国晓春,卢少勇,*,谢平,陈隽,刘晓晖
1.中国环境科学研究院环境基准与风险评估国家重点实验室国家环境保护湖泊污染控制重点实验室洞庭湖生态观测研究站,北京100012
2.中国科学院水生生物研究所东湖湖泊生态系统试验站,武汉430072
3.山东师范大学地理与环境学院,济南250014
微囊藻毒素的环境暴露、毒性和毒性作用机制研究进展
国晓春1,卢少勇1,*,谢平2,陈隽2,刘晓晖3
1.中国环境科学研究院环境基准与风险评估国家重点实验室国家环境保护湖泊污染控制重点实验室洞庭湖生态观测研究站,北京100012
2.中国科学院水生生物研究所东湖湖泊生态系统试验站,武汉430072
3.山东师范大学地理与环境学院,济南250014
微囊藻毒素(MCs)是富营养化淡水水体中蓝藻的爆发性繁殖产生的最常见的藻毒素,因其分布广、结构稳定、毒性大引起了科学界的广泛关注。本文系统梳理了微囊藻毒素在我国水体中的污染现状和典型毒性效应及毒性作用机制。另外,针对目前藻毒素研究的不足提出了建议,可为有效降低环境中微囊藻毒素的潜在安全风险及深入研究其生态毒性效应提供支持。
微囊藻毒素;环境暴露;毒性效应;致毒机制
国晓春,卢少勇,谢平,等.微囊藻毒素的环境暴露、毒性和毒性作用机制研究进展[J].生态毒理学报,2016,11(3):61-71
Guo X C,Lu S Y,Xie P,et al.Environmental exposure,toxicity and toxic mechanism of microcystins:A review[J].Asian Journal of Ecotoxicology, 2016,11(3):61-71(in Chinese)
由淡水水体富营养化引起的蓝藻水华以及与之相关的藻毒素污染在全球范围内被广泛报道。蓝藻异常繁殖不仅破坏水体的水文化学特性以及光照,产生异臭异味物质,使水质恶化,水中溶解氧减少,水体生物的多样性降低,严重破坏水生生态系统平衡,更为严重的是蓝藻细胞破裂后能够产生大量的藻毒素对动物和人类的饮用水安全构成严重的威胁。过去几十年,世界各地水库、河流、湖泊等水体因爆发蓝藻水华使动物和人因蓝藻毒素中毒的事件频繁发生[1]。
在已发现的蓝藻毒素中,微囊藻毒素(MCs)在全球淡水水体中分布最广、出现频率最高、毒性效应最严重,因而得到了普遍的研究,其对环境和人类健康的危害已成为全球关注的重大环境问题之一。大量的研究报道MCs可以在器官中吸收、运输和累积,引起水生动物和哺乳动物的中毒和死亡[2]并对人类健康造成潜在威胁[3]。水体中的MCs可以通过水生生物的呼吸作用(鳃)、皮肤接触和食物摄取等途径进入体内,并经过肠道吸收、血液循环以及体液循环分布于机体的各个部位。双壳类动物,比如蚌类,由于其滤食或者舔食特性而更容易积累悬浮或附着在藻类以及浮游动物中的微量MCs,即通过生物浓缩的方式积累MCs。鱼类对MCs的摄食主要通过2种方式,一是植食性鱼类(如罗非鱼)和滤食性鱼类(如鳙、鲢)等直接吞食产MCs的藻类,经过肠道的消化吸收使得MCs在机体内运输累积[4]。另一方面,其他食性的鱼类则还可通过捕食被MCs污染的水生生物而被染毒。
一般认为藻毒素进入人体的主要途径包括:慢性摄入被污染的饮用水;水产品、蔬菜等的食物摄入;游泳、洗澡等皮肤接触污染水;静脉途径(例如血透析)以及通过鼻粘膜吸入;蓝藻营养品摄入等。有关蓝藻对人类毒害作用的事件由来已久[5],引起这些健康事件的毒素涉及很多,但以MCs最为常见。国内外已有的流行病学调查显示饮用水中的MCs可能是我国东部地区原发性肝癌高发病率的重要危险因素之一,并与多种肿瘤的发病率,大肠癌发病率以及胃癌死亡率上升等均有相关性[6-7]。1996年2月,在巴西发生了最严重的人类中毒事件,由于血液透析用水被MCs污染,导致126例患者出现急性肝脏损伤症状,60例患者死亡[8]。最近的研究中,Chen等[9]和Li等[10]首次检测出在慢性毒素暴露条件下人体血液中存在MCs,并结合血清生化学结果证明肝脏损伤的存在,是迄今为止蓝藻毒素通过自然染毒途径对人类健康产生影响的最直接的证据。本文综述了微囊藻毒素典型毒性效应及毒性机制2个方面的研究现状,为进一步研究蓝藻水华的生态毒理提供信息。
微囊藻毒素(microcystins,MCs)是淡水水体中出现频率最高、分布最广、造成危害最严重的一类具有强烈肝毒性的环肽毒素[11],其主要由微囊藻属(Microcystis)、鱼腥藻属(Anabaena)、念珠藻属(Nostoc)、束丝藻属(Aphanizomenon)以及颤藻属(Oscillatoria)等产生[12]。MCs是蓝藻的次生代谢产物,其通过非核糖体途径在细胞内合成,并在细胞破裂释放后表现出毒性[13]。光照、营养盐、微量元素、盐度、温度、pH等环境因素均能影响MCs的产生,其中光照强度和营养盐的影响作用最大[14-15]。
图1 微囊藻毒素的结构通式:环(-D-Ala1-L-X2-D-Masp3-L-Z4-Adda5-D-Glu6-Mdha7)
微囊藻毒素是单环七肽化合物,其结构通式如图1所示。MCs的特征结构为5号位的Adda基团,其结构为3-氨基-9-甲氧基-2,6,8-三甲基-10-苯基-4(E),6(E)-二烯,是MCs生物活性表达所必需的基团。此外,MCs的7个氨基酸还包含7号位Mdha(N-甲基脱氢丙氨酸,N-methyldehydroalanine)和2号、4号位的2个可变的L-氨基酸[16]以及3个D型氨基酸-1号位丙氨酸(alanine)、3号位MeAsp (也称为Masp)(赤-β-甲基天冬氨酸,erythro-β-methylaspartic acid)和6号位谷氨酸(glutamic acid)。虽然MCs的结构变异在各氨基酸残基上都能够发生,但其最为常见的变异主要发生在2号、4号位的2个可变的L-氨基酸X和Z,以及MeAsp和Mdha残基的甲基化水平[17]。至今已发现的MCs的异构体有100多种[18],MC-LR、MC-RR和MC-YR是其中含量较多,毒性较大且分布较为普遍的。
自然界中水华暴发时,若无外来影响使其迅速溶解,水体中的毒素含量至多只有0.1~10 μg·L-1,而细胞内的毒素则会高出几个数量级[19]。大型湖泊、河流中蓝藻释放的藻毒素可被大量水体稀释,但大规模蓝藻水华溶解时,就会使毒素达到较高浓度,造成潜在危害。
我国是一个湖泊众多的国家,20世纪90年代以来,蓝藻水华暴发的面积、强度以及藻毒素含量均在大幅度增长,由此带来的环境和生物安全问题日益引起关注。这其中,以江苏太湖、安徽巢湖、云南滇池的蓝藻水华污染最为严重。此外,长江、黄河、松花江中下游等主要河流以及鄱阳湖、武汉东湖、武汉莲花湖、上海淀山湖、三峡库区等淡水湖泊、水库中也都相继发生了不同程度的蓝藻水华污染并检测到了MCs的存在[20]。Song等[21]报道太湖五里湖和梅梁湾表层水最大胞外MCs含量分别为2.71和6.66 μg·L-1。Shen等[22]于太湖梅梁湾的研究显示,微囊藻毒素随时间和营养盐水平的不同有很大差异,胞内毒素最高可达97.32 μg·g-1干藻。Wang等[23]在太湖贡湖湾检测的表层水MCs组成以MCLR和MC-RR为主,胞外MC最大含量为0.391 μg· L-1,胞内MC最大含量可达35.418 μg·L-1。徐海滨等[24]对江西鄱阳湖的调查显示,水体微囊藻毒素最大为1 036.9 pg·mL-1,同时发现鱼体内有毒素积累。王红兵等[25]曾检测到上海淀山湖水体中MCs浓度最高可达55.4 ng·mL-1。蔡金傍等[26]对华北地区某水库进行为期1年的监测发现,胞内胞外MCs的峰值出现在夏秋季,最高可达5.6288 μg·L-1。2005年对北京市重要饮用水水源地官厅水库、密云水库和怀柔水库水源水样进行藻毒素调查发现,在藻类的高发季节,3个水库水体中均检出MCs,其中官厅水库7月份MCs最高值达到20 μg·L-1[27-28]。广东省典型供水水库和淡水湖泊微囊藻毒素分布广泛,毒素组成以MC-RR为主,水库微囊藻毒素含量在0~0.919 μg·L-1[29]。杨希存等[30]对秦皇岛洋河水库的调查显示微囊藻毒素总含量为0.13~0.93 μg·L-1。周学富等[31]在原发性肝癌高发地区江苏泰兴等地的许多沟塘中检出大量的MCs,河水、沟塘水和浅井水内MCs的平均含量为36 ng·L-1、29 ng·L-1和25 ng·L-1。我国厦门市同安地区水样中MCs的阳性检出率高达77.5%,池塘水和水库水中MC的最高检出值分别为351 ng·L-1和876 ng·L-1[32]。
除天然水体及水库源水中普遍检测出MCs外,饮用水也存在MCs污染。世界卫生组织(WHO)规定饮用水中MC-LR含量的安全指导值为1.0 μg· L-1[33],目前我国也已经采用此指导值作为饮用水标准。国内相关研究表明,包括上海、厦门、无锡、海门、昆山及郑州等在内的部分城市自来水厂出水样品中能检测出MCs,部分样品最大浓度接近甚至超过安全限值(1.0 μg·L-1)[34-36]。
3.1 肝脏毒性
