李晓亚 唐德富 李发弟,3 李 飞*
(1.兰州大学草地农业科技学院,草地农业生态系统国家重点实验室,兰州730020;2.甘肃农业大学动物科学技术学院,兰州730070;3.甘肃省肉羊繁育生物技术工程实验室,民勤733300)
反刍动物肌肉脂肪酸对肉品质的影响及其调控因素
李晓亚1唐德富2李发弟1,3李 飞1*
(1.兰州大学草地农业科技学院,草地农业生态系统国家重点实验室,兰州730020;2.甘肃农业大学动物科学技术学院,兰州730070;3.甘肃省肉羊繁育生物技术工程实验室,民勤733300)
肌肉中脂肪酸的含量和组成成分在一定程度上影响肉品质以及消费者的健康。反刍动物的肉产品是具有保健作用的共轭亚油酸的主要来源。因此,揭示反刍动物肌肉脂肪酸的形成机制与调控手段十分必要。本文主要针对反刍动物肌肉脂肪酸的调控因素及肌肉脂肪酸对肉质风味、氧化稳定性和肉色的影响进行了综述,以期为改善反刍动物肌肉脂肪酸提供参考。
反刍动物;肌肉脂肪酸;肉品质;调控因素
随着人们生活水平的不断提高,人们对肉品质提出更高的要求,不仅要求味美、鲜嫩,同时强调肉的保健功能。反刍动物肉产品以其低胆固醇、低脂肪、营养丰富等特点而受到广大消费者的喜爱。动物肌肉脂肪酸的沉积受多种因素的影响,包括营养调控、品种、年龄、性别及基因。研究指出,肌肉脂肪酸的含量与组成是反映肉品质的重要指标[1]。肌肉中脂肪酸是决定肉食风味的重要前体物质且关乎人类的身体健康[2]。因此,研究肌肉脂肪酸形成机制和影响因素对提高肉品质有重要的意义,本文主要针对反刍动物肌肉脂肪酸对肉品质的影响及其调控因素进行探讨。
肉品质包括多个方面,主要的有物理性参数如肉色、系水力等;化学性参数如抗氧化能力等;风味、多汁性等。其中脂肪酸对肉品质的影响主要在风味和抗氧化能力等方面。
1.1 脂肪酸与风味
肉类的风味可分为2类,一类是所有肉类都具有的普通肉香味;另一类是种属所特有的特殊风味[3]。研究表明,氨基酸与羰基的美拉德反应形成的是一般肉类典型香味;而脂肪降解形成的不同短链脂肪酸[如乙酸(C6∶0)、辛酸(C8∶0)]是导致不同种属之间特殊风味的主要物质[3]。已有学者研究指出蒙古羊肉中棕榈油酸(C16∶1)的含量和肉风味之间存在着显著的正相关[4]。对自然放牧苏尼特羊其油酸(C18∶1)含量和油酸∶亚油酸(C18∶1∶C18∶2)较高时羊肉味道更加鲜美、浓厚[2]。同时研究表明,硬脂酸(C18∶0)的含量与羊肉膻味有关,特别是当皮下脂肪中C18∶0含量高时会造成羊肉膻味的加重[2]。对美利奴羊的研究也表明,膻味随着肉中C18∶0含量的提高有上升的趋势,进而降低消费者的接受度[5]。研究指出,羊肉中亚麻酸(C18∶3)在加工过程中产生2-戊烯等衍生物,导致其本身的鱼腥味显著提高[6-7]。此外,羊体脂中短链饱和脂肪酸(SCFA)的含量与其膻味呈显著正相关,当羊体脂中羊蜡酸(C10∶0)和丁酸(C4∶0)这2种脂肪酸含量上升时可显著加重羊肉膻味[8-9]。综上所述,C16∶1、C18∶1和亚油酸(C18∶2)对肉风味的作用较大,而C18∶0、C18∶3、C10∶0和C4∶0与肉异味呈显著正相关。因此,改变肌肉脂肪酸的含量和组成是调控羊肉风味的重要手段之一。
1.2 脂肪酸与氧化稳定性
