高养春, 董燕红, 李海涛, 战爱斌*
1中国科学院生态环境研究中心,北京 100085;2国家海洋局南海环境监测中心,广东 广州 510300
有害甲藻孢囊的分类鉴定研究进展
高养春1, 董燕红2, 李海涛2, 战爱斌1*
1中国科学院生态环境研究中心,北京 100085;2国家海洋局南海环境监测中心,广东 广州 510300
有害甲藻孢囊主要是指能产生毒素和(或)能引起有害藻华发生并对水生态系统产生各种危害效应的甲藻孢囊。我国沿海共记录了10属18种,占全球有害甲藻孢囊的3/4。这些有害甲藻孢囊广泛分布于我国沿海,会对水产养殖业造成严重的经济损失,甚至会威胁人类的身体健康。因此,有害甲藻孢囊的多样性及分布越来越受到人们的关注。对有害甲藻孢囊的准确判断不仅对研究其多样性及分布至关重要,而且有助于水产品的安全检验和有害藻华的早期预警。对有害甲藻孢囊的分类主要存在鉴定困难、鉴定不准确等问题。本文综述了有害甲藻孢囊的危害、中国沿海有害甲藻孢囊的种类和分布,以及有害甲藻孢囊的鉴定等3个方面的研究进展,并提出利用孢囊及营养细胞的形态学特征、分子生物学、毒理学等多学科研究手段准确鉴定有害甲藻孢囊的建议。
有害甲藻孢囊; 形态学特征; 分子鉴定
甲藻孢囊是指甲藻为度过不良环境而产生的一种无鞭毛且无游动能力的细胞,是甲藻生活史的一个重要阶段(王朝晖,2007)。其中,能产生毒素和(或)引起有害藻华(harmful algal bloom)的甲藻孢囊被称为有害甲藻孢囊。有害甲藻孢囊可分为含毒素和不含毒素2类。含毒素种类不仅在低浓度时就会引起水产品染毒甚至死亡,而且会导致有害藻华的暴发(Burkholderetal.,1992);不含毒素的种类虽然不会引起水产品的毒化,但大量萌发后能引起有害藻华的发生。有害藻华的发生会对人类健康、生态系统及水产养殖业构成巨大威胁(Andersonetal.,2012b)。随着沿海海域污染、外来种引入、全球变暖等影响的加剧,有害藻华发生的频率不断增大(Andersonetal.,2012a; Nakanishietal.,1996)。因分布于海底沉积物中的有害甲藻孢囊很有可能成为有害藻华发生的种源,有害甲藻孢囊的地理分布及多样性和生态特性也越来越受到关注(Kohlietal.,2014; Zonneveld & Dale,1994)。
甲藻孢囊形体普遍微小(20~120 μm),部分种间差异较小及同种存在形态可塑性等特点(Fuentes-Grünewaldetal.,2009、2012; Geider & Roche,2002; Taylor & Gaines,1989),导致对其鉴定困难及鉴定不准确等问题。虽然顾海峰等(2011)、黄海燕和陆斗定(2009)已对甲藻孢囊的研究进行了综述,但均缺乏针对有害甲藻孢囊种类及分子鉴定方面的论述。本文拟综述有害甲藻孢囊的危害、中国沿海有害甲藻孢囊的种类及分布、有害甲藻孢囊的形态学和分子生物学鉴定等3个方面的研究进展,以期为有害甲藻孢囊的监测和控制提供参考。
笔者统计了全球范围内有害甲藻孢囊的种类,主要有22种(表1)。其中,19种含有甲藻毒素,3种不含毒素但能引起有害藻华的发生,而既含有毒素又能引起有害藻华发生的有13种。这些甲藻毒素是底栖生物体内毒素积累的重要来源之一(Schwinghameretal.,1994)。其被滤食性的鱼、虾、贝类滤食后,在这些海产品体内积累并导致海产品染毒,染毒的海产品通过食物链的传递最终导致人的中毒(丁德文等,2005; Yasumoto & Murata,1993)。根据食用者中毒的症状,这些甲藻(产孢囊)毒素被分为3类:腹泻性贝类毒素(diarrhetic shellfish poisoning,DSP)、麻痹性贝类毒素(paralytic shellfish poisoning,PSP)、神经性贝类毒素(neurotoxic shellfish poisoning,NSP)。除此之外,还有一些对人类危害尚不清楚的毒素,如扇贝毒素(yessotoxin,YTX)(Auneetal.,2002)。这些毒素(DSP、PSP、NSP、YTX)主要由甲藻门中的膝沟藻类产生,少数由裸甲藻类、多沟藻类产生(表1)。有些甲藻(产孢囊)毒素(如属于PSP的石房蛤毒素)的毒性是眼镜蛇毒性的80倍,产毒甲藻的营养细胞具有毒素,其孢囊也具有毒素(Andersonetal.,1990; Bravo,1998),并且其毒性比营养细胞更高(Dale,1983; Oshimaetal.,1992)。仅在1969年至1994年,我国因食用染毒的鱼、贝类而中毒的人数就有1800多人,其中至少30人死亡(周名江等,2001; Zhouetal.,1999)。这些毒素还能引起鱼、贝类大面积死亡,给水产养殖业造成重大经济损失(龙华等,2008; Lim,2012)。此外,有害甲藻孢囊能帮助甲藻度过不良环境,通过洋流或船舶等媒介扩散到其他海域,极易使其成为入侵物种而对当地水域的其他生物及生态环境产生重大的危害,如自从亚历山大藻孢囊入侵美国缅因州西部海域引起赤潮后,此海域几乎每年都会暴发产PSP毒素的赤潮(Anderson & Wall,1978)。
目前,我国发现的有害甲藻孢囊共记录了10属18种,占全球总有害甲藻孢囊种类的3/4(表1),其在我国沿海的分布见图1。其中,原甲藻属Prorocentrum1种,亚历山大藻属Alexandrium共6种,膝沟藻属Gonyaulax共2种,梨甲藻属Pyrodinium1种,舌甲藻属Lingulodinium1种,原角管藻属Protoceratium1种,斯氏藻属Scrippsiella1种,裸甲藻属Gymnodinium1种,多沟藻属Polykrikos共2种,褐多沟藻属Pheopolykrikos1种,旋沟藻属Cochlodinium1种。广泛分布于我国沿海的有塔玛亚历山大藻Alexandriumtamarense、链状亚历山大藻A.pacificum、具刺膝沟藻Gonyaulaxspinifera以及锥状斯氏藻Scrippsiellatrochoidea。
3.1 形态学鉴定
由于大多数甲藻孢囊微小,需要借助于光学或电子显微镜才能对其进行分类鉴定。传统的形态学鉴定方法主要根据孢囊的形态、大小、颜色、孢囊内含物及孢囊壁的结构和表面修饰物等特征对孢囊进行鉴定(王朝晖,2007; 王朝晖等,2011; 魏洪祥等,2011; Liuetal.,2014; Matsuoka & Fukuyo,2000; Mertensetal.,2015)。表1列出的有害甲藻孢囊中,有些具有易于分辨的形态学特征,如多边舌甲藻Lingulodiniumpolyedrum具有舌状凸起(图2A),网状原角管藻Protoceratiumreticulatum具有T形凸起(图2B)(Joyceetal.,2005),科夫多沟藻Polykrikoskofoidii具有网纹状凸起(图2C),无纹多沟藻Polykrikosschwartzii的外部形态与科夫多沟藻类似,但凸起的顶端相互独立而未连接在一起(图2D)等,可根据此特有的形态学特征对这些孢囊进行相对准确的鉴定。
表1 主要有害甲藻孢囊种类及其危害
*为中国沿海发现的有害甲藻孢囊种。
*indicate dinoflagellate cyst found in China.