目前已确定的MCs的同分异构体已有100多种[18],其主要作用于肝脏,有关其在生物体体内及体外的肝毒性研究最为详尽[37-38]。研究表明无论经腹腔注射或者口服灌胃,MCs均能引起实验动物的肝脏病变[39]。室内实验结果显示,小鼠[40]和大西洋鲑鱼[41]经染毒后,MCs均主要积累在肝脏;野外调查结果显示,无论在无脊椎动物如蚌、螺、虾[42]还是在鱼类[43],MCs均在肝脏中的累积量最多。MCs的亲肝脏性主要取决于其通过细胞内的胆汁酸转运系统以及有机阴离子转运多肽(Oatps)转运机制主动运输进入细胞[44],胆汁酸转运系统以及Oatps的器官表达特异性导致MCs转运及积累具有亲器官性。Fischer等[45]用非洲爪蟾卵母细胞研究了多种Oatps对MC-LR的转运,结果发现转运MC-LR效能较高的主要是大鼠肝脏Oatp1b2、人体肝脏OATP1B1以及OATP1B3,这表明MCs具有亲肝脏性。同时肝脏是MCs与GSH结合进行I、II相代谢解毒的中心[46-49],因而也是MCs毒性的靶器官[50],受损最严重。此外,动物实验表明,MCs不仅是潜在的肝肿瘤促进剂,同时还可能是肝癌的启动剂[51]。
He等[52]以大鼠为研究模型,进行了长期低剂量暴露于MC-LR的代谢组学研究,结果表明MC-LR对肝脏代谢的干扰与营养物质的吸收抑制有关,因为肝脏中多达12种氨基酸含量显著下降,而这些氨基酸在回肠中含量相应上升。MC-LR显著干扰了肝脏中酪氨酸的合成和分解代谢,干扰了胆碱3条主要代谢通路,通过抑制谷胱甘肽合成以及促进谷胱甘肽与MC-LR结合导致肝脏谷胱甘肽耗竭,并阻碍了肝脏核苷酸的从头合成。
流行病学研究发现MCs长期暴露严重危害肝脏功能。Ueno等[53]推测长期饮用MCs污染的水与我国原发性肝癌发病率的上升有关。1996年巴西发生了肾透析用水被MCs污染,导致126例患者出现亚急性肝毒性症状,约60例患者死亡的严重事故,免疫分析表明患者的肝脏和血清中均存在高浓度的MCs[54],这也是世界上首次关于MCs直接引起人群肝损伤并致死的报道。此外,关于通过饮用水和食用水产品方式长期慢性暴露于MCs的巢湖渔民[9]的相关研究显示,指示肝脏损伤的生化指标出现显著升高,并且在受试者血浆样品中检测到的MCs与这些指标具有显著相关性,以上结果暗示了MCs对人体的肝脏毒性。
3.2 肾脏毒性
动物体的肾脏是MCs作用的另一重要靶器官,其在MCs的代谢和排泄中起着重要的作用,MCs通过与肝细胞类似的转运机制被转运至肾小管细胞内,从而对肾脏造成损伤[55]。野外及室内急性毒性实验显示,生活于微囊藻爆发水体的鳙、鲢;腹腔染毒的鲢、虹鳟;以及口腔饲喂的鲤,均表现出MCs引起的肾小管和肾小球细胞坏死、溶酶体增生、细胞核固缩以及退行性病变等,这些现象都显示在微囊藻毒素的毒性作用下,细胞开始出现了自噬、凋亡甚至坏死的现象[56]。放射自显影研究显示,动物体经MC-LR染毒后,MC-LR在肾脏中有较高的含量,并且主要位于肾皮质区域内的肾细胞核内[57]。MCs可以引起哺乳动物的肾脏细胞损伤。组织学研究发现,小鼠经注射染毒后,肾小球的管腔增大并伴有大量的红细胞,毛细血管簇被破坏,红细胞减少,远曲小管和近曲小管的管腔也表现出增大的现象,其上皮细胞脱落或消失,细胞质中出现液泡并且细胞间隙中浸润有淋巴细胞,说明在该组织中有坏死现象产生;而凋亡小体的产生、肌动蛋白丝的破坏以及其他细胞形态学上的改变说明微囊藻毒素引发了肾脏细胞的凋亡[58]。此外,离体灌注实验表明,MCs可以改变肾脏的血管阻力、肾小球率过滤和灌注压等一系列功能指标[59]。
3.3 生殖毒性
MCs具有显著的生殖及胚胎发育毒性。雌、雄青鳉鱼30 d低剂量暴露实验显示,MC-LR能够造成雄鱼的睾丸损伤,在细精管出现大面积的溶解性区域,指示趋向凋亡的异常细胞增殖过程有所增加。MC-LR同时对卵巢有明显的影响,特别是使性腺组织萎缩,降低卵黄含量[60]。斑马鱼慢性染毒实验发现,肝脏卵巢、睾丸均有显著的组织学损伤,孵化率和性腺的17β-雌二醇含量均显著降低并且发现Bcl-2转录水平的显著下调[61]。急性毒性试验显示,MC-LR染毒后雌性斑马鱼卵巢出现显著的组织学损伤并且呈现出时间剂量依赖关系,同时检测到MDA含量,抗氧化酶CAT、SOD和GPX酶活性和转录水平的升高[62]。雄性大鼠腹腔注射染毒实验发现,藻毒素粗提物能够造成雄鼠的睾丸损伤,精子的运动能力和生存发育能力下降,生精小管内精子的质量降低[63]。针对铜锈环棱螺的野外调查研究发现,性腺是MCs除肝脏外的第二个靶器官[64],并且可以从母代传递给子代,对子代的发育造成危害。妊娠孕鼠腹腔注射染毒实验显示不同剂量的MCLR(4~62 μg·kg-1)都能够造成胎盘屏障的损伤,导致胎盘细胞水肿、变性以及间质疏松[65]。MCs除了对睾丸和卵巢有直接的毒性作用外,还可以通过损伤下丘脑-垂体-性腺(HPG)轴和肝脏来间接地作用于性激素。Chen等[66-67]研究发现,MC-LR处理后睾酮含量减少而LH和FSH的水平升高,LH和FSH的分泌受到了睾酮的负反馈调控。在雌性斑马鱼,MCs同样干扰类固醇合成基因和HPG轴上性激素的含量,导致卵泡发育、卵母细胞成熟和排卵受到抑制[68]。
斑马鱼胚胎染毒实验发现,经不同浓度的MCLR处理后斑马鱼胚后发育受到影响,并且幼鱼的存活率下降[69]。此外,Bu等[70]研究发现藻毒素提取物会导致孕鼠的体重下降,胎儿的重量、体长以及尾巴长度均下降,还会出现胎鼠尾巴卷曲的情况。
3.4 神经毒性
1996年,巴西血液透析MCs素中毒事件的大部分病人都伴有头晕、头痛、恶心、呕吐、昏睡、视觉障碍、眼盲、耳鸣、耳聋、癫痫等一系列的神经毒性症状。进一步的研究显示,MCs可经由有机阴离子转运多肽(Oatps)通过血脑屏障转运至脑组织中引起神经毒性病症[71]。怀孕SD大鼠10 μg·kg-1体重MCLR的暴露实验显示,前脑超微结构稀疏,内质网肿胀,且线粒体肿胀[72]。MC-LR暴露后可以引起海马区显著的组织和结构损伤以及严重的氧化性损伤[73]。MCs能够引起神经性生理功能的改变,比如鱼类的游泳能力(平均速度、活动百分率)在低MCRR的暴露条件下增加,而在高的暴露条件下降低[74]。此外,MCs还可以引起生物体行为的变化。0.1 μg·L-1MC-LR暴露24 h后,线虫的身体弯曲频率和头部鞭打频率显著降低[75]。水迷宫测试实验显示,MC-LR暴露3 d后,大鼠出现显著的长期逃避延迟并且发现其进入月台区域的频率较低[73,76]。
MCs可能是通过影响脑组织中与细胞骨架[72,77]、能量代谢、信号转导和氧化应激等功能相关的蛋白的表达而对神经系统发育与功能造成损害,并可能进一步引发相关的神经退行性疾病[73,78-79]。
3.5 其他毒性
MCs除了具有强烈的肝脏和肾脏毒性,还表现出一定的遗传毒性和免疫毒性[80]。
大量的研究表明MCs可以通过损伤DNA、染色体和基因等遗传物质,对机体产生危害。MCs可诱导小鼠肝脏、仓鼠幼体肾脏细胞、小鼠胚胎纤维原细胞、原代培养的大鼠肝细胞、人肝癌细胞以及人外周血淋巴细胞的DNA损伤。细胞体外微核试验显示MCs能明显引起染色体损伤,并且呈现良好的剂量-反应关系[81]。Zhan等[82]应用人类淋巴母细胞TK6研究MC-LR的体外遗传毒性的分子机理中显示MC-LR可导致TK6细胞tk位点杂合性丢失。
目前关于MCs的免疫毒性研究主要集中于其对免疫细胞和免疫分子的影响两方面。研究表明低剂量MCs暴露可导致小鼠免疫抑制[83]。另外,体外和体内动物实验结果显示,MC-LR染毒能够降低小鼠NK细胞对YAC-1细胞的杀伤活性。Chen等[84]的体外研究结果表明不同剂量MC-LR处理后,巨噬细胞的NO产生量减少并且IL-1ß、GM-CSF、iNOS、IFN-r和TNF-n的表达降低。动物实验证明MCs对细胞因子的表达具有调节作用[85]。此外,Yea等[86]的研究结果也表明MCs对小鼠淋巴细胞功能的抑制作用是通过降低IL-2mRNA的稳定性,MCs对免疫系统多个方面、多个层次的功能显示出明显的抑制作用[87]。
4.1 有机阴离子转运多肽转运机制
微囊藻毒素不易通过被动运输方式通过细胞膜,只能依靠相应载体的运输进入细胞。有机阴离子转运多肽类(organic anion transporting polypeptides,简称OATP)的蛋白家族能够介导对于不依赖钠离子的两性有机化合物的吸收,如胆汁盐类、有机阴离子染料、甾类和甾类轭合物、药物、不同的多肽类以及毒素等[88]。OATP家族有许多成员,到目前为止研究发现OATP家族成员有:OATP1、OATP2、OATP3、OATP4、OATP5以及OATP6。不同的OATP在人或哺乳动物的组织和器官中具有不同的分布,而不同的OATP对于不同种类的微囊藻毒素的吸收也具有特殊性。研究显示,OATP在肝脏、脑、肾脏、肠道、心脏以及生殖腺中均有不同的表达,这也被认为是MCs之所以具有较为明显的器官选择性毒性的重要原因[89-94]。
4.2 抑制蛋白磷酸酶活性
微囊藻毒素在经过相应载体的运输作用进入细胞后,能够引起细胞产生一系列的反应,从而改变细胞正常的内部环境,进而发挥对细胞的毒性作用。MCs代表性的致毒机理为蛋白磷酸酶抑制。MCs进入细胞后,MeAsp残基首先通过非共价结合作用抑制丝氨酸/苏氨酸蛋白磷酸酶1和2A(简称PP1/ PP2A)的活性,随后,MCs的Mdha基团与PP1和PP2A的半胱氨酸残基共价结合,进而导致PP1和PP2A不可逆的改变[95]。就是通过这种抑制作用造成了细胞内多种蛋白的磷酸化和去磷酸化失衡,细胞内一系列的生化过程发生紊乱,最终导致细胞的损伤。
