宋小园,朱仲元,张圣微,焦玮,郝祥云
(1.临沂大学土木工程与建筑学院,276000,山东临沂;2.内蒙古农业大学水利与土木建筑工程学院,010018,呼和浩特)
气象因素对锡林河融雪径流影响的通径分析
宋小园1,2,朱仲元2†,张圣微2,焦玮2,郝祥云2
(1.临沂大学土木工程与建筑学院,276000,山东临沂;2.内蒙古农业大学水利与土木建筑工程学院,010018,呼和浩特)
以锡林河流域为研究对象,针对锡林浩特、阿巴嘎旗、林西和克什克腾旗4个国家气象站,1960—2010年的逐日气象数据和锡林浩特水文站1960—2010年的实测径流数据,利用相关分析、偏相关分析和通径分析等方法,在年时间尺度和季时间尺度上研究降水、气温、最高气温、最低气温、日照时数、潜在蒸散发和有效积温等气象因素与径流的相关性、偏相关性,并通过通径分析,确定其对径流影响的直接作用和间接作用。结果表明:在年时间尺度上,日照时数、年均气温、最低气温和最高气温与径流量的相关性不显著,其对径流的直接影响和通过其他因素对径流的间接影响也较小,不是影响径流变化的主要气象驱动因素;降水、蒸发和有效积温与径流的相关性较高,这3种因素对径流的直接影响也较大,是影响流域径流的主要气象因素。在季时间尺度上,对锡林河流域径流变化影响较大的前3种因素依然是降水、蒸发和有效积温;但不同季节、不同气象因子对流域径流影响的贡献不同,春季起主要控制作用的是有效积温,夏季和秋季起主要控制作用的是降水。
气象;径流;相关;偏相关;通径分析
寒旱区草原地表径流对气候变化的响应尤为敏感,降水、蒸发、温度等气候因子的轻微变化,都会引起地表径流系统的改变[1-5]。锡林河位于中国北方内蒙古自治区锡林郭勒盟境内,为典型的寒旱区草原,积雪和降水是该流域径流的主要补给来源,大气降水的季节变化是影响流域径流变化的主导因素[7]。每年的12月至次年3月上旬,气温处在-30°~0°之间,由于河道较浅,流域河道出现“连底冻”的现象,总共长达100多d,3月中旬以后气温才开始变暖,在太阳辐射的照射下,地表大量冰雪开始消融,由于土壤中的温度依然低于地表温度,土壤层仍然处于冻结状态,融雪水难以向土壤层入渗,导致大量融雪水完成地表初损后,迅速补充径流,形成春汛[6]。“连底冻”的产生,改变了区域水循环过程,使土壤在储水能力、地表水和地下水之间的相互转换等众多环节发生改变[8],径流的产生与其他地区不同,具有特殊性[9]。研究该区域气象因素对径流的影响,确定气象因素中影响径流的主要影响因素,为进一步研究寒旱区草原流域气候变化和人类活动对径流的贡献,提供科学依据[10-12]。目前,在气候变化对径流影响方面,主要侧重于单一气象因子对径流影响的统计分析[13-14],而忽视各影响因子之间的相互影响。事实上,气象因素是多变量间的复杂关系。本文以锡林河流域为研究区,通过通径分析来研究降水、气温、最高气温、最低气温、日照时间、潜在蒸散发和有效积温等与径流的关系,以期为流域水资源研究提供新思路。
锡林河(N 43°26′~44°08′,E 116°02′~117° 12′)发源于赤峰市克什克腾旗境内的敖伦等12座湖泊,纵贯锡林郭勒盟中部,全长205 km,河谷宽1~5 km,流域面积6 263 km2。锡林河至库尼苏曼以上为上游,流经丘陵地带,河道异常弯曲,河流呈东向西,一般河谷宽1 km,河道比降1/150~1/400。库尼苏曼以下为中下游,河水折向北流,形成河涧盆地,间或有沼泽地,河谷宽2~5 km,个别河段谷宽达8 km,河道比降1/500~1/1 000,最后注于东乌珠穆沁旗的白音淖尔湖[15]。流域多年平均气温为2.59℃,年平均有效积温为2 870℃,多年平均降水量为272mm,年蒸发量在1 500~2 700 mm,全年平均大风时间为48~81 d,3—5月大风时间占全年的40%~50%[16]。年日照时间为2 800~3 200 h,日照率64%~73%,无霜期110~130 d[17]。