正常生理条件下,畜禽体内的氧化还原体系保持着动态平衡,使机体免遭自由基的侵袭,但畜禽屠宰后,机体的氧化还原平衡体系被破坏,倾向于氧化过程。脂肪氧化主要是受肌肉内易氧化多不饱和脂肪(PUFA)含量高低的影响。研究指出,牛肉的抗氧化稳定性、货架期及肉色的亮度随肉中ω-3PUFA含量的提高显著降低,最终影响消费者的接受度[10-11]。不同种类PUFA的抗氧化能力存在差异,ω-3PUFA的抗氧化能力高于ω-6PUFA,可延长肉的货架期[12]。此外,C8~C17的中长链不饱和脂肪酸和支链脂肪酸(BCFA)的熔点较低,当肉中这2类脂肪酸含量上升时可显著提高肉的多汁性和整体适口性[13-14]。众所周知,饱和脂肪酸(SFA)较不饱和脂肪酸(UFA)具有熔点高、密度大、不容易被氧化等特点。因此,推测当肌肉中SFA含量高时肌肉的抗氧化能力可能会有提高的趋势,有利于肉类食品的长期储存。但大多数SFA如月桂酸(C12∶0)、豆蔻酸(C14∶0)、和棕榈酸(C16∶0)的含量升高时不利于人类的健康,它们可增加血液中低密度脂蛋白的含量,使血液中胆固醇的含量升高,易引起人类心血管疾病如动脉粥硬化和冠心病等[2]。研究指出,人类膳食中饱和脂肪酸∶单不饱和脂肪酸∶多不饱和脂肪酸(SFA∶MUFA∶PUFA)的最佳比值是1∶1∶1,这表明适宜的SFA和UFA的比值更有利于人类的健康[15]。
2.1 基因调控
基因对肌内脂肪沉积的影响主要分为正向调控和负向调控。脂肪酸是脂肪的重要组成部分,动物脂肪细胞中脂肪的合成和分解代谢过程直接影响肌内脂肪酸的含量和组成。
2.1.1 上调肌内脂肪沉积的基因
脂蛋白脂酶(LPL)是三酰甘油代谢的限速酶,在调控脂肪细胞成熟和分化方面具有重要作用[16-17]。脂肪酸合成酶(FAS)是脂肪酸合成的关键酶,主要催化SFA的合成[18-19]。研究指出,在湖羊不同部位肌肉中LPL和FAS的表达可促进肌内脂肪的沉积[20]。乙酰辅酶A羧化酶(ACC),在反刍动物体内有2种异构体。ACC-α(ACACA)是长链脂肪酸(LCFA)合成的限速酶,主要负责催化乙酰辅酶A生成丙二酸单酰辅酶A;ACC-β(ACACB)的主要作用是促进丙二酸单酰辅酶A的生成且调控线粒体内脂肪酸的氧化[21-22]。研究指出,ACC影响C16∶0和LCFA的合成[23]。此外,ACC的表达量与肌内脂肪的沉积呈显著正相关[24]。故LPL、FAS和ACC对肌内脂肪的沉积起上调作用。
2.1.2 下调肌内脂肪沉积的基因
肉碱棕榈酰转移酶1(CPT1)是控制LCFA氧化的关键酶,参与脂肪酸的β氧化,加速组织对脂肪的降解,最终起到显著降低脂肪沉积的作用[25-26]。前脂肪细胞因子1(Pref-1),在前脂肪细胞中可高度表达,随着脂肪细胞的分化而降低,在成熟脂肪细胞中不表达。因此,通过下调Pref-1表达可显著提高脂肪细胞的分化[27]。激素敏感脂肪酶(HSL)能催化三酰甘油水解为二酰甘油,二酰甘油水解产生单酰甘油,是脂肪降解过程中的限速酶。此外,它还可水解单酰甘油为游离脂肪酸(FFA),是调控脂肪组织分解的关键酶[28]。研究表明,Pref-1和HSL的表达量与肌内脂肪的沉积呈负相关,且随苏尼特羔羊体重的增加呈下降趋势[29]。瘦素可通过刺激组织中脂肪的氧化分解,起到显著降低脂肪沉积的作用][30]。瘦素受体(OBR)是一种跨膜蛋白,与瘦素有很高的亲和[30]。解偶联蛋白3(UCP3)是一类位于线粒体内膜的质子转运载体蛋白,且UCP3在肌肉中的增加可显著提高肌肉中脂肪的氧化水平[31]。研究指出,OBR和UCP3的表达量对湖羊肌内脂肪的沉积起下调作用[20]。过氧化物酶体增殖物激活受体γ(PPARγ)是促进脂肪细胞分化和脂肪代谢重要因子[32]。脂肪细胞定向和分化因子Ⅰ(ADDⅠ)是脂肪合成有关基因转录的重要因子。研究发现,PPARγ和ADDⅠ的表达量与羔羊肌内脂肪的沉积呈显著负相关[29]。综上所述,CPT1、HSL、Pref-1、OBR、UCP3、PPARγ和ADDⅠ对肌内脂肪的沉积起下调作用。
2.1.3 脂肪酸去饱和酶(FAD)基因
2.2 营养调控
2.2.1 饲粮