研究表明,MCs通过抑制PP1和PP2A的活性,从而抑制单链核苷酸剪切修复(nucleotide excision repair,即NER)和DNA双链断裂修复(double-strand breaks,即DSB)这2种通过非同源末端连接(non-homologous end joining,即NHEJ)方式来修复DNA的通路[96-97]。有研究发现微囊藻毒素能够促进肿瘤的生成,而这可能与其抑制PP2A进而对细胞周期产生影响有关。Takumi等[98]的研究发现MC-LR可能通过抑制PP2A来激活Akt,并造成Akt下游靶蛋白GSK-3βS激酶的磷酸化而失活。GSK-3β激酶的失活能介导β-catenin的磷酸化并能引起该蛋白向核内的转运,β-catenin在核内的聚集可以通过促进一系列基因的表达而引起细胞增殖和分化。此外,MCs还可以通过影响微管相关蛋白tau和小热休克蛋白27(heat shock protein27,即HSP27)两类蛋白的磷酸化而对细胞骨架造成破坏[99-100]。同时,PP2A被MCs抑制与p53、Bcl-2家族蛋白的表达以及钙调蛋白激酶II(简称CaMKII)的调控诱导的细胞凋亡密切相关[101-103]。
4.3 诱导细胞内氧化应激
相关的研究显示,氧化损伤是MCs毒性作用的另一重要机制。在正常生理状态下,机体活性氧(ROS)的产生和抗氧化系统对活性氧的消除存在着动态的平衡。超氧化物歧化酶(SOD)和过氧化氢酶(CAT)分别作用于过氧根离子(O-2)和过氧化氢(H2O2);谷胱甘肽过氧化物酶(GPx)则主要消除过氧化氢和脂质过氧化产物;氧化型谷胱甘肽(GSSG)在谷胱甘肽还原酶(GR)作用下NADPH供氢还原为还原型谷胱甘肽(GSH),以维持细胞内充足的GSH水平。同时,抗氧化系统还包括许多其他的抗氧化物质,如GSH,维生素A、C、E以及胡萝卜素等。GSH的合成又通过其自身对r-谷氨酰半胱氨酸合成酶(γ-GCS)的反馈抑制来调控。细胞的功能状态取决于ROS与抗氧化能力的平衡[104],当抗氧化系统活性下降或者活性氧产物增加时,即发生氧化损伤。大量的体外和原位系统实验表明MCs能够引起机体产生高浓度的活性氧,并产生由脂质过氧化(LPO)所带来的氧化损伤,破坏细胞膜的结构与功能,导致过氧化产物丙二醛(MDA)的产生[105],引起机体内抗氧化防御系统的变化。另外,MCs通过诱导细胞活性氧产生和氧化应激,进而导致细胞凋亡。MCs诱发细胞内ROS含量过量上升,导致肝细胞脂质过氧化、巯基状态改变以及酶活性抑制。加上细胞磷酸化平衡和细胞信号转导功能失调,从而改变了肝细胞膜的结构和通透性并损伤内质网等细胞内膜系统,造成细胞骨架结构重排和细胞核损伤,引发细胞膜发泡,并由此导致了细胞凋亡。McDermott等[106]率先报道了MC-LR能诱导各种类型哺乳动物细胞凋亡,Chen等[107]则系统研究了MCs诱导小鼠肝细胞凋亡的分子基础,提出了MCs诱导的细胞凋亡由线粒体介导的观点。近年来的研究也发现,与细胞增殖和癌变有关的原癌基因、抑癌基因参与了MCs诱导的细胞凋亡过程。
4.4 诱发DNA损伤
微囊藻毒素侵入机体后,基于抑制PP2A和产生ROS这2种生理过程,通过诱导DNA突变、损伤DNA结构、抑制DNA修复这3种方式诱发DNA损伤。Zegura等[108]的研究发现,细胞暴露于微囊藻毒素-LR 8 h后,氧化嘧啶开始修复,但氧化嘌呤并未同时得到修复,如果这种嘌呤的氧化损伤没有在DNA复制之前得到修复,就会导致DNA中的GCA得到转化突变。此外,大量实验证明,微囊藻毒素不仅直接影响细胞核的形态,其诱导产生的ROS,同样作用于DNA结构。Repavich等[109]发现,MCs可以诱导人体淋巴细胞染色体断裂,并呈剂量相关性。另有研究则表明MC-LR导致人体血淋巴细胞的凋亡和DNA链断裂现象[110]。除了直接损伤DNA,微囊藻毒素还会抑制DNA修复过程,进一步增强促突变、促癌效果。Lankoff等[111]发现,用MC-LR处理后的人类成胶质瘤细胞MO59K及其非同源的MO59J细胞并未得到同时修复,并且双链修复系统的关键酶DNA-PK的活性被抑制。
图2 微囊藻毒素生物毒性作用典型机制
日趋严重的富营养化污染已经导致我国成为蓝藻水华频发的地区,蓝藻水华衍生污染物微囊藻毒素的污染已成为全球性环境问题,其对自然界中的多种生物有着严重的毒性作用,目前对于其环境暴露水平和毒性效应的研究已取得阶段性的成果,但是以下几个方面以后应加深研究:(1)加强对全国各区域水体MCs含量的详细调查及其在食物链各营养级水平生物上的积累和传递作用的研究,探索其光化学降解、化学氧化及生物降解的机制和途径,为相关生态风险评价提供基础数据;(2)针对MCs转运机理的解析,目前基于基因表达模式以及药物实验鉴定了4个有机阴离子转运肽,但是到目前一直没有直接的分子与遗传证据。尤其是这些有机阴离子转运肽究竟具体经由怎样的分子机制调控着MCs在生物体内的转运尚不清楚;(3)环境污染物在自然环境中并非单一存在,生物体常常暴露于多种环境污染物的综合毒性影响之下,因而关于不同类型藻毒素以及其与其他有机、无机环境污染物的复合毒性研究对于准确预测环境风险,评价和诊断环境安全,具有十分重要的理论和现实意义;(4)不同物种及性别生物对MCs的抗性差异很大,开展不同物种及性别间的比较毒理学研究可以为该类毒素的毒性作用模式和风险评估提供依据;(5)关于MCs的毒性效应研究相对全面,但是其致毒机理全貌尚不清楚,亟需基于如代谢组学、蛋白组学、转录组学等更为敏感的新兴系统毒理学研究手段,寻找生物标志物,深入剖析其毒性机制;(6)在深入研究MCs微观致毒机理的基础上,加强指示蓝藻水华污染的相关分子标志物研究,以期筛选出可用于湖泊生态安全的早期诊断指标体系和分子水平上的安全阈值。
(References):
[1] Kuiper-Goodman T,Falconer I R,Fitzgerald J.Toxic Cyanobacteria in Water:A Guide to Their Public Health Consequences,Monitoring and Management[M].London:E&FN Spon,1999:113-153
[2] Chen J,Xie P,Zhang D W,et al.In situ studies on the distribution patterns and dynamics of microcystins in a biomanipulation fish-bighead carp(Aristichthys nobilis)[J]. Environmental Pollution,2007,47:150-157
[3] Azevedo S M,Carmichael W W,Jochimsen E M,et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil[J].Toxicology,2002,181: 441-446
[4] Mohamed Z A,Carmichael W W,Hussein A A.Estimation of microcystins in the freshwater fishOreochromis niloticusin an Egyptian fish farm containing aMicrocystis bloom[J].Environmental Toxicology,2003,18:137-141
[5] Codd G A.Cyanobacterial toxins,the perception of water quality and the prioritization of eutrophication control[J]. Ecological Engineering,2000,16:51-60
[6] 徐明,杨坚波,林玉娣.饮用水微囊藻毒素与消化道恶性肿瘤死亡率关系的流行病学研究[J].中国慢性病预防与控制,2003(1):112-113
Xu M,Yang J B,Lin Y D.Microcystins in drinking water and mortality of major cancer in a city along Taihu Lake [J].Chinese Journal of Prevention and Control of Chronic Diseases,2003(1):112-113(in Chinese)
[7] Li G Y,Xie P,Li H Y,et al.Involment of p53,Bax,and Bcl-2 pathway in microcystins-induced apoptosis in rat testis[J].Environmental Toxicology,2011,26(2):111-117
[8] Yuan M,Carmichael W W,Hilborn E D.Microcystin analysis in human sera and liver from human fatalities in Caruaru,Brazil 1996[J].Toxicon,2006,48:627-640
[9] Chen J,Xie P,Li L,et al.First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage[J].Toxicological Science,2009,108:81-89
[10] Li Y,Chen J A,Zhao Q,et al.A cross-sectional investigation of chronic exposure to microcystin in relationship to childhood liver damage in the three gorges reservoir region,China[J].Environmental Health Perspectives,2011, 119(10):1483-1488
