(2):231-239.

[3] Partyka C,Taylor B. Review article:Ventricular assist devices in the emergency department[J]. Emerg Med Australas,2014,26(2):104-112.

[4] Anand J,Singh SK,Hernandez R,et al. Continuous-flow ventricular assist device exchange is safe and effective in prolonging support time in patients with end-stage heart failure[J]. J Thorac Cardiovasc Surg,2015,149(1):267-275,278.

[5] Garland C,Somogyi D. Successful implantation of a left ventricular assist device in a patient with heparin-induced thrombocytopenia and thrombosis[J]. J Extra Corpor Technol,2014,46(2):162-165.

[6] Whitson BA,Eckman P,Kamdar F,et al. Hemolysis,pump thrombus,and neurologic events in continuous-flow left ventricular assist device recipients[J]. Ann Thorac Surg,2014,97(6):2097-2103.

[7] Nan H,Ping Y,Xuan C,et al. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition[J]. Biomaterials,1998,19(7-9):771-776.

[8] Huang N,Chen YR,Luo JM,et al. In vitro investigation of blood compatibility of Ti with oxide layers of rutile structure[J]. J Biomater Appl,1994,8(4):404-412.

[9] Mussivand T,Hendry PJ,Masters RG,et al. Development of a ventricular assist device for out-of-hospital use[J]. J Heart Lung Transplant,1999,18(2):166-171.

[10] Pae WE,Connell JM,Boehmer JP,et al. Neurologic events with a totally implantable left ventricular assist device:European Lion Heart Clinical Utility Baseline Study(CUBS)[J]. J Heart Lung Transplant,2007,26(1):1-8.

[11] Okamoto E,Hashimoto T,Inoue T,et al. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology[J]. Artif Organs,2003,27(1):61-67.

[12] Balasubramanian V,Slack SM. The effect of fluid shear and co-adsorbed proteins on the stability of immobilized fibrinogen and subsequent platelet interactions[J]. J Biomater Sci Polym Ed,2002,13(5):543-561.

[13] Daily BB,Pettitt TW,Sutera SP,et al. Pierce-Donachy pediatric VAD:Progress in development[J]. Ann Thorac Surg,1996,61(1):437-443.

[14] Holman WL,Bourge RC,Spruell RD,et al. Ventricular assist devices as a bridge to cardiac transplantation[J]. A Prelude To Destination Therapy Ann Surg,1997,225(6):695-706.

[15] Wise DL. Biomaterials and Bioengineering Handbook[M]. New York:Marcel Dekker Inc,2000:205.

[16] Bizions R,Dee KC,Puleo DA. An introduction to tissue biomaterial interactions[J]. Job Wiley&Sons. Inc,Hoboken. New Jersey,2002:53-87.

[17] Mo SD,Ching WY. Electronic and optical properties of three phases of titanium dioxide:Rutile,anatase,and brookite[J]. Phys Rev B Condens Matter,1995,51(19):13023-13032.

[18] Roach P,Farrar D,Perry CC. Interpretation of protein adsorption:Surface-induced conformational changes[J]. J Am Chem Soc,2005,127(22):8168-8173.

[19] Chen JY,Leng YX,Tian XB,et al. Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of TiTa(+5)O2 thin films[J].Biomaterials,2002,23(12):2545-2552.

[20] Wang WH,Zhang F,Li CR,et al. Improvement of blood compatibility of artificial heart valves via titanium oxide film coated on low temperature isotropic carbon[J]. Surface and Coatings Technology,2000,(128-129):36-42

[21] Takemoto S,Yamamoto T,Tsuru K,et al. Platelet adhesion on titanium oxide gels:Effect of surface oxidation[J]. Biomaterials,2004,25(17):3485-3492.

[22] Huang N,Yang P,Leng YX,et al. Hemocompatibility of titanium oxide films[J]. Biomaterials,2003,24(13):2177-2187.

[23] Tsyganov I,Maitz MF,Wieser E,et al. Structure and properties of titanium oxide layers prepared by metal plasma immersion ionimplation and deposition[J]. Surface and Coatings Technology,2003,174-175C:591-596.

[24] Tsyganov I,Maitz MF,Wieser E. Blood compatibility of titanium-based coatings prepared by metal plasma immersionion implantation and deposition[J]. Applied Surface Science,2004,235:156-163.

[25] Kulkarni M,Mazare A,Gongadze E,et al. Titanium nanostructures for biomedical applications[J]. Nanotechnology,2015,26(6):062002.

[26] Fadeel B,Garcia-Bennett AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications[J].Adv Drug Deliver Rev,2010,62(3):362-374.

[27] Bjursten LM,Ramusson L,Oh S,et al. Titanium dioxide nanotubes enhance bone bonding in vivo[J]. J Biomed Mater Res A,2010,92(3):1218-1224.

[28] 张爱平,孙彦平,樊彩梅,等. 纳米TiO2对胃癌细胞的光催化氧化杀伤效应[J]. 应用化学,2004,21(11):1109-1112.

[29] Wu KC,Yamauchi Y,Hong CY,et al. Biocompatible,surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery[J]. Chem Commun,2011,(47):5232-5234.

(收稿日期:2016-07-08)

猜你喜欢
钛合金血栓
防栓八段操 让你远离深静脉血栓
血栓会自己消除么? 记住一个字,血栓不上身!
血栓弹力图在恶性肿瘤相关静脉血栓栓塞症中的应用进展
“神的金属”钛合金SHINE YOUR LIFE
血栓最容易“栓”住哪些人
钛合金板锻造的工艺实践
钛合金结构件变进给工艺分析
医用钛合金的研究与应用
TC4钛合金TIG焊接头组织对性能的影响
消积散结丸联合血栓通注射液治疗脾切术后门静脉血栓19例