但对于有些有害甲藻孢囊,如亚历山大藻属中的塔玛亚历山大藻复合体(图2E)、微小亚历山大藻A.minutum与相似亚历山大藻A.affine(图2F)等各个种的形态差异较小(黄海燕等,2009; 王朝晖等,2004; 魏洪祥等,2011; Bravoetal.,2006),仅仅根据光学显微镜下孢囊的形态学特征难以将这些孢囊鉴定到种的水平,一般在光镜或电镜下观察孢囊萌发时营养细胞的形态特征可间接鉴定孢囊(顾海峰等,2003; Gu,2011; Guetal.,2013a)。对于营养细胞形态差异较小的种类,此方法也不能将其准确鉴定,如根据塔玛亚历山大藻复合体的形态学特征仅能将其鉴定为由塔玛亚历山大藻、链状亚历山大藻及A.fundyense3种藻类组成(Balech,1995);但后来的研究发现其存在许多中间形态的个体以及不同种之间存在形态特征重叠的现象,使得学者们对塔玛亚历山大藻复合体分为3个种的观点产生了较大的质疑(Gayoso & Fulco,2006; Kimetal.,2002; Orlovaetal.,2007)。基于形态学特征对A.ostenfeldii与A.peruvianum(Gu,2011; Krempetal.,2014)、Pyrodiniumbahamensevar.compressum与Pyrodiniumbahamensevar.bahamense(Balech,1985; Mertensetal.,2015; Steidingeretal.,1980)的研究也发现了类似的现象;再如,塔玛亚历山大藻复合体group Ⅰ(含有毒素)中的个体均存在侧腹孔,而group Ⅳ(未能检测到毒素)的个体中有些存在侧腹孔而有些不存在,因此,仅根据侧腹孔的有无并不能将塔玛亚历山大藻复合体中的group Ⅰ和group Ⅳ区分开(Guetal.,2013a)。
此外,该方法不能鉴定不具有萌发能力以及现有试验条件下尚不能萌发的孢囊。虽然孢囊萌发培养技术在不断改善,但孢囊的萌发率仍不能达到100%(Andersonetal.,2005; Guetal.,2013b),因此,仍有部分尚未萌发的孢囊不能通过孢囊萌发试验得到鉴定。虽然孢囊的萌发孔及副壳板结构也可用于不同种孢囊的鉴定(Yamaguchietal.,1995),尤其用于原多甲藻中Brigantedinium的鉴定,但只能鉴定已经萌发的孢囊,而对于未萌发的Brigantedinium仅根据孢囊形态学特征仍不能将其鉴定到种的水平。有些孢囊如具刺膝沟藻孢囊具有较强的形态可塑性(图2G、H),据报道,产毒的具刺膝沟藻至少有19种不同类型的孢囊(Taylor & Gaines,1989),仅仅根据孢囊形态学特征难以将具有不同形态学特征的同种孢囊划分到同一个种。因此,许多基于孢囊形态学的研究只能鉴定到属或属以上的水平(王朝晖,2007; 王朝晖等,2011; 魏洪祥等,2011)。
图2 部分有害甲藻孢囊
除以上孢囊所固有的生物特性外,环境因素也可能间接影响孢囊鉴定的准确率。一些孢囊在不同的环境中以及不同的生长阶段具有不同的外部形态特征,如多边舌甲藻(Mertens,2013; Mertensetal.,2009)、网状原角管藻(Mertensetal.,2011)、巴哈马梨甲藻Pyrodiniumbahamense(Mertensetal.,2015)等孢囊刺的长度及大小与孢囊所处海域的盐度与温度相关;多边舌甲藻、巴哈马梨甲藻等孢囊的大小还与水体的营养成分及水流等相关(Mertens,2013; Mertensetal.,2015)。这些环境因素对孢囊形态所产生的影响会降低孢囊鉴定的准确率(Fuentes-Grünewaldetal.,2009、2012)。
常规形态学鉴定具有费时费力的缺点,对鉴定人员的要求也较高(Godheetal.,2001),且分辨率较低。因此,需要寻找一种省时省力又准确的孢囊鉴定方法。分子生物学方法在解决这个问题方面展现出了巨大的优势:(1)试验所需的时间较短;(2)没有形态学鉴定基础的实验者也可进行操作;(3)在种或属水平上的鉴定具有特异性。
3.2 分子生物学鉴定
一般情况下,不同物种之间的差异主要取决于相应遗传物质基因组中碱基序列的差异。因此,理论上认为直接对基因组碱基序列测序是最准确且可靠的物种鉴定方法。但由于基因组较大,不易于测序且代价较高而限制了其实际应用。DNA条形码(DNA barcode)是生物体内能够代表该物种且与其他物种区分的DNA片段,其一般较短且易测序,根据DNA条形码的序列特征即可鉴定物种。此技术已广泛应用于动物(Shokralla,2011; Zhanetal.,2013; Zhan & MacIsaac,2015)、植物(Cowan & Michael,2012)、微生物(Adeduntan,2009)等物种的鉴定,在形态鉴定存在困难的物种上的应用更加广泛。如Lillyetal.(2007)根据当时的分子生物学数据将塔玛亚历山大藻复合体划分为5个类群(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ),但未划分到具体的种。近年,相关学者才根据核酸序列并辅以毒理学、繁殖生物学等特征将这5个形态相似的类群划分为5个不同的种(类群Ⅰ被命名为A.fundyense,类群Ⅱ被命名为A.mediterraneum,类群Ⅲ被命名为A.tamarense,类群Ⅳ被命名为A.pacificum,类群Ⅴ被命名为A.australiense)(Johnetal.,2014a、2014b; Wang Letal.,2014);同样,根据rDNA的特征,A.ostenfeldii和A.peruvianum被建议归为一个种(A.ostenfeldii), 取消A.peruvianum的命名(Gu,2011; Krempetal.,2014)。但此方法在孢囊鉴定时仍面临一些困难与挑战,如分子标记的选择、孢囊核酸的提取等。
3.2.1 分子标记的选择 理想的DNA条形码片段既要易于扩增及测序,也要具有种间区别力(种间具有较高的变异而种内具有较低的变异)。因此,相对应的引物既要有一定的通用性(包含尽可能多的目的种),也要具有一定的特异性(非目的种尽可能少)(Zhan & MacIsaac,2015)。常见的DNA条形码有核糖体RNA基因(rDNA)序列,包括小亚基rRNA基因(SSU或18S rDNA)、大亚基rRNA基因(LSU或28S rDNA)、内转录间隔区(ITS1、ITS2)及外转录间隔区(NTS),叶绿体上的rbcl、psb基因以及线粒体上的Cob、Cox等基因(陈月琴等,1997、1999; Scholinetal.,1994、1996; Wilcox,1998)。