饲粮是调控肌肉脂肪酸的重要途径[43]。饲粮中添加亚麻籽可显著提高肌肉中ω-3PUFA、ω-6PUFA和CLA的含量且添加10%亚麻籽能使羊肉中CLA和PUFA的含量更符合人类健康的标准[44-47]。此外,在饲粮中同时添加亚麻籽和维生素E能够显著降低肌肉中ω-3PUFA∶ω-6PUFA,可起到改善羊肉品质的效果[48]。研究表明,饲粮中添加异黄酮和CLA会显著提高肌肉中SCD的活力;添加α生育酚可显著提高肌肉中C18∶1的含量;最终两者均可达到显著提高羊肉中CLA的含量[49-51]。儿茶素和桑叶的添加会抑制瘤胃微生物对PUFA的氢化程度,从而显著提高羊肉中PUFA的含量[52-53]。饲粮中添加单宁会影响瘤胃微生物对脂肪酸由C18∶1氢化成C18∶0的步骤[54-55],从而显著提高肌肉中C18∶1的含量[56]。此外,添加油脂对肌肉脂肪酸也有影响。研究指出,饲粮中添加鱼油和葵花油均会显著提高肌肉中CLA的含量[57-59],这可能是蛋白溶解梭菌(Clostridiumproteoclasticum)在该条件下数量显著降低,进而产生较多CLA的前体物质异油酸(TVA)而引起的[59-60]。综上所述,不同饲粮可能通过改变SCD活性、微生物氢化步骤和微生物数量,最终影响肌肉脂肪酸的含量与组成[61]。
2.2.2 放牧
放牧条件下可使反刍动物获取不同种类的牧草,进而影响肌肉脂肪酸的含量和组成,故放牧是调控肌肉脂肪酸的有效途径之一。研究指出,放牧能够改善肌肉脂肪酸的含量和组成,从而使其更符合人类膳食的标准[62-63]。前人研究指出,放牧相对于舍饲可显著提高肌肉中CLA和ω-3PUFA的含量,原因可能是牧草相对于精料富含PUFA和SCD;另外,牧草在瘤胃内易于消化且存留时间短,可缩短瘤胃内微生物对PUFA的氢化时间,从而产生较多的过瘤胃PUFA[37,64-66]。此外,通过加大放牧水平和延长放牧时间可使ω-3PUFA∶ω-6PUFA更有利于人类的健康[67-68]。研究指出,放牧时牧草的品种和比例对肌肉中单不饱和脂肪酸(MUFA)、PUFA、C18∶1、C18∶2、C18∶3等脂肪酸的含量有显著影响,同时指出以豆科牧草为基础的饲粮可显著提高羊肉的营养价值[61]。有学者通过比较有机牧场放牧和传统放牧,发现前者较后者能产生较多有利于人类的脂肪酸如ω-3PUFA、二十碳五烯酸(DPA)和二十二六烯酸(DHA)。推测其原因是有机牧场较传统牧场的牧草中富含PUFA,牧草品质优良,可产生更多有利于人类的脂肪酸[69]。综上所述,放牧可产生更多PUFA的原因主要有2方面:1)放牧条件下动物采食新鲜牧草较多,牧草较谷物富含ω-3PUFA,增加了瘤胃内氢化底物的浓度,从而产生较多的PUFA[69]。2)牧草中SCD的活性较高,显著提高肌肉中PUFA尤其是CLA含量[67]。
2.3 其他影响因素
2.3.1 品种
研究表明,相同舍饲条件下滩羊的必需脂肪酸(EFA)总量及DPA和DHA的含量要显著的高于小尾寒羊[70]。此外,大尾寒羊尾脂中C18∶0的含量显著高于小尾寒羊[71]。已有研究表明,南疆主要地方品种绵羊肌肉中的PUFA∶SFA差异很大,多浪羊(0.072)>和田羊(0.064)>卡拉库尔羊(0.053)>柯尔克孜羊(0.046)[72]。总之,遗传背景的差异使不同羊品种之间脂肪酸含量存在差别[73]。
2.3.2 性别
已有学者指出,性别对脂肪酸的影响主要存在肌间脂肪[73]。研究表明,公羊肌肉中PUFA含量显著高于母羊,而其SFA和C16∶0含量显著低于母羊[73-74]。此外,去势是改善肉品质的一种有效途径。研究发现,阉割牛肌肉中C16∶0和C18∶1的含量要显著高于公牛[75]。其原因可能包括2方面:1)肉品质与雄性激素的调节有关,公畜去势后雄激素分泌量相对减少[76];2)去势显著提高肌肉中C18∶1的含量,改变肌肉脂肪酸的组成[75],但具体的调节机制还不明确,有待进一步研究。
