谢 伟,唐晓山,邹长伟
岭南师范学院物理科学与技术学院,广东 湛江524048
c轴取向钒酸铋铁电薄膜的制备及电学性能*
谢 伟,唐晓山,邹长伟
岭南师范学院物理科学与技术学院,广东 湛江524048
采用旋涂法在Pt/Ti/SiO2/Si衬底上制备Bi2VO5.5铁电薄膜,研究退火温度对薄膜物相结构、表面形貌、电学性能的影响.500,550,600,700 ℃退火所得薄膜均表现出c轴取向,且c轴取向度随温度升高而增加,同时薄膜的介电常数增加,介电损耗略有降低,低频色散现象略有减弱.700 ℃退火所得Bi2VO5.5薄膜剩余极化值约为1.71 μC/cm2,矫顽场为127.8 kV/cm,且薄膜在可见光区有较好的吸收,光学带隙约为2.41 eV.
化学溶液沉积法;钒酸铋;择优取向;铁电薄膜
Bi系层状钙钛矿铁电体,其结构通式为(Am-1BmO3m+1)2-(Bi2O2)2+,其中m=1~5[1].Bi4Ti3O12,SrBi2Ta2O9和BaBi4Ti4O15均属于该类铁电材料,且具备较高的极化强度和良好的抗疲劳特性,因而具有较高的研究价值和应用前景[2-4].Bi2VO5.5是最简单的Bi系层状钙钛矿结构铁电体之一,m=1时,结构式可写为:(Bi2O2)2+(VO3.5□0.5)2-,式中□代表氧空位[5].Bi2VO5.5具有较高的居里温度和较低的晶化温度,在非挥发铁电存储器领域具有潜在的应用价值.在Bi2VO5.5晶胞中,A位和(Bi2O2)2+层的Bi3+共用Bi3+位,B位为V5+,类钙钛矿层为VO3.5氧八面体,所以Bi2VO5.5晶体结构中存在固有的天然氧空位.由于类钙钛矿层中缺少A位,所以Bi2VO5.5的铁电极化方向不是沿a轴,而是沿c轴.因此,制备高度c轴取向的Bi2VO5.5薄膜有助于获得良好的铁电性能.有报道[6-9],不同课题组采用不同方法制备的Bi2VO5.5薄膜的电学性能差别较大,尤其是铁电剩余极化数值参差不齐,说明目前仍需探索制备具有优良铁电性能的Bi2VO5.5薄膜的工艺和方法.另一方面,对Bi2VO5.5材料的介电、铁电性能展开研究,可为结构更复杂的Bi层状钙钛矿结构铁电体的研究打下基础.本文采用化学溶液沉积法制备c轴取向的Bi2VO5.5薄膜,并对其物相结构、表面形貌、电学性能进行表征分析.
1.1 前驱体溶液的配制与薄膜的制备
采用乙酰丙酮氧钒(C10H14O5V)和硝酸铋(Bi(NO3)3·5H2O)作为V和Bi的来源.为了弥补退火过程中Bi元素的挥发,在称量原料时Bi(NO3)3·5H2O 需过量10%.将称量好的原料倒入30 ml乙二醇甲醚溶剂中,充分搅拌2 h,获得Bi2VO5.5前驱体溶液,陈化24 h后备用.
采用旋涂法在Pt/Ti/SiO2/Si衬底上制备薄膜,设备为KW-4A型匀胶机(中国科学院微电子研究所),匀胶速度为3000 r/min,匀胶时间为30 s.匀胶后,将薄膜置于管式炉中,分别在500,550,600,700 ℃条件下热处理1 h.随炉降至室温后取出,得到Bi2VO5.5薄膜.
1.2 薄膜表征
采用X’pet pro MRD型X射线衍射仪(荷兰帕纳科公司)对制得的薄膜进行物相结构分析,Cu Kα1辐射(λ=0.15406 nm),管压40 kV,管流40 mA.采用JSM-6330F型冷场发射扫描电子显微镜(日本电子株式会社)观察薄膜的表面形貌和测量截面厚度,发射体为钨灯丝,工作电压为15 kV.薄膜的铁电性能是采用Precision Workstation铁电测试仪(Radiant)测试,介电特性测试是用Agilent公司4284A LCR测试仪测试.在测试薄膜的电学性能之前,用溅射法在薄膜上制备Pt电极,电极为圆形,直径为0.3 mm,如图1所示.用岛津UV-3600紫外可见分光光度计测量薄膜的光吸收特性.