数据库(如NCBI)中可参考物种条形码序列的有无及种内、种间的遗传距离对有害甲藻孢囊的分子鉴定起着决定性作用。在藻类的分子鉴定上应用最多的是核基因序列,在有害甲藻条形码序列数据库(如NCBI)中,与其他分子标记相比较,18S的物种序列最完备(表2),且有害甲藻孢囊(除膝沟藻属)种内的变异相对较小,易于设计其通用引物,这些优点使得18S成为甲藻物种鉴定中应用广泛的分子标记(Granéli & Turner,2006);但其种间的变异较小且种内及种间的遗传距离有重叠(表2),因此,18S并非最理想的分子标记。与18S相比,28S数据库中可参考的有害甲藻的物种序列也较为完备(表2),且种间遗传距离较大并具有较高的种间分辨率,有害甲藻孢囊的通用引物也易于设计,但种内遗传距离较大且种内及种间的遗传距离有重叠,所以28S作为有害甲藻的分子标记也具有一定的缺陷。核基因上ITS序列由于不编码基因、不存在进化上的选择压力而具有较快的进化速率,对物种的分辨率最高,但其同种序列因存在插入缺失等现象而具有较大的变异,即具有较大的种内变异(表2),这很可能误将同种生物的不同个体划分为2个种;同时,不同种间的遗传距离差别较大,这使得为有害甲藻孢囊的分子鉴定划定一个种间界定标准变得困难,而只能针对不同的属或更高分类单元划定特定的种间界定标准。如陈月琴和屈良鹄(1999)通过分析GenBank上亚历山大藻的ITS序列得出,此属的种间ITS序列差异值大于0.20,而种内ITS序列非常相似(仅0.01差异),这为亚历山大藻属的分子鉴定提供了一个种间界定的标准。理论上,其他属也可以利用此方法找到一个种间界定的标准,但数据库中存在一些错误的序列而又难以辨别并删除,所以难以获得有害甲藻种间及种内遗传距离的真实值,只能从大量的序列比对中得出一个接近于真实值的值。
甲藻的营养类型较多,包括自养型甲藻、异养型甲藻以及混合营养型甲藻等(Gómez,2012)。自养型甲藻细胞内存在可用作条形码的叶绿体基因,如rbcl、pbs等,而异养型甲藻不存在此基因,这限制了叶绿体基因在甲藻分子鉴定中的广泛应用。虽然线粒体上的基因如Cob和Cox等的种内及种间遗传距离具有较高的物种分辨率(表2),但因相关数据库不完善(表2)而限制了其应用。目前,尚无单个DNA条形码能将所有的甲藻鉴定到种的水平,笔者认为应根据不同的种、属选择不同的分子标记,进而实现孢囊的鉴定或甲藻类群的特殊检测。
3.2.2 孢囊核酸的提取 孢囊核酸的提取对孢囊的分析鉴定至关重要。孢囊外壁主要由孢粉质类似物或钙质组成,如亚历山大藻属的孢囊外壁是由孢粉质类似物组成,具有抗高温、抗酸碱腐蚀的能力,且比较坚硬(Bibby & Dodge,1972);斯氏藻属的孢囊外壁主要是由硬度较高的钙质组成,这些难以破碎的孢囊外壁虽能协助甲藻度过不良环境并扩散到邻近海域外,但增加了孢囊核酸提取的难度。因此,破碎孢囊外壁成为孢囊基因组提取的关键步骤。破碎孢囊壁的常用方法有物理破碎法和化学破碎法:物理方法主要包括磁珠破碎法(Erdneretal.,2010; Pennaetal.,2010) 和液氮研磨破碎法(Godheetal.,2002);化学方法主要为CTAB法(Coyne & Cary,2005; Kamikawaetal.,2007)。此外,通过培养甲藻孢囊让其萌发,然后采用常规植物基因组提取的方法也可达到间接提取孢囊基因组的目的(Bravoetal.,2006)。以上孢囊基因组提取方法在孢囊种的鉴定、有害藻类的定性及定量检测等方面得到了广泛应用;但这些方法只适用于提取数量较多的孢囊种类。在自然条件下,某些种类的孢囊数量较少,有些种类在当前实验室条件下难以萌发,给这些稀有孢囊基因组的提取造成了困难,从而无法从分子水平准确鉴定这些孢囊的种类。
在过去的数十年间,单细胞PCR方法得到了较快的发展,此方法的优点是不需要基因组的提取,可直接将单细胞破碎液用作PCR模板,进而在短时间内实现分子鉴定。此方法虽然在孢囊的分子鉴定(尤其是样品中低丰度孢囊或未能萌发孢囊的鉴定)上得到了一定的应用,但仍存在一些问题,如单个孢囊破碎方法的选取、单个孢囊中较低的DNA含量不易于PCR扩增以及缺乏高分辨率且通用的甲藻引物(图3)。常用的单孢囊破碎方法包括反复冻融法(Bolch,2001; Gribble & Anderson,2006)、微细玻璃针破碎法(Takano & Horiguchi,2004; Yamaguchi & Horiguchi,2005)以及盖玻片按压破碎法(Liuetal.,2014)等。孢囊壁的组成成分复杂且具有较高的韧性,使得反复冻融法在孢囊破碎时往往不能取得理想的效果;由于孢囊比较小且具有较坚硬的外壁,利用微细玻璃针破碎时易造成孢囊的丢失;盖玻片按压破碎法能克服以上2种方法的缺点而成为一种比较理想的孢囊破碎方法。较少的DNA含量使得PCR体系中模板量较低,易使PCR扩增失败(无扩增片段或由于孢囊表面其他生物的污染引起的非特异性扩增)。而巢式PCR能解决孢囊模板量低的问题,常规的做法:利用真核通用引物(外引物)增加目的基因或DNA片段的拷贝数进行第1次PCR扩增,然后以第1次PCR产物为模板再利用甲藻特异性引物(内引物)进行第2次PCR扩增(Pennaetal.,2010)。但由于真核通用引物在PCR扩增时对某些类群或模板含量高的类群具有一定的偏嗜性,而难以扩增出模板含量低的类群,如甲藻(Kohlietal.,2014; Potvin & Lovejoy,2009)等。因此,如果在巢式PCR第1轮扩增时选用甲藻特异性引物,第2轮扩增时采取种或属以上分类单元的通用引物扩增,理论上会得到较为理想的扩增效果。PCR引物是决定孢囊PCR扩增成败的关键。甲藻特异性引物已有较多报道(Linetal.,2006、2009),其中的一对甲藻特异性引物(dinocob4f、dinocob6r)已成功用于高通量测序,结果显示,98.46%的序列属于甲藻,但由于cob的可参考数据库不健全,大部分序列仍不能鉴定到种的水平(Kohlietal.,2014)。因此,有害甲藻孢囊cob条形码数据库有待进一步完善。
图3 单孢囊分子鉴定过程中存在的问题或争议及可能的解决方法与思路
有害甲藻孢囊不仅会对生态环境造成一定的危害,而且会对水产养殖业造成重大的经济损失,甚至威胁人类的生命。全球3/4有害甲藻孢囊种类分布在我国沿海地区,因此,我国是受甲藻孢囊威胁最为严重的国家之一。有害甲藻孢囊的分类鉴定对于其多样性及分布的研究至关重要,现有的分类方法(形态学鉴定、分子鉴定等)各有优缺点。有些有害甲藻孢囊种具有易于区分的形态学或分子生物学特征,如网状原角管藻、多边舌甲藻等,只要利用其中一种方法就可以将其准确鉴定;而一些有害甲藻孢囊的形态学或分子生物学特征不易被区分,如亚历山大藻属等,我们应将孢囊及萌发后营养细胞形态学、分子生物学、毒理学及繁殖生物学等鉴定方法结合起来。今后应加强甲藻孢囊的相关研究,尤其是有害甲藻孢囊条形码数据库的构建,以提高有害甲藻孢囊分子鉴定的准确率。
常虹, 王博, 姚蜜蜜, 蔡中华, 2014. 深圳大鹏湾海域锥状斯氏藻赤潮期间细菌群落结构变化研究. 现代生物医学进展, 14(10): 1801-1807.