气象数据资料来源于中国气象数据共享服务网(http:∥cdc.cma.gov.cn)。由于锡林河流域气象水文站点分布稀少,笔者选取锡林浩特站、阿巴嘎旗站、林西站、克什克腾旗4个气象站,1960—2010年逐日气象数据和锡林浩特水文站1960—2010年的实测日径流数据,将各气象站各年的日值(气象数据包括降水量、气温、最高气温、最低气温、风速、空气相对湿度和日照时数等)整理成季值(3—5月为春季,6—8月为夏季,9—11月为秋季)和年值(1—12月),因冬季径流量基本为零;因此,季节的相关、偏相关和通径分析选择春、夏和秋季研究。采用ArcGIS9.3软件对气象数据进行插值,用流域边界裁剪,确定各气象值面值。E0(potential evaporation)为潜在蒸发量,mm,通过彭曼公式计算[18]。将整理的流域历年气象数据值作为自变量,流域历年径流值作为因变量通过DPS14.1分别做相关、偏相关获得相关、偏相关系数,并通过逐步回归实现通径分析,具体实现方法见文献[19]。
3.1 降水、径流年内分配特征分析
对锡林河流域过去51年的降水分析可知,锡林河的降水分配与黑河[20]、开都河[21]等具有相似的规律。降水年内分配不均匀(图1),呈明显的“单峰”型:5—9月份降水占全年降水量的87.41%;10月至翌年4月,降水量之和不及全年降水量的13%,降水年内分配具有明显的集中性。流域径流的年内分配特征与降水的年内分配特征不同,径流年内分配主要集中在4—8月份,为径流连续分配最大的5个月,共占全年径流量的81.44%;每年12月到次年的2月,由于封冻,径流量基本为0,4月份径流最大,占全年径流量的33%左右,出现径流的“第一峰”。随着活动积温的累加,土壤逐渐解冻,其渗透力慢慢恢复,部分冰雪融水渗透到土壤中,地表径流逐渐减少。随着雨季的来临,从夏季开始,径流又逐渐上升,8月份出现第2次峰值,占全年径流量的13%左右。从夏季降水和径流的峰值来看,降水峰值出现在7月份,径流峰值出现在8月份,径流的变化滞后于降水,降水显然是夏季影响径流的主要气候因子。在4月份,径流占全年径流量的33%,而降水仅为全年降水量的2.7%,在春季,降水显然不是径流形成的主要原因,径流主要补给来源为冰雪融水[22-24]。
图1 锡林河降水径流年内分配Fig.1 Distribution of rainfall and runoffwithin a year
3.2 气候因子与径流的相关分析
影响积雪融化的是>0℃的气温,而且一定时段内,大于0℃的积温,对于冰雪融水起决定作用[25]。Li等[26]认为,土壤的结冻和解冻过程是由活动积温的变化来控制的,并与活动积温成指数关系[27-28]。锡林河流域冬季寒冷,积雪丰富,土壤为典型的季节性冻土(指的是冬季冻结,春季融化的土层)。为进一步研究气象因子对径流的影响,将>0℃的活动积温考虑在内,对1960—2010年气温、日照时间、降水量、潜在蒸散发、最低气温、最高气温和活动积温与径流量做Pearson相关分析。由表1可知:年均气温与日照时数、潜在蒸散发、最低气温和日积温呈显著相关;降水量与日积温显著相关;E0与年均气温、日积温显著相关;日积温与年均气温和日照时间显著相关。径流量与降水量和E0显著相关;其中,与降水量显著正相关,与蒸发量显著负相关。径流量与气象因子的相关性排序为:降水量>潜在蒸散发>日积温>年均气温>最低气温>最高气温>日照时间。从季节上来看,不同季节气候因子与径流的相关性不同(表2),夏季径流量与夏季降水存在极显著相关关系,春季积温与夏季、秋季不同,其与径流呈正相关关系,秋季潜在蒸散发与春、夏两季不同,其与径流呈正相关关系。