2.3.3 年龄
动物出生后体组织发育规律依次是骨骼、肌肉和脂肪,故动物体内脂肪酸与年龄之间存在着相应的关系。研究指出,羔羊肌肉内PUFA和MUFA含量显著高于成年羊,而成年羊体内SFA含量较高,尤其是与羊肉膻味成正比的C18∶0[2,77]。另有研究表明, BCFA的含量是区分成年羊肉和羔羊肉的一个重要指标,一般情况下4-甲基辛酸、4-甲基壬酸和4-乙基辛酸的含量与羊的年龄呈正比[78],且这3种BCFA含量较高时会加重羊肉的膻味。故羔羊肉的膻味相对较低[79]。综上所述,羔羊肌肉中富含UFA;此外,膻味相关脂肪酸的含量与动物的年龄呈正比。
综上所述,通过改变反刍动物肌肉中脂肪酸的含量和组成可达到调控其肉品质的效果如风味、抗氧化性能和肉色等。但关于肌肉脂肪酸对肉的系水力、熟肉率和pH以及加工后肉产品中脂肪酸含量和组成变化的研究鲜有报道,其中加工后肉产品中脂肪酸含量和组成的变化是值得关注研究的方向。反刍动物肌肉脂肪酸受诸多因素的影响,如营养调控、基因、品种、性别、和年龄等。在实际生产过程中,要充分利用营养因素对肌肉脂肪酸的调控,以达到改善肌肉脂肪酸含量和组成的目的。此外,负责脂肪沉积的相关基因对肌肉脂肪酸的调控机制有待进一步揭示,同时有必要挖掘更多促进体内脂肪酸向其长链PUFA延伸的FAD基因。
[1] 陶晓臣.昭乌达羊肉与乌拉特羊肉肉品质特性及其PRKAG3、LPL、PPAR基因表达差异的研究[D].硕士学位论文.呼和浩特:内蒙古农业大学,2011.
[2] 莎丽娜.自然放牧苏尼特羊肉品质特性的研究[D].博士学位论文.呼和浩特:内蒙古农业大学,2009.
[3] ELMORE J S,MOTTRAM D S.The role of lipid in the flavour of cooked beef[J].Developments in Food Science,2006,43:375-378.
[4] 邵丽霞.沙葱及其提取物对羊肉发酵香肠加工过程中品质特性的影响[D].硕士学位论文.呼和浩特:内蒙古农业大学,2012.
[5] FRANCISCO A,DENTINHO M T,ALVES S P,et al.Growth performance,carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush(CistusladaniferL.)and vegetable oils[J].Meat Science,2015,100:275-282.
[6] CAMPO M,NUTE G R,WOOD J D,et al.Modelling the effect of fatty acids in odour development of cooked meatinvitro:partⅠ—sensory perception[J].Meat Science,2003,63(3):367-375.
[7] MYER R O,JOHNSON D D,KNAUFT D A,et al.Effect of feeding high-oleic-acid peanuts to growing-finishing swine on resulting carcass fatty acid profile and on carcass and meat quality characteristics[J].Journal of Animal Science,1992,70(12):3734-3741.