[11] Carmichael W W.The Cyanotoxins[M].London,New York:Academic Press,1997:211-256
[12] Chorus I,Falconer I R,Salas H J,et al.Health risks caused by freshwater cyanobacteria in recreational waters [J].Journal of Toxicological Environmental Health B, 2000,3(4):323-347
[13] Meissner K,Dittmann E,Börner T.Toxic and non-toxic strains of the cyanobacteriumMicrocystis aeruginosacontain sequences homologous to peptide synthetase genes [J].FEMS Microbiol Letter,1996,135:295-303
[14] Lee S J,Jang M H,Kim H S,et al.Variation of microcystin content ofMicrocystis aeruginosarelative to medium N:P ratio and growth phase[J].Journal of Applied Microbiology,2000,89:323-329
[15] Long B M,Jones G J,Orr P T.Cellular microcystin content in N-limitedMicrocystis aeruginosacan be predicted from growth rate[J].Applied and Environmental Microbiology,2001,67:278-283
[16] McElhiney J,Lawton L A.Detection of the cyanobacterial hepatotoxins microcystins[J].Toxicology and Applied Pharmacology,2005,203:219-230
[17] Sivonen K,Jones G.Cyanobacterial Toxins[M]//Chorus I,Bartram J.eds.Toxic Cyanobacteria in Water,a Guide to Their Public Health Consequences,Monitoring and Management.London and New York:E&FN Spon, 1999:41-111
[18] Ufelmann H,Krüger T,Luckas B,et al.Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins[J].Toxicology,2012,293(1-3):59-67
[19] Lahti K,Rapala J,Fardig M,et al.Persistence of cyanobacterial hepatotoxin,microcystin-LR in particulate material and dissolved in lake water[J].Water Research, 1997,3l:l005-10l2
[20] 许川,舒为群.微囊藻毒素污染状况、检测及其毒效应[J].国外医学(卫生学分册),2005,32(1):56-60
Xu C,Shu W Q.Pollution condition,test and toxic effects of microcystins[J].Foreign Medical Sciences(Section Hygiene),2005,32(1):56-60(in Chinese)
[21] Song L,Chen W,Peng L,et al.Distribution and bioaccumulation of microcystins in water columns:A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay,Lake Taihu [J].Water Research,2007,41:2853-2864
[22] Shen P P,Shi Q,Hua Z C,et al.Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay,Taihu Lake,China[J].Environment International,2003,29:641-647
[23] Wang Q,Niu Y,Xie P,et al.Factors affecting temporal and spatial variations of microcystins in Gonghu Bay of Lake Taihu,with potential risk of microcystin contamination to human health[J].Scientific World Journal,2010, 10:1795-1809
[24] 徐海滨,隋海霞,高士荣,等.微囊藻毒素在鲤鱼体内生物富集作用的初步研究[J].中国食品卫生杂志, 2003,15(3):202-204 Xu H B,Sui H X,Gao S R,et al.Primary experimental study on bioaccumulation of microcystin inCyprinus carpio[J].Chinese Journal of Food Hygiene,2003,15(3): 202-204(in Chinese)
[25] 王红兵,宋伟民,朱惠刚.上海淀山湖、黄浦江水系浮游藻类及藻类毒素的动态研究[J].环境与健康杂志, 1995,12(5):1996-1999
Wang H B,Song W M,Zhu H G.Study on seasonal dynamics of planktonic algae and microcystins in the Dianshan Lake and Huangpu River[J].Journal of Environment and Health,1995,12(5):1996-1999(in Chinese)
[26] 蔡金傍,李文奇,逄勇,等.水库微囊藻毒素-LR含量与环境因子的相关性研究[J].重庆建筑大学学报,2007, 29(5):130-134
Cai J B,Li W Q,Jiang Y,et al.Research onmicrocystin-LR in a reservoir with relation to environmental factors [J].Journal of Chongqing Jianzhu University,2007,29(5): 130-134(in Chinese)
[27] 王蕾,林爱武,顾军农,等.北京市供水水源微囊藻毒素检测及调查[J].城镇供水,2006(4):28-29
Wang L,Lin A W,Gu J N,et al.Test and survey of microcystins in water source of Beijing[J].City and Town Water Supply,2006(4):28-29(in Chinese)
[28] 张娟,梁前进,周云龙,等.官厅水库水体中微囊藻毒素及其微囊藻细胞密度相关性研究[J].安全与环境学报,2006,6(5):53-56
Zhang J,Liang Q J,Zhou Y L,et al.Study on microcystins and their correlation with microcystis cell densities in Guanting Reservoir[J].Journal of Safety and Environment,2006,6(5):53-56(in Chinese)
[29] 王朝晖,林少君,韩博平,等.广东省典型大中型供水水库和湖泊微囊藻毒素分布[J].水生生物学报,2007, 31(3):307-311
Wang Z H,Lin S J,Han B P,et al.Distribution of microcystins in typical water supply reservoirs and lake in Guangdong Province[J].Acta Hydrobiologica Sinica, 2007,31(3):307-311(in Chinese)
[30] 杨希存,王素凤,鄂学礼,等.洋河水库微囊藻毒素含量与水污染指标的相关性研究[J].环境与健康杂志, 2009,26(2):137-138
Yang X C,Wang S F,Er X L,et al.Correlation between microcystin and water pollution indexes of Yanghe Reservoir,Qingdao[J].Journal of Environment and Health, 2009,26(2):137-138(in Chinese)