表1 气候因子与径流的相关分析Tab.1 Correlation analysis between climate factor and runoff
表2 降水、潜在蒸发量和积温与各季径流的相关分析Tab.2 Correlation between potential evaporation,precipitation,accumulated temperature and seasonal runoff
3.3 偏相关分析
为进一步研究径流与气象因子的关系,对其进行偏相关分析(表3和表4)。由偏相关分析可知,年径流量与年降水量存在极显著相关关系,与年潜在蒸发存在显著相关关系,径流量与气象因子的偏相关性排序为:降水量>潜在蒸散发>日积温>日照时数>年均气温>最高气温>最低气温。与相关分析一致的是,径流量与气象因子中的偏相关系数最大的前3位依然为:降水量、潜在蒸散发和日积温。从季节来看,不同季节气候因子与径流的偏相关性分析结果与相关性分析结果一致:夏季径流量与夏季降水存在极显著偏相关关系;春季积温与夏季、秋季不同,其与径流呈正偏相关关系,因为春季积温促使冬季形成的积雪融化,形成地表径流,因此,与径流呈正相关关系;夏秋两季积雪已融化殆尽,随着气温的升高,蒸发增强,随着积温的增大,径流减少。潜在蒸发量与春季、夏季、秋季径流的偏相关性不显著。
3.4 通径分析
由表5可以看出,日照时间、年均气温、最低气温和最高气温在年际变化尺度上,对径流量的直接作用都较小,其通过其他因素对径流量的间接作用之和也较小,说明它们不是影响径流量的主要气象驱动因素。降水量对径流量的直接作用最大,其通过其他因素对径流量的间接作用之和较小。潜在蒸散发与径流的负作用表现也十分明显。日积温对径流的直接作用为正值,反映冰雪融水对径流补给的影响。径流的变化除受降水和潜在蒸散发影响较大外,有效积温对其影响也较大,因为有效积温控制土壤的结冻和解冻,影响下垫面的持水能力,进而影响地表水的下渗和径流的形成过程。不同季节,有效积温对径流的作用不同,春季直接作用最大,对冰雪融水量起决定作用。
表3 气候因子与径流的偏相关分析Tab.3 Partial correlation analysis between climate factor and runoff
表4 降水、潜在蒸散发和积温与各季径流的偏相关分析Tab.4 Partial correlation between precipitation,potential evaporation,accumulated temperature and seasonal runoff
表5 各主要气象因子对年径流影响的通径分析Tab.5 Path analysis on the effects of main meteorological factors on annual runoff
径流量的年际变化影响是由气候季节性差异综合作用的结果,选择对径流有直接影响作用的前3位气象因子进一步对其进行季节通径分析。从不同季节气象因子对径流的通径分析(表6)可以看出,夏季降水对径流补给直接作用最大,明显高于春季和秋季降水对径流的补给作用,春季有效积温对径流补给作用最大,明显高于夏季和秋季。潜在蒸散发和有效积温在夏季对径流均为负作用。春季与夏季不同,积温对径流补给的直接作用最大,高于降水。秋季与夏季相似,对径流影响最大的依然是降水,其次是蒸发,再次是有效积温。这主要是因为锡林河流域冬季寒冷,积雪丰富,4月份以后气温才开始变暖,地表大量经过较长时间累积的冰雪在太阳辐射的照射下,开始消融,由于土壤中的温度依然低于地表温度,土壤层仍然处于冻结状态,下垫面不渗漏,有效积温对径流的作用凸显,积雪开始产流,甚至形成春汛[29-30]。随着活动积温的累积,土壤逐渐解冻,其渗透能力逐渐恢复,部分冰雪融水渗透到土壤中,从而对地表径流的作用减小。在夏季和秋季,积雪已融化耗尽,径流的补给主要靠降水补充。