图1 薄膜电学性能测试的示意图Fig.1 The schematic diagram of a memory cell
2.1 薄膜的结构分析
不同温度下退火制得薄膜的X射线衍射图谱如图2所示.从图2可看出,在500 ℃退火后,薄膜已经形成了Bi2VO5.5结构;随着退火温度升高,衍射峰的强度逐渐增强,并且峰形越来越尖锐,说明薄膜的结晶度越来越高.在2θ为11.55°,23.25°,35.16°处有三个尖锐的衍射峰,分别对应正交结构Bi2VO5.5(JCPDS 42-0135)的(002),(004)和(006)晶面;在2θ=40°处的最强峰是来自于衬底中Pt(111)晶面的衍射峰.上述三个强且尖锐的衍射峰,充分说明薄膜是沿c轴方向择优生长,薄膜的c轴取向度可以用Lotgering因子半定量方法[10]计算获得:
(1)
式(1)中f是晶粒取向度;对于择优取向的样品,p=ΣI00l/ΣIhkl;对于非择优取向的样品,p0=ΣI00l/ΣIhkl,Ihkl和I00l分别代表(hkl)和(00l)晶面的衍射强度,p0是对Bi2VO5.5多晶材料计算的结果.经过计算,在500,550,600,700 ℃下退火所得薄膜的c轴取向度分别为0.68,0.82,0.88和0.95,说明c轴取向度随着退火温度升高逐渐增加.500 ℃退火获得的Bi2VO5.5薄膜已经出现c轴取向,需要注意的是,其在2θ=37.1°处有一微小的衍射峰,对应于正交结构Bi2VO5.5(JCPDS42-0135) 的(115)晶面;随着退火温度的升高,该衍射峰强度逐渐减小,直至消失.
图2 不同温度退火后所得薄膜的XRD图谱 Fig.2 The XRD patterns of the films annealed at different temperature
2.2 薄膜表面和断面的微观形貌
为比较不同温度退火后制得薄膜的表面微观形貌,拍摄了550℃和700℃退火后薄膜表面的SEM照片,如图3(a)和3(b)所示.从图3可看出,退火后薄膜的晶粒尺寸大小较为均匀,没有发现明显的差异.这可能是由于550 ℃时薄膜已经开始择优生长,使其与更高温度退火所得薄膜表面形貌的差别不大.另外,550℃和700℃的温差较小,可能对晶粒生长的影响也较小.图4是700℃退火所得薄膜的断面SEM照片.从图4可看出,Bi2VO5.5薄膜的厚度约为250 nm.
图3 退火后薄膜的表面形貌(a)550℃;(b)700℃Fig.3 SEM images of the films annealed at 550℃ and 700℃
图4 700℃退火后薄膜的断面照片Fig.4 Cross-sectional morphology of films annealed at 700℃
2.3 薄膜的介电特性和铁电特性
图5是550 ℃和700 ℃退火所得Bi2VO5.5薄膜的介电频谱.从图5可看出,Bi2VO5.5薄膜的介电常数和介电损耗均随频率的升高而降低,并且低频区域的介电常数降幅较大.当频率达到104Hz后,介电常数和损耗值趋于平稳.Kumari等也报道了类似的介电色散行为[14].这样的介电色散现象一般在具有良好离子导电性的铁电体中出现[15],一般认为是由于薄膜中的缺陷如氧空位和晶界处的界面极化所导致.在较高的频率范围内,空间电荷无法对外加电场及时作出响应,这时测试所得介电常数主要来自于薄膜的本征极化.从图5薄膜介电频谱还可看出,随退火温度升高,薄膜的介电常数增加,损耗略有降低.这是由于温度升高,晶体生长更加完整,缺陷减少所致.图6是550 ℃和700℃退火所得Bi2VO5.5薄膜的电滞回线.从图6看出,550 ℃和700 ℃退火所得薄膜的剩余极化值分别为1.52,1.71 μC/cm2,矫顽场分别是125.3,127.8 kV/cm.从这些数值可以得知,退火温度对薄膜的剩余极化值没有明显的影响,剩余极化值与文献报道[16]的采用MOCVD方法制备的Bi2VO5.5薄膜的剩余极化值较为接近.
图5 不同温度下退火薄膜的介电频谱Fig.5 Dielectric properties of thin films annealed at different temperature
图6 不同温度退火薄膜的电滞回线Fig.6 Polarization-electric field hysteresis loops of thin films annealed at different temperature
2.4 薄膜的光吸收特性
图7是700 ℃退火制得Bi2VO5.5薄膜的紫外可见吸收光谱和光学带隙拟合结果.从图7(a)可看出,薄膜在200~800 nm宽带范围内均有较好的吸收,尤其是在可见光范围内具有较高的吸光度,说明Bi2VO5.5薄膜具备作为可见光催化剂的潜力.
根据Wood和Tauc的理论,材料的吸光度、光子的能量和光学带隙有如下关系[11]:
αhυ=A(hυ-Eg)n,
(2)
式(2)中α是吸光度,h是普朗克常数,υ是频率,Eg是光学带隙,n是常数(与不同类型的电子跃迁有关).对于直接带隙半导体,n取2.(αhυ)2与hυ的变化关系如图7(b)所示.由图7(b)可知,Bi2VO5.5薄膜带隙约为2.41 eV,与文献[12-13]报道的带隙值接近.
Bi2VO5.5薄膜的物相结构、c轴取向度及电学性质与退火温度有关.随着退火温度的升高,薄膜取向度逐渐增加,同时介电常数增加,介电损耗略有降低,低频色散现象略有减弱.在实验温度550~700 ℃范围内,退火温度对Bi2VO5.5薄膜的晶粒大小影响不明显.700℃退火所得Bi2VO5.5薄膜剩余极化值约为1.71 μC/cm2,矫顽场为127.8 kV/cm,且薄膜在可见光区有较好的吸收,光学带隙约为2.41 eV.