[31] 周学富,董传辉,俞顺章.泰安地区肝癌高发因素研究[J].现代预防医学,1999,26:350-351
Zhou X F,Dong C H,Yu S Z.Study on the high-risk factors of liver cancer in Taian[J].Modern Preventive Medicine,1999,26:350-351(in Chinese)
[32] 孙昌盛,陈华,薛常镐.同安水环境藻类与藻类毒素分布调查[J].中国公共卫生,2000,16:147-148
Sun C S,Chen H,Xue C G.Study of distribution of algal toxin and algal species in Tong-an environment[J].China Public Health,2000,16:147-148(in Chinese)
[33] Gehringer M M.Microcystin-LR and okadaic acid-induced cellular effects:A dualistic response[J].FEBS Letters,2004,557:1-8
[34] 陆卫根,林文尧.海门市1969-1999年原发性肝癌死亡率趋势及高发因素的探讨[J].交通医学,2001,15:469-470
Lu W G,Lin W R.Investigation on primary liver cancer mortality trends and the high-risk factors in 1969-1999 in Haimen[J].Medical Journal of Communications,2001, 15:469-470(in Chinese)
[35] 刘天福,贾幸改,赵建明.三门峡市饮用水藻类污染及影响因素研究[J].环境与健康杂志,2001,28(2):100-101
Liu T F,Jia X G,Zhao J M.Drinking water pollution by algae and its affecting factors in Sanmenxia[J].Journal of Environment and Health,2001,28(2):100-101(in Chinese)
[36] 杨松芹,张慧珍,巴月,等.郑州市主要生活饮用水源微囊藻细胞毒素特征分析[J].卫生研究,2007,36(4): 421-423
Yang S Q,Zhang H Z,Ba Y,et al.Characteristic analysis on the toxin of microcystis in life water source of Zhengzhou City[J].Journal of Hygiene Research,2007,36(4): 421-423(in Chinese)
[37] Wickstrom M,Haschek W,Henningsen G,et al.Sequential ultrastructural and biochemical changes induced bymicrocystin-LR in isolated perfused rat livers[J].Natural Toxins,1996,4:195-205
[38] Chen L,Li S C,Guo X C,et al.The role of GSH in microcystin-induced apoptosis in rat liver:Involvement of oxidative stress and NF-κB[J].Environmental Toxicology,2014.DOI:10.1002/tox.22068
[39] 施玮,朱惠刚.微囊藻提取物对大鼠原代培养的肝细胞酶学和形态学影响研究[J].环境与健康杂志,2001, 18(5):259-261
Shi W,Zhu H G.Study on enzymology and morphology effects of extractions of cyanobacteria on primary cultured hepatocyte[J].Journal of Environment and Health,2001, 18(5):259-261(in Chinese)
[40] Robinson N A,Matson C F,Pace J G.Association of microcystin-LR and its biotransformation product with a hepatic-cytosolic protein[J].Journal of Biochemical Toxicology,1991,6:171-180
[41] Williams D E,Kent M L,Andersen R J,et al.Tissue distribution and clearance of tritiumlabeled dihydromicrocystin-LR epimers administered to Atlantic Salmon via intraperitoneal injection[J].Toxicon,1995,33:125-131
[42] Zhang X Z,Xie P,Li D P,et al.Hematological and plasma biochemical responses of crucian carp(Carassius auratus)to intraperitoneal injection of extracted microcystins with the possible mechanisms of anemia[J].Toxicon, 2007,49:1150-1157
[43] Chen J,Xie P,Zhang D W,et al.In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp(Hypophthalmichthys molitrix)stocked in Lake Taihu with dense toxic microcystis blooms[J].Aquaculture,2006,261:1026-1038
[44] Klaassen C D,Lu H.Xenobiotic transporters:Ascribing function from gene knockout and mutation studies[J]. Toxicological Sciences,2008,101(2):186-196
[45] Fischer W J,Altheimer S,Cattori V,et al.Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin[J].Toxicology and Applied Pharmacology,2005,203(3):257-263
[46] Kondo F,Ikai Y,Oka H,et al.Formation,characterization,and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins[J].Chemical Research in Toxicology,1992,5(5):591-596
[47] Pflugmacher S,Wiegand C,Oberemm A,et al.Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR:The first step of detoxication[J].Biochimica et Biophysica Acta, 1998,1425(3):527-533
[48] Ito E,Takai A,Kondo F,et al.Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds[J].Toxicon,2002, 40(7):1017-1025
[49] Zhang D,Xie P,Chen J,et al.Determination of microcystin-LR and its metabolites in snail(Bellamya aeruginosa), shrimp(Macrobrachium nipponensis)and silver carp(Hypophthalmichthys molitrix)from Lake Taihu,China[J]. Chemosphere,2009,76(7):974-981
[50] Batista T,De Sousa G,Suput J S,et al.Microcystin-LR causes the collapse of actin filaments in primary human hepatocytes[J].Aquatic Toxicology,2003,65(1):85-91