表6 各季降水、有效积温、E0对各季径流影响的通径分析Tab.6 Path analysis on the effects of seasonal rainfall,effective accumulated temperature,and E0on seasonal runoff
1)锡林河流域径流年内分配不均匀,径流过程存在2个明显的汛期,即4月的春汛和7月的夏汛。春汛流量明显大于夏汛,这是因为春末夏初时,随着气温的升高,表层土壤及土壤上面覆盖的积雪,逐渐开始融化,冻土层厚度慢慢变薄,此时,由于冻土层依然存在,致使冻土层会像隔水板一样,继续阻碍融雪水向土壤中入渗,致使地表融化的积雪水,快速地产生地表径流。夏季时,流域季节性冻土完全消融,流域整体调蓄能力增强,此时融雪水的下渗速率达到最大,使得径流的洪峰消减,融雪水对径流的贡献相对较小,径流的洪峰值也明显小于春季洪峰值。
2)相关分析和偏相关分析表明:在气温、日照时间、降水量、潜在蒸发量、最低气温、最高气温和活动积温中,与径流存在极显著相关关系的为降水,存在显著相关关系的为潜在蒸发量。通径分析表明,全年径流过程中,降水、蒸发和有效积温对径流起主要控制作用。不同季节、不同气象因子对径流的贡献也不同,春季起主要控制作用的是有效积温,夏季和秋季则是降水。
3)锡林河流域径流与日积温的相关系数和直接通径系数,明显高于径流与温度的相关系数和直接通径系数,尤其是春季,日积温对径流的直接通径系数甚至高于径流对降水的直接通径系数。这主要是受季节性冻土(冬季冻结,春季解冻)的影响,土壤在冻结和结冻过程中,往往存在这种情况:白天气温高于0℃,黑夜气温低于0℃,日平均气温高于0℃,土壤表层发生解冻;日平均气温低于0℃,结冻的土壤又再次解冻。因此,日平均气温往往不能捕捉到季节性冻土的变化过程,从而不能很好的捕捉到径流,尤其是春季径流的变化过程。
[1] Burns D A,Klaus J,Mchale M R.Recent climate trends and implications for water resources in the Catskill Mountain region,New York,USA[J].Journal of Hydrology,2007,336(1/2):155.
[2] Hao Yongyang,Wang Yajie,Zhu Yuen,et al.Response of Karst springs to climate change and anthropogenic activities:the Niangziguan Springs,China[J].Progress in Physical Geography,2009,33(5):634.
[3] 夏军,刘春蓁,任国玉.气候变化对我国水资源影响研究面临的机遇与挑战[J].地球科学进展,2011,26(1):1. Xia Jun,Liu Chunzhen,Ren Guoyu.Opportunity and challenge of the climate change impact on the water resource of China[J].Advances in Earth Science,2011,26(1):1.(in Chinese)
[4] Liu Y,Metibier F,Gaillardet J,et al.Erosion rates deduced from seasonalmass balance along the upper Urumqi River in Tianshan[J].Solid Earth,2011,2(2):283.