陈月琴, 屈良鹄, 1999. 海洋亚历山大藻属种间界定的分子标准. 中山大学学报(自然科学版), 38(1): 7-11.
陈月琴, 屈良鹄, 邱小忠, 曾陇梅, 齐雨藻, 1997. 甲藻单个细胞DNA的制备及在赤潮藻类分子鉴定中的应用. 中山大学学报(自然科学版), 36(4): 66-69.
陈月琴, 屈良鹄, 曾陇梅, 齐雨藻, 郑磊, 1999. 南海赤潮有毒甲藻链状-塔马亚历山大藻的分子鉴定. 海洋学报(中文版), 21(3): 106-112.
丁德文, 刘胜浩, 刘晨临, 林学政, 边际, 黄晓航, 2005. 孢囊及其与赤潮爆发关系的研究进展. 海洋科学进展, 23(1): 1-10.
顾海峰, 蓝东兆, 方琦, 王宗灵, 蔡锋, 2003. 我国东南沿海亚历山大藻休眠孢囊的分布和萌发研究. 应用生态学报, 14(7): 1147-1150.
顾海峰, 刘婷婷, 蓝东兆, 2011. 中国沿海甲藻包囊研究进展. 生物多样性, 19(6): 779-786.
黄长江, 董巧香, 2000. 1998年春季珠江口海域大规模赤潮原因生物的形态分类和生物学特征I. 海洋与湖沼, 31(2): 197-204.
黄海燕, 陆斗定, 2009. 甲藻孢囊研究进展. 海洋学研究, 27(3): 85-92.
黄海燕, 陆斗定, 夏平, 王红霞, 2009. 2006年冬季长江口海域表层沉积物中甲藻孢囊的分类学研究. 生态学报, 29(11): 5902-5911.
林永水, 周近明, 1993. 盐田水域多纹膝沟藻赤潮发生过程的生态学研究. 热带海洋学报, 12(1): 46-50.
龙华, 周燕, 余骏, 胡益峰, 傅国君, 2008. 2001~2007年浙江海域赤潮分析. 海洋环境科学, 27(S1): 1-4.
邵魁双, 巩宁, 杨青, 李柯, 2011. 甲藻孢囊在长山群岛海域表层沉积物中的分布. 生态学报, 31(10): 2854-2862.
唐祥海, 于仁成, 陈洋, 张清春, 王云峰, 颜天, 周名江, 2008. 可用于相关亚历山大藻(Alexandriumaffine)检测的一个寡核苷酸探针. 海洋与湖沼, 39(6): 650-654.
王红霞, 陆斗定, 何飘霞, 戴鑫烽, 夏平, 李冬融, 2014. 东海多环旋沟藻的形态特征和系统进化分析. 海洋与湖沼, 45(4): 757-763.
王朝晖, 2007. 中国沿海甲藻孢囊与赤潮研究. 北京: 海洋出版社.
王朝晖, 曹宇, 张玉娟, 2011. 2005-2006年大亚湾大鹏澳养殖区甲藻孢囊通量的沉积捕捉器研究. 热带海洋学报, 30(1): 113-118.
王朝晖, 齐雨藻, 2003. 甲藻孢囊在长江口海域表层沉积物中的分布. 应用生态学报, 14(7): 1039-1043.王朝晖, 齐雨藻, 江天久, 许忠能, 2004. 大亚湾近代沉积物中甲藻孢囊的垂直分布. 水生生物学报, 28(5): 504-510.王朝晖, 康伟, 2014. 柘林湾表层沉积物中甲藻孢囊的分布与浮游植物休眠体萌发研究. 环境科学学报, 34(8): 2043-2050.魏洪祥, 赵文, 梁玉波, 2011. 大窑湾养殖区赤潮甲藻孢囊种类组成及分布的研究. 水生生物学报, 35(3): 489-497.肖咏之, 齐雨藻, 王朝晖, 吕颂辉, 2001. 大亚湾海域锥状斯氏藻赤潮及其与孢囊的关系. 海洋科学, 25(9): 50-54.曾玲, 龙超, 林红军, 2013. 利玛原甲藻形态特征及生活史的研究. 湖北农业科学, 52(11): 2607-2611.
周名江, 朱明远, 张经, 2001. 中国赤潮的发生趋势和研究进展. 生命科学, 13(2): 54-59.
Adeduntan S A, 2009. Diversity and abundance of soil mesofauna and microbial population in South-Western Nigeria.AfricanJournalofPlantScience, 3(9): 210-216.
Anderson D M and Wall D, 1978. Potential importance of benthic cysts ofGonyaulaxtamarensisandG.excavatain initiating toxic dinoflagellate blooms.JournalofPhycology, 14(2): 224-234.
Anderson D M, Kulis D M, Sullivan J J and Hall S, 1990. Toxin composition variations in one isolate of the dinoflagellateAlexandriumfundyense.Toxicon, 28(8): 885-893.
Anderson D M, Kulis D M, Qi Y Z, Zheng L, Lu S H and Lin Y T, 1996. Paralytic shellfish poisoning in Southern China.Toxicon, 34(5): 579-590.