[51] Bouaïcha N,Maatouk I,Plessis M J,et al.Genotoxic potential of microcystin-LR and nodularin in vitro in primary cultured rat hepatocytes and in vivo in rat liver[J].Environmental Toxicology,2005,20(3):341-347
[52] He J,Chen J,Wu L Y,et al.Metabolic response to oral microcystin-LR exposure in the rat by NMR-based metabonomic study[J].Journal of Proteome Research,2012, 11:5934-5946
[53] Ueno Y,Nagata S,Tsutsumi T,et al.Detection of microcystins,a blue-green algal hepatotoxin,in drinking water sampled in Haimen and Fusui,endemic areas of primary liver cancer in China,by highly sensitive immunoassay [J].Carcinogenesis,1996,17(6):1317-1321
[54] Carmichael W W.A mini-review of cyanotoxins:Toxins of cyanobacteria(blue-green algae)[C].Proceedings of the 10th International IUPAC Symposium,Mycotoxins and Phycotoxins in Perspective at the Turn of the Millennium,Guaruja,Brazil,2001:495-504
[55] Milutinovic A,Sedmak B,Horvat-Znidarsic I,et al.Renal injuries induced by chronic intoxication with microcystins [J].Cellular&Molecular Biology Letters,2002,7:139-141
[56] Li L,Xie P,Chen J.Biochemical and ultrastructural changes of the liver and kidney of the phytoplanktivorous silver carp feeding naturally on toxicMicrocystisblooms in Taihu Lake,China[J].Toxicon,2007,49:1042-1053
[57] Zhang Z Y,Lian M,Liu Y,et al.Teratosis and damage of viscera induced by microcystin in SD rat fetuses[J].Journal of National Medicine,2002,82(5):345-347
[58] Milutinovic A,Zivin M,Zorc-Pleskovic R,et al.Nephrotoxic effect of chronic administration of microcystins-LR and YR[J].Toxicon,2003,42:281-288
[59] Nobre A C,Colho G R,Coutinho M C M,et al.The role of phospholipase A2 and cyclooxygenase in renal toxicity induced by microcystin-LR[J].Toxicon,2001,3(5):721-724
[60] Trinchet I,Djediat C,Huet H,et al.Pathological modifications following sub-chronic exposure of medaka fish (Oryzias latipes)to microcystin-LR[J].Reproductive Toxicology,2011,32:329-340
[61] Qiao Q,Liu W J,Wu K,et al.Female zebrafish(Daniorerio)are more vulnerable than males tomicrocystin-LR exposure,without exhibiting estrogenic effects[J].Aquatic Toxicology,2013,142:272-282
[62] Hou J,Li L,Xue T,et al.Damage and recovery of the ovary in female zebrafish i.p.-injected with MC-LR[J].A-quatic Toxicology,2014,155:110-118
[63] Li D S,Liu Z T,Cui Y B,et al.Toxicity of cyanobacterial bloom extracts from Taihu Lake on mouse,Mus musculus [J].Ecotoxicology,2011,20:1018-1025
[64] Chen T,Wang Q,Cui J,et al.Induction of apoptosis in mouse liver by microcystin-LR a combined transcriptomic,proteomic,and simulation strategy[J].Molecular& Cellular Proteomics,2005,4(7):958-974
[65] 张占英,连民,刘颖,等.微囊藻毒素LR对胎鼠的致畸和损伤作用[J].中华医学杂志,2002,82(5):345-347
Zhang Z M,Lian M,Liu Y,et al.Teratosis and damage of viscera induced by microcystin in SD rat fetuses[J].National Medical Journal of China,2002,82(5):345-347(in Chinese)
[66] Chen L,Zhang X Z,Zhou W S,et al.The interactive effects of cytoskeleton disruption and mitochondria dysfunction lead to reproductive toxicity induced by microcystin-LR[J].PLoS ONE,2013,8(1):e53949
[67] Chen Y,Xu J,Li Y,et al.Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR[J].Reproductive Toxicology, 2011,31:551-557
[68] Zhao Y Y,Xie L Q,Yan Y J.Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system[J].Chemosphere,2015,120:115-122
[69] Oberemm A,Fastner J.Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish(Danio rerio)[J].Water Research,1997,31: 2918-2921
[70] Bu Y Z,Li X Y,Zhang B J,et al.Microcystins cause embryonic toxicity in mice[J].Toxicon,2006,48:966-972
[71] Fischer W J,Altheimer S,Cattori V,et al.Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin[J].Toxicology and Applied Pharmacology,2005,203(3):257-263
[72] Zhao S J,Li G Y,Chen J.A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring[J].Journal of Proteomics,2015,114:197-213
[73] Li G Y,Yan W,Cai F,et al.Spatial learning and memory impairment and pathological change in rats induced by acute exposure to microcystin-LR[J].Environmental Toxicology,2014,29:261-268
[74] Cazenave J,Nores M L,Miceli M,et al.Changes in the swimming activity and the glutathione S-transferase activity ofJenynsia multidentatafed with microcystin-RR[J]. Water Research,2008,42:1299-1307