[5] 陈亚宁,杨青,罗毅,等.西北干旱区水资源问题研究思考[J].干旱区地理,2012,35(1):1. Chen Yaning,Yang Qing,Luo Yi,et al.Ponder on the issues of water resources in the arid region of northwest China.[J].Arid zone geography,2012,35(1):1.(in Chinese)
[6] 王军,李和平,赵淑银,等.锡林河流域水资源评价与开发利用潜力分析研究[J].水资源与水工程学报,2011,22(4):95. Wang Jun,Li Heping,Zhao Shuyin,et al.Research on water resources assessment and potential of exploitation and utilization in Xilin River Basin[J].Journal of Water Resources&Water engineering,2011,22(4):95.(in Chinese)
[7] 胡宏昌.基于植被和冻土协同影响的江河源区水循环研究[D].兰州:兰州大学,2009:5. Hu Hongchang.The research on the hydrological cycle based on the synergistic effect of vegetation and frozen soil in the source region of Yangtze and Yellow River[D]. Lanzhou:Lanzhou University,2009:5.(in Chinese)
[8] Hayashi M,Kamp G V D,Schmidt R.Focused infiltration of snowmelt water in partially frozen soil under small depressions[J].Journal of Hydrology,2003,270(3/ 4):214.
[9] Carey S K,Woo M K.Slope runoff processes and flow generation in a subarctic,subalpine catchment[J].Journal of Hydrology,2001,253:110.
[10]Zhan Chesheng,Zeng Sidong,Jiang Shanshan,etal.An integrated approach for partitioning the effect of climate change and human activities on surface runoff[J].Water Resources Management,2014,28(11):3843.
[11]吴绍洪,黄季焜,刘燕华,等.气候变化对中国的影响利弊[J].中国人口资源与环境,2014,24(1):7. Wu Shaohong,Huang Jikun,Liu Yanhua,et al.Pros and cons of climate change in china[J].China Population Resources and Environment,2014,24(1):7.(in Chinese)
[12]王刚,肖伟华,路献品,等.气候变化对旱涝事件影响研究进展[J].灾害学,2014,29(2):142. Wang Gang,Xiao Weihua,Lu Xianpin,et al.Advances in the research on the impact of climate change on drought and flood events[J].Journal of Catastrophology,2014,29(2):142.(in Chinese)
[13]邢子强,严登华,鲁帆,等.人类活动对流域旱涝事件影响研究进展[J].自然资源学报,2013,28(6):1070. Xing Ziqiang,Yan Denghua,Lu Fan,etal.Advances in the study of anthropogenic effects on the drought and flood events[J].Journal of Natural Resources,2013,28(6):1070.(in Chinese)
[14]夏军,邱冰,潘兴瑶,等.气候变化影响下水资源脆弱性评估方法及其应用[J].地球科学进展,2012,27(4):443. Xia Jun,Qiu Bing,Pan Xingyao,et al.Assessment of water resources vulnerability under dimate change and Human Activities[J].Advances in Earth Science,2012,27(4):443.(in Chinese)
[15]Tong C,Wu J,Yong S,et al.A landscape-scale assessment of steppe degradation in the Xilin River Basin,Inner Mongolia,China[J].Journal of Arid Environments,2004,59(1):133.