Anderson D M, Stock C A, Keafer B A, Bronzino N A, Thompson B, Mcgillicuddy D J, Keller M, Matrai P A and Martin J, 2005.Alexandriumfundyensecyst dynamics in the Gulf of Maine.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 52: 2522-2542.Anderson D M, Cembella A D and Hallegraeff G M, 2012a. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management.AnnualReviewofMarineScience, 4(1): 143-176.Anderson D M, Alpermann T J, Cembella A D, Collos Y, Masseret E and Montresor M, 2012b. The globally distributed genusAlexandrium: multifaceted roles in marine ecosystems and impacts on human health.HarmfulAlgae, 14: 10-35.Anderson J T, Stoecher D K and Hood R R, 2003. Formation of two types of cysts by a mixotrophic dinoflagellate,Pfiesteriapiscicida.MarineEcologyProgressSeries, 246: 95-104.Aune T, Sørby R, Yasumoto T, Ramstad H and Landsverk T, 2002. Comparison of oral and intraperitoneal toxicity of yessotoxin towards mice.Toxicon, 40(1): 77-82.Azanza R, 1997. Contributions to the understanding of the bloom dynamics ofPyrodiniumbahamensevar.compressum: a toxic red tide causative organism.ScienceDiliman, 9(1/2): 1-6.lvarez G, Uribe E, Díaz R, Braun M, Mario C and Blanco J, 2011. Bloom of the yessotoxin producing dinoflagellateProtoceratiumreticulatum(Dinophyceae) in Northern Chile.JournalofSeaResearch, 65(4): 427-434.
Balech E, 1985. A revision ofPyrodiniumbahamenseplate (Dinoflagellata).ReviewofPalaeobotanyandPalynology, 45(1/2): 17-34.
Balech E, 1995.TheGenusAlexandriumHalim(Dinoflagellate). Sherkin Island, Co. Cork, Ireland: Sherkin Island Marine Station Publicaiton. Bauder A G, Cembella A D, Bricelj V M and Quilliam M A, 2001. Uptake and fate of diarrhetic shellfish poisoning toxins from the dinoflagellateProrocentrumlimain the bay scallopArgopectenirradians.MarineEcologyProgress, 213: 39-52.Bibby B T and Dodge J D, 1972. The encystment of a freshwater dinoflagellate: a light and electron-microscopical study.BritishPhycologicalJournal, 7(1): 85-100.
Bolch C J S, 2001. PCR protocols for genetic identification of dinoflagellates directly from single cysts and plankton cells.Phycologia, 40(2): 162-167.
Bowers H A, Tengs T, Glasgow H B, Burkholder J M, Rublee P A and Oldach D W, 2000. Development of Real-Time PCR assays for rapid detection ofPfiesteriapiscicidaand related dinoflagellates.Applied&EnvironmentalMicrobiology, 66(11): 4641-4648.
Bravo I, Ramilo M L, Fernndez I and Martínez A, 2001. Toxin composition of the toxic dinoflagellateProrocentrumlimaisolated from different locations along the Galician coast (NW Spain).Toxicon, 39(10): 1537-1545.
Bravo I, Garcés E, Diogène J, Fraga S, Sampedro N and Figueroa R I, 2006. Resting cysts of the toxigenic dinoflagellate genusAlexandriumin recent sediments from the Western Mediterranean coast, including the first description of cysts ofA.kutneraeandA.peruvianum.EuropeanJournalofPhycology, 41(3): 293-302.
Bravo L, 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance.NutritionReviews, 56(11): 317-333.
Burkholder J M, Noga E J, Hobbs C H and Glasgow H B, Jr, 1992. New ‘phantom’ dinoflagellate is the causative agent of major estuarine fish kills.Nature, 358: 407-410.Chang F H, Anderson D M, Kulis D M and Till D G, 1997. Toxin production ofAlexandriumminutum(Dinophyceae) from the Bay of Plenty, New Zealand.Toxicon, 35(3): 393-409.Cowan R S and Michael F F, 2012. Challenges in the DNA barcoding of plant material∥Sucher N J, Hennell J R and Carles M C.PlantDNAFingerprintingandBarcoding. New York: Humana Press: 23-33.
Coyne K J and Cary S C, 2005. Molecular approaches to the investigation of viable dinoflagellate cysts in natural sediments from estuarine environments.TheJournalofEukaryoticMicrobiology, 52(2): 90-94.
Coyne K J, Hare C E, Popels L C, Hutchins D A and Cary S C, 2006. Distribution ofPfiesteriapiscicidacyst populations in sediments of the Delaware Inland Bays, USA.HarmfulAlgae, 5(4): 363-373.
Dale B, 1983. Dinoflagellate resting cysts: "benthic plankton"∥Fryxell G A.SurvivalStrategiesoftheAlgae. Cambridge: Cambridge University Press: 69-144.
Erdner D L, Percy L, Keafer B, Lewis J and Anderson D M, 2010. A quantitative real-time PCR assay for the identification and enumeration ofAlexandriumcysts in marine sediments.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 57(3/4): 279-287.
Fuentes-Grünewald C, Garcés E, Alacid E, Sampedro N, Rossi S and Camp J, 2012. Improvement of lipid production in the marine strainsAlexandriumminutumandHeterosigmaakashiwoby utilizing abiotic parameters.JournalofIndustrialMicrobiology&Biotechnology, 39(1): 207-216.
Fuentes-Grünewald C, Garcés E, Rossi S and Camp J, 2009. Use of the dinoflagellateKarlodiniumveneficumas a sustainable source of biodiesel production.JournalofIndustrialMicrobiology&Biotechnology, 36(9): 1215-1224.
Gárate-Lizárraga I, López-Cortes D J, Bustillos-Guzmán J J and Hernández-Sandoval F, 2004. Blooms ofCochlodiniumpolykrikoides(Gymnodiniaceae) in the Gulf of California, Mexico.RevistadeBiologicaTropical, 52(S1): 51-58.
Gárate-Lizárraga I, Muetón-Gómez M S, Pérez-Cruz B and Díaz-Ortíz J A, 2014. Bloom ofGonyaulaxspinifera(Dinophyceae Gonyaulacales) in ensenada de la pazlagoon, gulf of California.CICIMAROceánides, 29(1): 11-18.
Gacutan R Q, Tabbu M Y, Aujero E J and Icatlo F, Jr, 1985. Paralytic shellfish poisoning due toPyrodiniumbahamensevar.compressain Mati, Davao Oriental, Philippines.MarineBiology, 87(3): 223-227.
Gao Y, Yu R C, Chen J H, Zhang Q C, Kong F Z and Zhou M J, 2015. Distribution ofAlexandriumfundyenseandA.pacificum(Dinophyceae) in the Yellow Sea and Bohai Sea.MarinePollutionBulletin, 96(1/2): 210-219.
Gayoso A M and Fulco V K, 2006. Occurrence patterns ofAlexandriumtamarense(Lebour) Balech populations in the Golfo Nuevo (Patagonia, Argentina), with observations on ventral pore occurrence in natural and cultured cells.HarmfulAlgae, 5(3): 233-241.
Geider R and Roche J L, 2002. Redfield revisited: variability of C∶N∶P in marine microalgae and its biochemical basis.EuropeanJournalofPhycology, 37(1): 1-17.
Godhe A, Otta S K, Rehnstam-Holm A S, Karunasagar I and Karunasagar I, 2001. Polymerase chain reaction in detection ofGymnodiniummikimotoiandAlexandriumminutumin field samples from southwest India.MarineBiotechnology, 3(2): 152-162.
Godhe A, Rehnstam-Holm A F, Karunasagar I and Karunasagar I, 2002. PCR detection of dinoflagellate cysts in field sediment samples from tropic and temperate environments.HarmfulAlgae, 1(4): 361-373.