[75] Ju J J,Ruan Q L,Li X B,et al.Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematodeCaenorhabditis elegans [J].Environmental Science and Pollution Research,2013, 20:1823-1830
[76] Li X B,Zhang X,Ju J,et al.Alterations in neurobehaviors and inflammation in hippocampus of rats induced by oral administration of microcystin-LR[J].Environmental Science and Pollution Research,2014,21:12419-12425
[77] Meng G M,Sun Y,Fu W Y,et al.Microcystin-LR induces cytoskeleton system reorganization through hyperphosphorylation of tau and HSP27 via PP2A inhibition and subsequent activation of the p38 MAPK signaling pathway in neuroendocrine(PC12)cells[J].Toxicology, 2011,290:218-229
[78] Wang J H,Lin F K,Cai F,et al.Microcystin-LR inhibited hippocampal long-term potential via regulation of the glycogen synthase kinase-3 beta pathway[J].Chemosphere, 2013,93:223-229
[79] Li G Y,Yan W,Dang Y,et al.The role of calcineurin signaling in microcystin-LR triggered neuronal toxicity[J]. Scientific Reports,2015,5:11271
[80] 谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁[M].北京:科学出版社,2006
[81] 王红兵,朱惠刚.我国若干湖泊中蓝藻毒素的遗传毒性研究[J].中国公共卫生学报,1995,14:339-341
Wang H B,Zhu H G.Study on genotoxicity of microcystins extracted from several freshwater lakes in China [J].Chinese Journal of Public Health,1995,14:339-341 (in Chinese)
[82] Zhan L,Sakamoto H,Sakuraba M,et al.Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells[J]. Mutation Research,2004,557:1-6
[83] Shen P P,Zhao S W,Zheng W J.Effects of cyanobacteria bloom extract on some parameters of immune function in mice[J].Toxicology Letters,2003,143:27-36
[84] Chen T,Zhao X Y,Liu Y.Analysis of immunomodulating nitric oxide,iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR[J].Toxicology,2004, 197:67-77
[85] Shi Q,Cui J,Zhang J.Expression modulation of multiple cytokines in vivo by cyanobacteria blooms extract from Taihu Lake,China[J].Toxicon,2004,44:871-879
[86] Yea S S,Kim H M,Oh H M.Microcystin-induced downregulation of lymphocyte functions through reduced IL-2 mRNA stability[J].Toxicology Letters,2001,122:21-31
[87] 孙露,沈萍萍,周莹,等.太湖水华微囊藻毒素对小鼠免疫功能的影响[J].中国药理学与毒理学杂志,2002, 16:226-230
Sun L,Shen P P,Zhou Y,et al.Effects of Tai Lake bloom microcystins on immune function of mice[J].Chinese Journal of Pharmacology and Toxicology,2002,16:226-230(in Chinese)
[88] Hagenbuch B,Meier P J.Organic anion transporting polypeptides of the OATP/SLC21 family:Phylogenetic classification as OATP/SLCO super family,new nomenclature and molecular/functional properties[J].Pflugers Archive-European Journal of Physiology,2004,447:653-665
[89] Fischer W J,Altheimer S.Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin[J].Toxicology and Applied Pharmacology, 2005,203:257-263
[90] Franke R M,Scherkenbach L A,Sparreboom A.Pharmacogenetics of the organic anion transporting polypeptide 1A2[J].Pharmacogenomics,2009,10:339-344
[91] Kalliokoski A,Niemi M.Impact of OATP transporters on pharmacokinetics[J].British Journal of Pharmacology, 2009,158:693-705
[92] Ioannis S,Demosthenes F,Katerina V,et al.Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs[J].Marine Drugs,2010,8:629-657
[93] Qiu T,Xie P.The profound effects of microcystin on cardiac antioxidant enzymes,mitochondrial function and cardiac toxicity in rat[J].Toxicology,2009,257:86-94
[94] Liu Y,Xie P.Microcystin extracts induce ultrastructural damage and biochemical disturbance in male rabbit testis [J].Environmental Toxicology,2010,25:9-17
[95] Craig M,Luu H A,Mccready T L,et al.Molecular mechanisms underlying the interaction of motuporin and microcystins with type-1 and type-2A protein phosphatases [J].Biochemistry and Cell Biology-Biochimie et Biologie Cellulaire,1996,74(4):569-578
[96] Lankoff A,Bialczyk J,Dziga D.Inhibition of nucleotide excision repair(NER)by microcystin-LR in CHO-K1 cells[J].Toxicon,2006,48:957-965
[97] Douglas P,Moorhead G B,Ye R.Protein phosphatases regulate DNA dependent protein kinase activity[J].Journal of Biological Chemistry,2001,276:18992-18998