[16]杨淇越,吴锦奎,丁永建,等.锡林河流域地表水和浅层地下水的稳定同位素研究[J].冰川冻土,2009,31(5):850. Yang Qiyue,Wu Jinkui,Ding Yongjian,et al.A study of isotope hydrology in shallow groundwater and stream water in the Xilin River Basin[J].Journal of Glaciology and Geocryology,2009,31(5):850.(in Chinese)
[17]李杨,贾德彬,朱仲元,等.融雪的水量平衡模型在内蒙古锡林河流域水文模拟中的应用[J].水资源与工程学报,2003,22(1):79. Li Yang,Jia Debin,Zhu Zhongyuan,et al.Hydrological simulation of Xilin he river basin in inner Mongolia using snowmelt based water balance model[J].Journal of Water Resources&Water Engineering,2003,22(1):79.(in Chinese)
[18]刘小莽,郑红星,刘昌明,等.海河流域潜在蒸散发的气候敏感性分析[J].资源科学,2009,31(9):1470. Liu Xiaomang,Zheng Hongxing,Liu Changming,et al. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin[J].Resources Science,2009,31(9):1470.(in Chinese)
[19]宋小园,朱仲元,刘艳伟,等.通径分析在SPSS逐步线性回归中的实现[J].干旱区研究,2016,33(1):108. Song Xiaoyuan,Zhu Zhongyuan,Liu Yanwei,et al.Size analysis were implemented by stepwise linear regression in SPSS[J].Arid zone research,2016,33(1):108.(inChinese)
[20]郭巧玲,杨云松,畅祥生,等.1957—2008年黑河流域径流年内分配变化[J].地理科学进展,2011,30(5):550. Guo Qiaoling,Yang Yunsong,Chang Xiangyun,et al. Annual variation of Heihe River runoff during 1957- 2008[J].Progress in Geography,2011,30(5):550.(in Chinese)
[21]薛杰,李兰海,李雪梅,等.开都河流域降水与径流年内分配特征及其变化的同步性分析[J].干旱区资源与环境,2014,28(12):99. Xue Jie,Li Lanhai,Li Xuemei,et al.Annual distribution of precipitation and runoff and the synchronicity of their variations in the Kaidu river basin[J].Journal of Arid Land Resources and Environment,2014,28(12):99.(in Chinese)
[22]段超宇.基于SWAT模型的锡林河流域融雪径流模拟研究[D].呼和浩特:内蒙古农业大学,2014:51. Duan Chaoyu.SWAT-Based modeling on snowmelt-runoff in Xilinhe Basin[D].Inner Mongolia Agricultural University,2014:51.(in Chinese)
[23]杨立哲,钱虹,郝璐.锡林河近50年径流变化特征及其影响因素分析[J].草业科学,2015,32(3):303. Yang Lizhe,Qian Hong,Hao Lu.Analysis of runoff variations and impact factors in Xilinhe River basin in recent 50 year[J].Pratacultural science,2015,32(3):303.(in Chinese)
[24]宋小园,朱仲元,张圣微,等.锡林河流域气候变化特征诊断分析[J].干旱区资源与环境,2016,30(4):151. Song Xiaoyuan,Zhu Zhongyuan,Zhang Shengwei,et al. The diagnosis of climate change characteristics in Xilinhe River basin[J].Journal of Arid Land Resources and Environment,2016,30(4):151.(in Chinese)
[25]李雪梅,张飞云,尚明,等.天山南北坡气象因子对出山口径流影响通径分析:以开都河和玛纳斯河流域为例[J].资源科学,2012,34(4):652. Li Xuemei,Zhang Feiyun,Shang Ming,et al.Path analysis on impacts of meterological factors on runoff from Tianshan Mountains:a case study on Manas River and Kaidu River Watersheds[J].Resources Science,2012,34(4):652.(in Chinese)
[26]Li L H,Simonovic SP.System dynamicsmodel for predicting floods from snowmelt in North American prairie watersheds[J].Hydrological Processes,2002,16:2645.
[27]Li L H,Simonovic S P.System dynamicsmodel for predicting floods from snowmelt in North American prairie watersheds[J].Hydrological Processes,2002,16(13):2645.
[28]Simonovic SP,Li L H.Sensitivity of the Red River Basin flood protection system to climate variability and change[J].Water Resources Management,2004,18(2):89.