Gómez F, 2012. A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata).Systematics&Biodiversity, 10(3): 267-275.
Granéli E and Turner J T, 2006.EcologyofHarmfulAlgae:EcolgogicalStudies. Berlin: Springer.
Gribble K E and Anderson D M, 2006. Molecular phylogeny of the heterotrophic dinoflagellates,Protoperidinium,DiplopsalisandPreperidinium(Dinophyceae), inferred from large subunit rDNA.JournalofPhycology, 42(5): 1081-1095.
Gu H F, 2011. Morphology, phylogenetic position, and ecophysiology ofAlexandriumostenfeldii(Dinophyceae) from the Bohai Sea, China.JournalofSystematicsandEvolution, 49(6): 606-616.
Gu H F, Zeng N, Liu T T, Yang W D, Müller A and Krock B, 2013a. Morphology, toxicity, and phylogeny ofAlexandrium(Dinophyceae) species along the coast of China.HarmfulAlgae, 27: 68-81.
Gu H F, Zeng N, Xie Z X, Wang D Z, Wang W G and Yang W D, 2013b. Morphology, phylogeny, and toxicity ofAtamacomplex (Dinophyceae) from the Chukchi Sea.PolarBiology, 36(3): 427-436.
Gu H F, Liu T T, Vale P and Luo Z H, 2013c. Morphology, phylogeny and toxin profiles ofGymnodiniuminusitatumsp. nov.,GymnodiniumcatenatumandGymnodiniummicroreticulatum(Dinophyceae) from the Yellow Sea, China.HarmfulAlgae, 28: 97-107.
Hallegraeff G M, Mccausland M A and Brown R K, 1995. Early warning of toxic dinoflagellate blooms ofGymnodiniumcatenatumin southern Tasmanian waters.JournalofPlanktonResearch, 17(6): 1163-1176.
Hansen G, Daugbjerg N and Franco J M, 2003. Morphology, toxin composition and LSU rDNA phylogeny ofAlexandriumminutum(Dinophyceae) from Denmark, with some morphological observations on other European strains.HarmfulAlgae, 2(4): 317-335.
Harding J M, Mann R, Moeller P and Hsia M S, 2009. Mortality of the veined rapa whelk,Rapanavenosa, in relation to a bloom ofAlexandriummonilatumin the York River, United States.JournalofShellfishResearch, 28(2): 363-367.
John U, Litaker R W, Montresor M, Murray S, Brosnahan M L and Anderson D M, 2014a. Formal revision of theAlexandriumtamarensespecies complex (Dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification.Protist, 165(6): 779-804.
John U, Litaker R W, Montresor M, Murray S, Brosnahan M L and Anderson D M, 2014b. Proposal to reject the nameGonyaulaxcatenella(Alexandriumcatenella) (Dinophyceae).Taxon, 63(4): 932-933.
Joyce L B, Pitcher G C, du Randt A and Monteiro P M S, 2005. Dinoflagellate cysts from surface sediments of Saldanha Bay, South Africa: an indication of the potential risk of harmful algal blooms.HarmfulAlgae, 4(2): 309-318.
Juhl A R, 2005. Growth rates and elemental composition ofAlexandriummonilatum, a red-tide dinoflagellate.HarmfulAlgae, 4(2): 287-295.
Kamikawa R, Nagai S, Hosoi-Tanabe S, Itakura S, Yamaguchi M, Uchida Y, Baba T and Sako Y, 2007. Application of real-time PCR assay for detection and quantification ofAlexandriumtamarenseandAlexandriumcatenellacysts from marine sediments.HarmfulAlgae, 6(3): 413-420.
Kim D, Oda T, Muramatsu T, Kim D, Matsuyama Y and Honjo T, 2002. Possible factors responsible for the toxicity ofCochlodiniumpolykrikoides, a red tide phytoplankton.ComparativeBiochemistryandPhysiologyPartC:Toxicology&Pharmacology, 132(4): 415-423.
Kohli G S, Neilan B A, Brown M V, Hoppenrath M and Murray S A, 2014. Cob gene pyrosequencing enables characterization of benthic dinoflagellate diversity and biogeography.EnvironmentalMicrobiology, 16(2): 467-485.Kremp A, Lindholm T, Dreβler N, Erler K, Gerdts G, Eirtovaara S and Leskinen E, 2009. Bloom formingAlexandriumOstenfeldii(dinophyceae) in shallow waters of the Åland Archipelago, Northern Baltic Sea.HarmfulAlgae, 8(2): 318-328.Kremp A, Tahvanainen P, Litaker W, Krock B, Suikkanen S, Leaw C P and Tomas C, 2014. Phylogenetic relationships, morphological variation, and toxin patterns in theAlexandriumostenfeldii(Dinophyceae) complex: implications for species boundaries and identities.JournalofPhycology, 50(1): 81-100.
Krock B, Seguel C G and Cembella A D, 2007. Toxin profile ofAlexandriumcatenellafrom the Chilean coast as determined by liquid chromatography with fluorescence detection and liquid chromatography coupled with tandem mass spectrometry.HarmfulAlgae, 6(5): 734-744.Lage S and Costa P R, 2013. Paralytic shellfish toxins in the Atlantic horse mackerel (Trachurustrachurus) over a bloom ofGymnodiniumcatenatum: the prevalence of decarbamoylsaxitoxin in the marine food web.ScientiaMarina, 77(1): 13-17.Lan D Z, Li C, Fang Q and Gu H F, 2003. Preliminary study on taxonomy of dinoflagellate cysts from major estuary and bays of Fujian Province, China.ActaOceanologicaSinica, 22(3): 395-406.
Lilly E L, Kulis D M, Gentien P and Anderson D M, 2002. Paralytic shellfish poisoning toxins in France linked to a human-introduced strain ofAlexandriumcatenellafrom the western Pacific: evidence from DNA and toxin analysis.JournalofPlanktonResearch, 24(5): 443-452.
Lilly E L, Halanych K M and Anderson D M, 2007. Species boundaries and global biogeography of theAlexandriumtamarensecomplex (Dinophyceae).JournalofPhycology, 43(6): 1329-1338.Lim P T, Usup G and Leaw C P, 2012. Harmful algal blooms in Malaysian waters.SainsMalaysiana, 41(12): 1509-1515.Lim P T, Usup G, Leaw C P and Ogata T, 2005. First report ofAlexandriumtayloriandAlexandriumperuvianum(Dinophyceae) in Malaysia waters.HarmfulAlgae, 4(2): 391-400.Lin S J, Zhang H, Hou Y B, Miranda L and Bhattacharya D, 2006. Development of a dinoflagellate-oriented PCR primer set leads to detection of picoplanktonic dinoflagellates from Long Island Sound.Applied&EnvironmentalMicrobiology, 72(8): 5626-5630.
Lin S J, Zhang H, Hou Y, Zhuang Y B and Miranda L, 2009. High-level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial cox1 and cob genes for dinoflagellate DNA barcoding.Applied&EnvironmentalMicrobiology, 75(5): 1279-1290.