[98] Shota T,Masaharu K,Tatsuhiko F,et al.p53 plays an important role in cell fate determination after exposure to microcystin-LR[J].Environmental Health Perspectives, 2010,118:1292-1298
[99] Tar K,Csortos C,Czikora I,et al.Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure[J].Journal of Cell Biochemistry,2006,98 (4):931-953
[100] Daily A,Monks N R,Leggas M,et al.Abrogation of microcystin cytotoxicity by MAP kinase inhibitors and N-acetyl cysteine is confounded by OATPIB1 uptake activity inhibition[J].Toxicon,2009,55:1-11
[101] Fu W Y,Chen J P,Wang X M,et al.Altered expression of p53,Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro[J].Toxicon,2005,46:171-177
[102] Krakstad C,Herfindal L,Gjertsen B T,et al.CaMkinaseII-dependent commitment to microcystin-induced apoptosis is coupled to cell budding,but not to shrinkage or chromatin hypercondensation[J].Cell Death Differentiation,2006,13:1191-1202
[103] Solstad T,Fladmark K E.Algal toxins as guidance to identify phosphoproteins with key roles in apoptotic cell death[J].Current Pharmaceutical Biotechnology,2006,7 (3):209-215
[104] Packer J E.Oxidative Stress,Antioxidants,Aging and Disease[M]//Gulter R G,Packer L B,Eratum J,et al. eds.Oxidtive Stress and Aging.Birkhauser Verlag,1995: 152-163
[105] Moreno I,Pichardo S,Jos A,et al.Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally [J].Toxicon,2005,45(4):395-402
[106] McDermott C M,Nho C W,Howard W,et al.The cyanobacterial toxin,microcystin-LR can induce apoptosis in a variety of cell types[J].Toxicon,1998,36:1981-1996
[107] Chen J,Xie P.Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and-RR in two freshwater shrimps,Palaemon modestusandMacrobrachium nipponensis,from a large shallow,eutrophic lake of the subtropical China[J].Toxicon,2005,45:615-625
[108] Zegura B,Sedmak B,Filipic M.Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2[J].Toxicon,2003,41(1):41-48
[109] Repavich W M,Sonzogni W C,Standridge J H.Cyanobacteria(blue-green algae)in Wisconsin waters:Acute and chronic toxicity[J].Water Research,1990,24(2): 225-231
[110] Lankoff A,Krzowski L,Glabet L.DNA damage and repair in human peripheral blood lymphocytes following treatment with microcystin-LR[J].Mutation Research, GeneticToxicologyandEnvironmentalMutagenesis, 2004,559(1/2):131-142
[111] Lankoff A,Bialczyk J,Dziga D.Inhibition of nucleotide excision repair(NER)by microcystin-LR in CHO-K1 cells[J].Toxicon,2006,48(8):957-965◆
Environmental Exposure,Toxicity and Toxic Mechanism of Microcystins:A Review
Guo Xiaochun1,Lu Shaoyong1,*,Xie Ping2,Chen Jun2,Liu Xiaohui3
1.Observation and Research Station for Lake Dongtinghu(SEPSORSLD),Research Centre of Lake Environment,State Environmental Protection Key Laboratory for Lake Pollution Control,State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences,Beijing 100012,China
2.Donghu Experimental Station of Lake Ecosystems,Institute of Hydrobiology,Chinese Academy of Sciences,Wuhan 430072,China
3.Institute of Geography and Environment,Shandong Normal University,Jinan 250014,China
13 October 2015 accepted 5 February 2016
Microcystins(MCs),which is the most popular algae toxins generated by the explosive propagation of Cyanobacteriain the eutrophic fresh water,have caused worldwide concerns for their great toxicity,widespread distribution and structural stability.This review summarized the recent development of pollution status of MCs and their representative toxicity and toxic mechanism.In addition,the suggestions were put forward for present studies, in order to provide the basis for effectively reducing the potential security risks and studying deeply the ecotoxicological effects of microcystins.
microcystins;environmental exposure;toxic effects;toxic mechanism
2015-10-13 录用日期:2016-02-05
1673-5897(2016)3-061-11
X171.5
A
10.7524/AJE.1673-5897.20151013002
简介:卢少勇(1976-),男,环境科学博士,研究员,主要研究方向湖泊生态修复与污染防治,发表学术论文140余篇。
科技基础性工作专项重点项目(2015FY110900);国家水体污染控制与治理重大专项(2013ZX07101-014,2012ZX07105-002)
国晓春(1987-),女,理学博士,研究方向为淡水生态毒理学,E-mail:guoxiaochun419@163.com
*通讯作者(Corresponding author),E-mail:lusy@craes.org.cn