[29]赵宏瑾,朱仲元,王喜喜,等.不同生育期榆树净光合速率对生态因子和生理因子的响应[J].生态学报,2016,36(6):1645. Zhao Hongjin,Zhu Zhongyuan,Wang Xixi,et al.Effect of ecological factors and physiological factors on the net photosynthetic rate of Ulmuspumila at various growth stages[J].Acta Ecologica Sinica,2016,36(6):1645.(in Chinese)
[30]段超宇,张生,李锦荣,等.基于SWAT模型的内蒙古锡林河流域降水-径流特征及不同水文年径流模拟研究[J].水土保持研究,2014,21(5):292. Duan Chaoyu,Zhang Sheng,Li Jinrong,et al.Analysis on rainfall-runoff characteristics and simulation of the different hydrologic year runoff of Xilinhe River in Inner Mongolia based on SWATModel.[J].Research of Soil and Water Conservation,2014,21(5):292.(in Chinese)
Path analysis about the impacts of atmosphere factors on snow-melt runoff of Xilin River
Song Xiaoyuan1,2,Zhu Zhongyuan2,Zhang Shengwei2,Jiao Wei2,Hao Xiangyun2
(1.School of Civil Engineering and Architecture,Linyi University,276000,Linyi,Shandong,China;2.Hydraulics and Civil Engineering College,Inner Mongolia Agricultural University,010018,Hohhot,Inner Mongolia,China)
[Background]Surface runoff of cold and arid regions is particularly sensitive to climate change,climate factors such as precipitation,potential evaporation,temperature of the slight change,can cause the change of surface runoff system.At present,the impacts of climate change on runoff,mainly were focused on single statistical analysis on the impact of meteorological factors on runoff,and ignoring the mutual influences among the impact factors.In fact,the complicated relationship between meteorological factors is multivariate.[Methods]Taking Xilin River basin as research target,the relationship between runoff and varied factors of precipitation,average temperature,highest temperature,lowest temperature,sunshine duration,potential evaporation and effective accumulated temperature were studied on yearly time-scale and seasonally time-scale by the method of correlation,partial correlation and path analysis,and their direct and indirect impacts on the runoff were determined by path analysis.Thedata were obtained from 4 national weather stations in 1960—2010,one weather station is Xilinhot station in the area,and other three are Abaga,Linxi and Keshiketeng stations near the area.The runoff data were from Xilinhot hydrometric station measured in 1960—2010.[Results]There were two obvious flood seasons of runoff process in Xilin River,they were April spring flood and the summer flood in July.The correlations between runoff and factors of sunshine duration,annual average temperature,minimum temperature and maximum temperature in yearly time-scale were insignificant.Both the direct effects and the indirect effects through other factors on the runoff were also little,thus they were not the main meteorological driving factors affecting the runoff.The correlation between runoff and precipitation,potential evaporation,effective accumulated temperature was highly significant,and the direct effects of them on runoff was high,therefore they were the main factors affecting on the runoff in yearly time-scale. On the seasonally time-scale,the top 3 factors impacting runoff were also potential evaporation,rainfall and effective accumulated temperature.Different weather factors contributed differently to the runoff of Xilin River in different seasons;the main control factor was effective accumulated temperature in spring,while in summer and autumn the main atmosphere control factor was precipitation.Due to the influence of seasonal frozen soil,the correlation coefficient and direct path coefficient between runoff and accumulated temperature was significantly higher than the those between runoff and temperature,especially in the spring,the direct path coefficient between runoff and accumulated temperature even was higher than that between runoff and precipitation.[Conclusions]The direct correlation between runoff and atmospheric variables can be determined by path analysis in the study of relative importance of each climatic factor,thereby determining the impacts of those factors on runoff change and providing a reliable basis for decision-making.
atmosphere;runoff;correlation;partial correlation;path analysis
K903
A
1672-3007(2016)05-0074-08
10.16843/j.sswc.2016.05.010
2015- 06- 23
2016- 01- 23
项目名称:国家自然科学基金“内蒙古典型草原水文过程及其扰动与触发草地退化的水文临界条件实验于模拟研究”(51269014);内蒙古自治区自然科学基金“天然榆树疏林草地蒸散发及其与环境因子的关系研究”(2013MS0607)
宋小园(1986—),女,博士,讲师。主要研究方向:干旱区草原流域生态环境。E-mail:yuanxiaosong123@126. com
†通信作者简介:朱仲元(1956—),男,教授,博士生导师。主要研究方向:水文水资源与天然植被需水。E-mail:nmgzzy@ tom.com