Liu T T, Gu H F, Mertens K N and Lan D Z, 2014. New dinoflagellate speciesProtoperidiniumhaizhouensesp. nov. (Peridiniales, Dinophyceae), its cyst-theca relationship and phylogenetic position within the Monovela group.PhycologicalResearch, 62(2): 109-124.MacIntyre J G, Cullen J J and Cembella A D, 1997. Vertical migration, nutrition and toxicity in the dinoflagellateAlexandriumtamarense.MarineEcologyProgressSeries, 148: 201-216.Mackenzie L, White D, Oshima Y and Kapa J, 1996. The resting cyst and toxicity ofAlexandriumostenfeldii(Dinophyceae) in New Zealand.Phycologia, 35(2): 148-155.
Marr J C, Jackson A E and McLachlan J L, 1992. Occurrence ofProrocentrumlima, a DSP toxin-producing species from the Atlantic coast of Canada.JournalofAppliedPhycology, 4(1): 17-24.
Martins C A, Kulis D, Franca S and Anderson D M, 2004. The loss of PSP toxin production in a formerly toxicAlexandriumlusitanicumclone.Toxicon, 43(2): 195-205.
Matsuoka K and Fukuyo Y, 2000.TechnicalGuideforModernDinoflagellateCystStudy. Tokio, Japan: WESTPAC-HAB Japanese Society for the Promotion of Science.Mertens K, 2013. Morphological variation in dinoflagellate cysts: current status and future challenges∥AASP-CAP-NAMS-CIMP-DINO10JointMeeting. San Francisco: Universiteit Gent: 137.Mertens K N, Ribeiro S, Bouimetarhan I, Caner H, Nebout N C, Dale B, de Vernal A, Ellegaard M, Filipova M, Godhe A, Goubert E, Grøsfjeld K, Holzwarth U, Kotthoff U, Leroy S A G, Londeix L, Marret F, Matsuoka K, Mudie P J, Naudts L, Pea-Manjarrez J L, Persson A, Popescu S M, Pospelova V, Sangiorgi F and van der Meer M T J, 2009. Process length variation in cysts of a dinoflagellate,Lingulodiniummachaerophorum, in surface sediments: investigating its potential as salinity proxy.MarineMicropaleontology, 70(1/2): 54-69.
Mertens K N, Dale B, Ellegaard M, Jansson I, Godhe A, Kremp A and Louwye S, 2011. Process length variation in cysts of the dinoflagellateProtoceratiumreticulatum, from surface sediments of the Baltic-Kattegat-Skagerrak estuarine system: a regional salinity proxy.Boreas, 40(2): 242-255.
Mertens K N, Wolny J, Carbonell-Moore C, Bogus K, Ellegaard M, Limoges A, de Vernal A, Gurdebeke P, Omura K, Al-Muftah A and Matsuoka K, 2015. Taxonomic re-examination of the toxic armored dinoflagellatePyrodiniumbahamenseplate 1906: can morphology or LSU sequencing separateP.bahamensevar.compressumfrom var.bahamense.HarmfulAlgae, 41: 1-24.Morales-Ramírez A, Víquez R, Rodríguez K and Vargas M, 2001. Red tide bloom produced byLingulodiniumpolyedrum(Peridiniales, Dinophyceae) in Bahía Culebra, Papagayo Gulf, Costa Rica.RevistaDeBiologiaTropical, 49(S2): 19-23.Morquecho L, Alonso-Rodríguez R and Martínez-Tecuapacho G A, 2014. Cyst morphology, germination characteristics, and potential toxicity ofPyrodiniumbahamensein the Gulf of California.BotanicaMarina, 57(4): 303-314.
Morton S L and Villareal T A, 1998. Bloom ofGonyaulaxpolygrammaStein (Dinophyceae) in a coral reef Mangrove Lagoon, Douglas Cay, Belize.BulletinofMarineScience, 63(3): 639-642.
Nakanishi K, Masao A, Sako Y, Ishida Y, Muguruma H and Karube I, 1996. Detection of the red tide-causing planktonAlexandriumaffineby a piezoelectric immunosensor using a novel method of immobilizing antibodies.AnalyticalLetters, 29(8): 1247-1258.
Nguyen-Ngoc L, 2004. An autecological study of the potentially toxic dinoflagellateAlexandriumaffineisolated from Vietnamese waters.HarmfulAlgae, 3(2): 117-129.
Ogata T, Pholpunthin P, Fukuyo Y and Kodama M, 1990. Occurrence ofAlexandriumcohorticulain Japanese coastal water.JournalofAppliedPhycology, 2(4): 351-356.
Orlova T Y, Selina M S, Lilly E L, Kulis D M and Anderson D M, 2007. Morphogenetic and toxin composition variability ofAlexandriumtamarense(dinophyceae) from the east coast of russia.Phycologia, 46(5): 534-548.
Oshima Y, Blackburn S I and Hallegraeff G M, 1993. Comparative study on paralytic shellfish toxin profiles of the dinoflagellateGymnodiniumcatenatumfrom three different countries.MarineBiology, 116(3): 471-476.
Oshima Y, Bolch C J and Hallegraeff G M, 1992. Toxin composition of resting cysts ofAlexandriumtamarense(Dinophyceae).Toxicon, 30(12): 1539-1544.
Pan X F, Zhang Y and Liu J T, 2007. Dynamic and correlative analysis of theGonyaulaxpolygrammared tide in Haizhou Gulf.MarineEnvironmentalScience, 26(6): 523-526.
Pan Y, Cembella A D and Quilliam M A, 1999. Cell cycle and toxin production in the benthic dinoflagellateProrocentrumlima.MarineBiology, 134(3): 541-549.
Paz B, Riobó P, Fernndez M L, Fraga S and Franco J M, 2004. Production and release of yessotoxins by the dinoflagellatesProtoceratiumreticulatumandLingulodiniumpolyedrumin culture.Toxicon, 44(3): 251-258.
Penna A, Battocchi C, Garcés E, Anglès S, Cucchiari E, Totti C, Kremp A, Satta C, Giacobbe M G, Bravo I and Bastianini M, 2010. Detection of microalgal resting cysts in European coastal sediments using a PCR-based assay.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 57(3/4): 288-300.
Potvin M and Lovejoy C, 2009. PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries.TheJournalofEukaryoticMicrobiology, 56(2): 174-181.
Rhodes L, Mcnabb P, de Salas M, Briggs L, Beuzenberg V and Gladstone M, 2006. Yessotoxin production byGonyaulaxspinifera.HarmfulAlgae, 5(2): 148-155.
Sako Y, Kim C H and Ishida Y, 1992. Mendelian inheritance of paralytic shellfish poisoning toxin in the marine dinoflagellateAlexandriumcatenella.Bioscience,Biotechnology, &Biochemistry, 56(4): 692-694.
Satake M, Mackenzie L and Yasumoto T, 1998. Identification ofProtoceratiumreticulatumas the biogenetic origin of yessotoxin.NaturalToxins, 5(4): 164-167.Scholin C A, Buck K R, Britschgi T, Cangelosi G and Chavez F P, 1996. Identification ofPseudo-nitzschiaaustralis(Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats.Phycologia, 35(3): 190-197.Scholin C A, Herzog M, Sogin M and Anderson D M, 1994. Identification of group- and strain-specific genetic markers for globally distributedAlexandrium(Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene.JournalofPhycology, 30(6): 999-1011.