[8] 双金,敖力格日玛,敖长金.苏尼特羊体脂脂肪酸组成的研究[J].畜牧兽医学报,2015,46(8):1363-1374.
[9] 赵丽华.羊肉发酵干香肠品质特性及挥发性风味变化及其形成机理研究[D].博士学位论文.呼和浩特:内蒙古农业大学,2009.
[10] SCOLLAN N,HOCQUETTE J F,NUERNBERG K,et al.Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality[J].Meat Science,2006,74(1):17-33.
[11] VATANSEVER L,KURT E,ENSER M,et al.Shelf life and eating quality of beef from cattle of different breeds given diets differing in n-3 polyunsaturated fatty acid composition[J].Animal Science,2000,71(3):471-482.
[12] WARREN H E,SCOLLAN N D,HALLETT K,et al.The effects of breed and diet on the lipid composition and quality of bovine muscle[J].Meat Science and Technology ,2002,1:370-371.
[13] ENSER M,WOOD J D.Effect of time of year on fatty acid composition and melting point of UK lamb[C]//Proceedings of the 39th international congress of meat science and technology.[S.l.]:[s.n.],1993:74.
[14] RHEE K S,ZIPRIN Y A,DAVIDSON T L.Characteristics of pork products from swine fed a high monounsaturated fat diet:part 2—uncured processed products[J].Meat Science,1990,27(4):343-357.
[15] 苏宜香,郭艳.膳食脂肪酸构成及适宜推荐比值的研究概况[J].中国油脂,2003,28(1):31-34.
[16] DERVISHI E,SERRANO C,JOY M,et al.The effect of feeding system in the expression of genes related with fat metabolism in semitendinous muscle in sheep[J].Meat Science,2011,89(1):91-97.
[17] DERVISHI E,JOY M,ALVAREZ-RODRIGUEZ J,et al.The forage type(grazing versus hay pasture)fed to ewes and the lamb sex affect fatty acid profile and lipogenic gene expression in the longissimus muscle of suckling lambs[J].Journal of Animal Science,2012,90(1):54-66.
[18] CHORNA N E,SANTOS-SOTO I J,CARBALLEIRA N M,et al.Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation[J].PLoS One,2013,8(11):77845-77845.
[19] LALIOTIS G P,BIZELIS I,ROGDAKIS E.Comparative approach of thedenovofatty acid synthesis(lipogenesis)between ruminant and non ruminant mammalian species:from biochemical level to the main regulatory lipogenic genes[J].Current Genomics,2010,11(3):168-183.
[20] 乔永.湖羊羔羊不同部位肌肉肌内脂肪沉积相关基因表达的发育性变化研究[D].硕士学位论文.南京:南京农业大学,2007.
[21] NAJAFPANAH M J,SADEGHI M,ZALI A,et al.Chromium downregulates the expression of acetyl CoA carboxylase 1 gene in lipogenic tissues of domestic goats:a potential strategy for meatquality improvement[J].Gene,2014,543(2):253-258.
[22] MOIBI J A,CHRISTOPHERSON R J,OKINE E K.Effect of environmental temperature and dietary lipid supplement on activity and protein abundance of acetyl-CoA carboxylase and fatty acid synthase in skeletal muscle,liver and adipose tissues of sheep[J].Canadian Journal of Animal Science,2000,80(1):69-77.
[23] GARCIA-FERNANDEZ M,GUTIERREZ-GIL B,GARCIA-GAMEZ E,et al.Identification of single nucleotide polymorphisms in the ovine acetyl-CoA carboxylase-alpha gene[J].Small Ruminant Research,2010,90(1):34-40.
[24] JEONG J,KWON E G,IM S K,et al.Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers[J].Journal of Animal Science,2012,90(6):2044-2053.
[25] CLARKE S D.Polyunsaturated fatty acid regulation of gene transcription:a mechanism to improve energy balance and insulin resistance[J].British Journal of Nutrition,2000,83(1):59-66.
[26] 杨东,王文义,乔文,等.肉羊脂肪沉积及其调控手段[J].粮食与饲料工业,2016,(1):51-55.