[1] 符春林.铁电薄膜材料及其应用[M].北京:科学出版社,2009.
[2] PARK B H,KANG B S,BU S D,et al.Lanthanum-substituted bismuth titanate for use in non-volatile memories[J].Nature,1999,401:682-684.
[3] AIZAWA K J,OHTAN Y. Ferroelectric and luminescent properties of Eu-Doped SrBi2Ta2O9Films[J].Japanese Journal of Applied Physics,2007,46:6944-6947.
[4] IRIE H,MIYAYAMA M,KUDO T.Enhanced ferroelectric properties of V-doped BaBi4Ti4O15single crysta[J].Japanese Journal of Applied Physics,2001,40:239-243.
[5] XIE W,SU L,SA T L,et al.Strong red emission and electrical properties of highlyc-axis oriented Eu3+-doped Bi2VO5.5ferroelectric thin films[J].Materials Chemistry and Physics,2014,148(3):854-858.
[6] PRASAD K V R,VARMA K B R,RAJU A R,et al. Growth and ferroelectric properties of Bi2VO5.5thin films with metallic LaNiO3electrodes[J].Applied Physics Letters,1993,63:1898-1900.
[7] TSUKADA K,NAGAHAMA T,SOHMA M,et al.Characterization of epitaxial thin films of Bi2VO5.5on La-doped SrTiO3substrates prepared by coating-pyrolysis process[J].Thin Solid Films,2002,422:73-79.
[8] KUMARI N,KRUPANIDHI S B,VARMA K B R. Dielectric,impedance and ferroelectric characteristics of c-oriented bismuth vanadate films grown by pulsed laser deposition[J].Materials Science and Engineering,2007,138:22-30.
[9] GUO M,DENG H M,YANG P X,et al.The influence of annealing temperatures on the properties of Bi2VO5.5/LaNiO3/Si thin films[J].Materials Letters,2009,63:1535-1537.
[10] LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I[J].Journal of Inorganic and Nuclear Chemistry,1959,9:113-123.
[11] THAKUR S,DEVI M,SINGH K.Structural and optical properties of La and Gd substituted Bi4-xMxV2O11-δ(0.1≤x≤0.3)[J].Ionics,2014,20:73-81.
[12] CHEN X,LIU J,WANG H,et al.One-step approach to novel Bi4-xMxV2O11hierarchical hollow microspheres with high visible-light-driven photocatalytic activities[J].Journal of Materials Chemistry A,2013,1:877-883.
[13] LIU Z S,NIU J N,FENG P Z,et al.One-pot synthesis of Bi24O31Br10/Bi4V2O11heterostructures and their photocatalytic properties[J].RSC Advance,2014,4:43399-43405.
[14] KUMARI N,KRUPANIDHI S B,VARMA K B R.Structural,ferroelectric and optical properties of Bi2VO5.5thin films deposited on platinized silicon {(100) Pt/TiO2/SiO2/Si} substrates[J].Applied Physics A-Materials Science & Processing,2008,91:693-699.
[15] LU Z,BONNET J P,RAVEZ J,et al.Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic Pb2KNb4TaO15[J].Solid State Ionics,1992,57:235-244.
[16] SAKAI T,WATANABE T,CHO Y,et al.Characterization of ferroelectric property of C-Axis- and Non-C-Axis-Oriented epitaxially grown Bi2VO5.5thin Films[J].Japanese Journal of Applied Physics,2001,40:6481-6486.
Preparation and electrical properties ofc-axis oriented bismuth vanadate ferroelectric thin films
XIE Wei, TANG Xiaoshan, ZOU Changwei
SchoolofPhysics,LingnanNormalUniversity,Zhanjiang524048,China
Bi2VO5.5ferroelectricthinfilmwasdepositedonPt/Ti/SiO2/Sisubstratebychemicalsolutiondepositionmethod.Theeffectofannealingtemperatureonthephasestructure,surfacemorphologyandelectricalpropertiesofthethinfilmswerestudied.Allthethinfilmsshowedc-axisorientation,andthedegreeofc-axistextureobviouslyincreaseswithincreasingofannealingtemperature.Meanwhile,thedielectricconstantofthefilmsincreasedanddielectriclossdecreased.Theincreaseoftemperaturealsoleadstoweakeningoflowfrequencydielectricdispersion.Theremanentpolarization(2Pr)valuesforBi2VO5.5thinfilmobtainedat700oCis1.71μC/cm2,andthecoercivefieldvalueis127.8kV/cm,andtheopticalbandgapofthethinfilmis2.41eV.
chemicalsolutiondepositionmethod;bismuthvanadate;preferentialorientation;ferroelectricthinfilm
1673-9981(2016)03-0176-05
2016-03-21
国家星火计划(2015GA780058);广东省科技专项(2016A010103041);广东高校青年人才创新计划(2014KQNCX188);岭南师范学院博士专项(ZL1503).
谢伟(1984-),男,安徽合肥人,讲师,博士.
O482.3 文献识别码:A