Schwinghamer P, Hawryluk M, Powell C and MacKenzie C H, 1994. Resuspended hypnozygotes ofAlexandriumfundyenseassociated with winter occurrence of PSP in inshore Newfoundland waters.Aquaculture, 122(2): 171-179.
Shokralla S, Zhou X, Janzen D H, Hallwachs W, Landry J F, Jacobus L M and Hajibabaei M, 2011. Pyrosequencing for mini-barcoding of fresh and old museum specimens.PLoSONE, 6(7): e21252.Steidinger K A, Tester L S and Taylor F J R, 1980. A redescription ofPyrodiniumbahamensevar.compressa(Böhm) stat. nov. from Pacific red tides.Phycologia, 19(4): 329-334.Stock C A, McGillicuddy D J, Jr, Solow A R and Anderson D M, 2005. Evaluating hypotheses for the initiation and development ofAlexandriumfundyenseblooms in the western gulf of maine using a coupled physical-biological model.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 52: 2715-2744.Takano Y and Horiguchi T, 2004. Surface ultrastructure and molecular phylogenetics of four unarmored heterotrophic dinoflagellates, including the type species of the genusGyrodinium(Dinophyceae).PhycologicalResearch, 52(2): 107-116.Tang Y Z, Harke M J and Gobler C J, 2013. Morphology, phylogeny, dynamics, and ichthyotoxicity ofPheopolykrikoshartmannii(Dinophyceae) isolates and blooms from New York, USA.JournalofPhycology, 49(6): 1084-1094.
Taylor F J R and Gaines G, 1989. Dinoflagellate cyst morphology: an analysis based on laboratory observations of encystment∥Okaichi T, Anderson D M and Nemto T.RedTides:Biology,EnvironmentalScience,andToxicology. Amsterdam: Elservier: 295-296.
Tomas C R and Smayda T J, 2008. Red tide blooms ofCochlodiniumpolykrikoidesin a coastal cove.HarmfulAlgae, 7(3): 308-317.
Vila M, Giacobbe M G, Masó M, Gangemi E, Penna A, Sampedro N, Azzaro F, Camp J and Galluzzi L, 2005. A comparative study on recurrent blooms ofAlexandriumminutumin two Mediterranean coastal areas.HarmfulAlgae, 4(4): 673-695.
Wang L, Zhuang Y Y, Zhang H, Lin X and Lin S J, 2014. DNA barcoding species inAlexandriumtamarensecomplex using ITS and proposing designation of five species.HarmfulAlgae, 31: 100-113.
Wang Z F, Yu Z M, Song X X, Cao X H and Zhang Y, 2014. Effects of ammonium and nitrate on encystment and growth ofScrippsiellatrochoidea.ChineseScienceBulletin, 59(33): 4491-4497.
Wilcox D C, 1998.TurbulenceModelingforCFD. 2nd ed. CA, Canada: DCW Industries.
Wisessang S, Ogata T, Kodama M, Fukuyo Y, Ishimaru T, Saitanu K, Yongvanich T and Piyakarnchana T, 1991. Accumulation of paralytic shellfish toxins by green musselPernaviridisby feeding on cultured cells ofAlexandriumcohorticulaisolated from the Gulf of Thailand.NipponSuisanGakkaishi, 57(1): 127-131.
Yamaguchi A and Horiguchi T, 2005. Molecular phylogenetic study of the heterotrophic dinoflagellate genusProtoperidinium(Dinophyceae) inferred from small subunit rRNA gene sequences.PhycologicalResearch, 53(1): 30-42.
Yamaguchi M, Itakura S, Imai I and Ishida Y, 1995. A rapid and precise technique for enumeration of resting cysts ofAlexandriumspp.(Dinophyceae) in natural sediments.Phycologia, 34(3): 207-214.
Yasumoto T and Murata M, 1993. Marine toxins.ChemicalReviews, 93(5): 1897-1909.
Zhan A B, Hulak M, Sylvester F, Huang X T, Adebayo A A, Abbott C L, Adamowicz S J, Heath D D, Cristescu M E and MacIsaac H J, 2013. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities.MethodsinEcologyandEvolution, 4(6): 558-565.
Zhan A B and MacIsaac H J, 2015. Rare biosphere exploration using high-throughput sequencing: research progress and perspectives.ConservationGenetics, 16(3): 513-522.
Zhou M J, Li J, Luckas B, Yu R C, Yan T, Hummert C and Kastrup S, 1999. A recent shellfish toxin investigation in China.MarinePollutionBulletin, 39: 331-334.
Zonneveld K A F and Dale B, 1994. The cyst-motile stage relationships ofProtoperidiniummonospinum(Paulsen) zonneveld et dale comb. nov. andGonyaulaxverior(Dinophyta, Dinophyceae) from the Oslo Fjord (Norway).Phycologia, 33(5): 359-368.
(责任编辑:杨郁霞)
Research progress on identification of harmful dinoflagellate cysts:A review
Yang-chun GAO1, Yan-hong DONG2, Hai-tao LI2, Ai-bin ZHAN1*
1ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China;2SouthChinaSeaEnvironmentalMonitoringCenter,StateOceanicAdministration,Guangzhou,Guangdong510300,China
Harmful dinoflagellate cysts refer to cysts derived from dinoflagellates that can produce toxins and (or) cause harmful dinoflagellate blooms. So far, 18 species in 10 genera have been recorded along coasts of China seas, accounting for three quarters of the total number of harmful dinoflagellate cysts globally. These harmful dinoflagellate cysts are widely distributed along Chinese coasts. Harmful dinoflagellate cysts largely threaten marine ecosystems, aquaculture industries and even human health. Consequently, the study of diversity and distributions of harmful dinoflagellate cysts has become a hotspot in marine biology and ecology. The identification of harmful dinoflagellate cysts is crucial for sea food safety inspection and prediction of harmful dinoflagellate blooms. However, accurate identification represents a big challenge, mainly owing to limited available morphological features of harmful dinoflagellate cysts. Here we review research progress on harmful dinoflagellate cysts on Chinese coasts, including their negative impacts, diversity and geographical distributions, and species identification of harmful dinofagellate cysts. In addition, we suggest that it is nececarry to ultilize multiple methods including those based on morphology and molecular biology, as well as methods based on toxicology and reproductive biology, to accurately identify harmful dinoflagellate cysts.
harmful dinoflagellate cyst; morphological characteristics; molecular identification
2015-12-04 接受日期(Accepted): 2015-12-27
中国科学院“百人计划”项目; 南海区海洋环境质量综合评估方法[DOMEP(MEA)-01-03]
高养春, 男, 博士研究生。 研究方向: 分子生态学与入侵生物学。 E-mail: gaoyc0412@163.com
*通讯作者(Author for correspondence), E-mail: azhan@rcees.ac.cn, zhanaibin@hotmail.com
10. 3969/j.issn.2095-1787.2016.04.002