[27] SUL H S,SMAS C,MEI B,et al.Function of pref-1 as an inhibitor of adipocyte Differentiation[J].International Journal of Obesity,2000,24(14):15-19.
[28] HAEMMERLE G,ZIMMERMANN,R,ZECHNER R.Letting lipids go:hormone-sensitive lipase[J].Current Opinion in Lipidology,2003,14(3):289-297.
[29] 姚焰础.苏尼特羔羊肌内脂肪细胞分化相关因子和肌内脂肪代谢关键酶基因表达发育规律的研究[D].博士学位论文.呼和浩特:内蒙古农业大学,2008.
[30] CHILLIARD Y,DELAVAUD C,BONNET M.Leptin expression in ruminants:nutritional and physiological regulations in relation with energy metabolism[J].Domestic Animal Endocrinology,2005,29(1):3-22.
[31] SON C,HOSODA K,ISHIHARA K,et al.Reduction of diet-induced obesity in transgenic mice overexpressing uncoupling protein 3 in skeletal muscle[J].Diabetologia,2004,47(1):47-54.
[32] DESVERGNE B,WAHLI W.Peroxisome proliferator-activated receptors:nuclear control of metabolism[J].Endocrine Reviews,1999,20(5):649-688.
[33] 李金金,张晶晶,年洪娟.△12脂肪酸去饱和酶FAD2的基本特性及其在胁迫中的功能[J].生命科学研究,2013,17(2):174-178.
[34] NAKAMURA M T,NARA T Y.Structure,function,and dietary regulationof △6,△5,and △9 desaturases[J].Annual Review of Nutrition,2004,24:345-376.
[35] MATSUMOTO H,NOGI T,TABUCHI I,et al.The SNPs in the promoter regions of the bovineFADS2 andFABP4 genes are associated with beef quality traits[J].Livestock Science,2014,163:34-40.
[36] DAL BOSCO A,MUGNAI C,ROSCINI V,et al.Effect of dietary alfalfa on the fatty acid composition and indexes of lipid metabolism of rabbit meat[J].Meat Science,2014,96(1):606-609.
[37] MAJDOUB-MATHLOUTHI L,SAÏD B,KRAIEM K.Carcass traits and meat fatty acid composition of Barbarine lambs reared on rangelands or indoors on hay and concentrate[J].Animal,2015,9(12):2065-2071.
[38] TRIPODI K E J,BUTTIGLIERO L V,ALTABE S G,et al.Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan[J].FEBS Journal,2006,273(2):271-280.
[39] ALVARENGA T I R C,CHEN Y,FURUSHO-GARCIA I F,et al.Manipulation of omega-3 PUFAs in lamb:phenotypic and genotypic views[J].Comprehensive Reviews in Food Science and Food Safety,2015,14(3):189-204.
[40] 朱越.腺病毒介导的山羊乳腺硬脂酰辅酶A去饱和酶(SCD)基因的过表达研究[D].硕士学位论文.杨凌:西北农林科技大学,2010.
[41] MAO H L,WANG J K,LIN J,et al.Fatty acid profiles and stearoyl-coadesaturase gene expression in longissimus dorsi muscle of growing lambs influenced by addition of tea saponins and soybean oil[J].Asian-Australasian Journal of Animal Sciences,2012,25(5):648-652.
[42] MANNEN H.Genes associated with fatty acid composition of beef[J].Food Science and Technology Research,2012,18(1):1-6.
[43] 茅慧玲,刘建新.反刍动物肌肉脂肪酸营养调控研究进展[J].饲料工业,2010,31(23):30-34.
[44] ANDRES S,MORAN L,ALDAI N,et al.Effects of linseed and quercetin added to the diet of fattening lambs on the fatty acid profile and lipid antioxidant status of meat samples[J].Meat Science,2014,97(2):156-163.
[45] 许蕾蕾.亚麻籽对育肥牛生长性能及肉品质的影响[D].硕士学位论文.保定:河北农业大学,2012.
[46] 胡琼,富俊才,慕向东.不同油籽对绵羊瘤胃内容物及体组织脂肪酸组成的影响[J].中国农业大学学报,2008,13( 1):55-61.
[47] 张春.不同日粮对羔羊生产性能、肌肉氮沉积及脂肪酸组成的影响[D].硕士学位论文.南京:南京农业大学,2010.
[48] MUINO I,APELEO E,FUENTE J D L,et al.Effect of dietary supplementati on with red wine extract or vitamin E,in combination with linseed and fish oil,on lamb meat quality[J].Meat Science,2014,98(2):116-123.
[49] 曾瑞伟.大豆秸秆中异黄酮对湖羊生长代谢及肉品质的影响[D].硕士学位论文.南京:南京农业大学,2011.
[50] 单翠燕.日粮共轭亚油酸(CLA)对奶山羊公羔肉脂脂肪酸组成的影响研究[D].硕士学位论文.杨凌:西北农林科技大学,2007.
[51] BHATT R S,SAHOO A,KARIM S A,et al.Effects of calcium soap of rice bran oil fatty acids supplementation alone and withDL-a-tocopherol acetate in lamb diets on performance,digestibility,ruminal parameters and meatquality[J].Animal Physiology and Animal Nutrition,2015.
[52] TAN C Y,ZHONG R Z,TAN Z L,et al.Dietary inclusion of tea catechins changes fatty acid composition of muscle in goats[J].Lipids,2011,46(3):239-247.
[53] 李伟玲.桑叶对肉羊生产性能、血液生化指标、免疫抗氧化功能和肉品质的影响[D].硕士学位论文.呼和浩特:内蒙古农业大学,2012.
[54] RANA M S,TYAGI A,HOSSAIN S A,et al.Effect of tanniniferous terminalia chebula extract on rumen biohydrogenation,Δ9-desaturase activity,CLA content and fatty acid composition inlongissimus dorsi muscle of kids[J].Meat Science,2012,90(3):558-563.
[55] WILLEMS H,KREUZER M,LEIBER F.Alpha-linolenic and linoleic acid in meat and adipose tissue of grazing lambs differ among alpine pasture types with contrasting plant species and phenolic compound composition[J].Small Ruminant Research,2014,116(2):153-164.
[56] BROGNA D M R,TANSAWAT R,CORNFORTH D,et al.The quality of meat from sheep treated with tannin and saponin-based remedies as a natural strategy for parasite control[J].Meat Science,2014,96(2):744-749.
[57] SCOLLAN N D,CHOI N J,KURT E,et al.Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle[J].British Journal of Nutrition,2001,85(1):115-124.
[58] NOCI F,FRENCH P,MONAHAN F J,et al.The fatty acid composition of muscle fat and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates[J].Journal of Animal Science,2007,85(4):1062-1073.
[59] 赵天章.日粮油脂类型对羊肉脂肪酸和肌内脂肪含量的影响及其机理[D].博士学位论文.北京:中国农业大学,2014.
[60] DURMIC Z,MCSWEENEY C S,KEMP G W,et al.Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids[J].Animal Feed Science and Technology,2008,145(1):271-284.
[61] SIMONELLA S,GRIGOLI A D,LIOTTA L.Chemical and acidic composition of longissimus dorsimuscle of comisana lambs fed with trifolium subterraneum and lolium multiflorum[J].Small Ruminant Research,2010,88(2):89-96.
[62] ABBOTT A,DOYLE P S,NADER G A,et al.A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef[J].Nutrition Journal,2010,9(1):1.
[63] CIVIDINI A,LEVART A,ZGUR S,et al.Fatty acid composition of lamb meat from the autochthonous Jezersko-Solcava breed reared in ifferent production systems[J].Meat Science,2014,97(4):480-485.
[64] NOCI F,MONAHAN F J,FRENCH P,et al.The fatty acid composition of muscle fat and subcutaneous adipose tissue of pasture-fed beef heifers:influence of the duration of grazing[J].Journal of Animal Science,2005,83(5):1167-1178.
[65] BAUMAN D E,LOCK A L.Conjugated inoleic acid:biosynthesis and nutritional significance[M]//FOX P F,MCSWEENEY P L H.Advanced dairy chemistry.New York:Springer,2006:93-136.
[66] FRUET A P B,STEFANELLO F S,JUNIOR A G R,et al.Whole grains in the finishing of culled ewes in pasture or feedlot:performance,carcass characteristics and meat quality[J].Meat Science,2016,113:97-103.
[67] PATINO H O,MEDEIROS F S,PEREIRA C H,et al.Productive performance,meat quality and fatty acid profile of steers finished in confinement or supplemented at pasture pasture[J].Animal,2015,9(6):966-972.
[68] WANG Z,CHEN Y,LUO H,et al.Influence of restricted grazing time systems on productive performance and fatty acid composition of longissimus dorsi in growing lambs[J].Asian-Australasian Journal of Animal Sciences,2015,28(8):1105-1115.
[69] KAMIHIRO S,STERGIADIS S,LEIFERT C,et al.Meat quality and health implication of organic and conventional beef production[J].Meat Science,2015,100(100):306-318.
[70] 钱文熙.滩羊肉品质的研究[D].硕士学位论文.银川:宁夏大学,2005.
[71] ALIREZA Y,HAMID K,AHMAD Z S,et al.Comparison of the meat quality and fatty acid composition of traditional fat-tailed(Chall)and tailed(Zel)Iranian sheep breeds[J].Meat Science,2012,92(4):417-422.
[72] 李述刚.南疆主要地方品种绵羊肌肉营养成分测定研究[D].硕士学位论文.武汉:华中农业大学,2009.
[73] 林昌俊,姜俊芳,宋雪梅,等.湖羊与杜泊×湖羊F1代羊肌肉脂肪酸组成的比较[J].畜牧与兽医,2014,46(4):58-61.
[74] LIND V,BERG J,EILERTSEN S M,et al.Effect of gender on meat quality in lamb from extensive and intensive grazing systems when slaughtered at the end of the growing season[J].Meat Science,2011,88(2):305-310.
[75] 陈银基.不同影响因素条件下牛肉脂肪酸组成变化研究[D].博士学位论文.南京:南京农业大学,2007.
[76] OKEUDO N J,MOSS B W.Production performance and meat quality characteristics of sheep comprising four sex-types over arang of slaughter weights produced following commercial practice[J].Meat Science,2008,80(2):522-528.
[77] 张冬梅.乌珠穆沁羊生长过程中肌内脂肪酸及相关基因表达变化分析[D].硕士学位论文.呼和浩特:内蒙古农业大学,2015.
[78] 吴建平.不同肉羊品种体脂脂肪酸遗传变异性及其特性的研究[D].博士学位论文.兰州:甘肃农业大学,2000.
[79] BRENNAND C P,LINDSAY R C.Sensory discrimination of species-related meat flavors[J].Food Science and Technology,1982,15(5):249-252.
*Corresponding author, associate professor, E-mail: lfei@lzu.edu.cn
(责任编辑 王智航)
Muscle Fatty Acid Affects Meat Quality and Its Regulatory Factors in Ruminants
LI Xiaoya1TANG Defu2LI Fadi1,3LI Fei1*
(1.KeyStateLaboratoryofAgro-Ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou730020,China; 2.FacultyofAnimalScienceandTechnology,GansuAgriculturalUniversity,Lanzhou730070,China; 3.BiotechnologyEngineeringLaboratoryofGansuMeatSheepBreeding,Minqin733300,China)
To some extent, muscle fatty acid content and composition can affect meat quality and consumers’ health. Ruminant meat products are the main source of conjugated linoleic acid (CLA) which is beneficial for the health. Therefore, it is highly important to reveal the formation mechanism and regulation factors of muscle fatty acid in ruminants. In this paper, the effects of muscle fatty acids on meat flavor, oxidation stability and color were summarized, and muscle fatty acid regulation factors in ruminants were also reviewed, to aim at providing a reference for improving muscle fatty acids in ruminants.[ChineseJournalofAnimalNutrition, 2016, 28(12):3749-3756]
ruminant; muscle fatty acid; meat quality; regulatory factor
10.3969/j.issn.1006-267x.2016.12.005
2016-06-01
公益性(农业)科研专项经费(201503134);现代农业产业技术体系建设专项(CARS-39);甘肃省科技重大专项(1602NKDH020-03)
李晓亚(1991—),女,河北大名人,硕士研究生,研究方向为反刍动物营养学。E-mail: 1216546993@qq.com
*通信作者:李 飞,副教授,硕士生导师,E-mail: lfei@lzu.edu.cn
S823;S826
A
1006-267X(2016)12-3749-08