中药提取物声敏剂在声动力治疗动脉粥样硬化中的应用

2016-10-20 03:39寇佳媛姜月晴田野杨力明
关键词:艾拉姜黄提取物

寇佳媛,姜月晴,田野,2,杨力明

(1.哈尔滨医科大学病理生理学教研室,哈尔滨150081;2.哈尔滨医科大学附属第一医院心内科,哈尔滨150001)

中药提取物声敏剂在声动力治疗动脉粥样硬化中的应用

寇佳媛1,姜月晴1,田野1,2,杨力明1

(1.哈尔滨医科大学病理生理学教研室,哈尔滨150081;2.哈尔滨医科大学附属第一医院心内科,哈尔滨150001)

目前,动脉粥样硬化引起的心血管疾病发生率越来越高,除昂贵的介入和搭桥治疗术外,寻求一种简单、有效且经济的治疗方法至关重要.声动力治疗是一种无创、安全的治疗方式,其在动脉粥样硬化治疗中的应用很有前景.声动力治疗中使用的药物为声敏剂,是影响其疗效的主要因素之一.研究人员一直致力于探讨不同种类声敏剂所带来的声动力效果在动脉粥样硬化治疗中起到的不同作用.近年来,在声敏剂的筛选研究中发现,中药提取物有很大的潜在声敏剂价值.简要总结了目前对声动力治疗机制及大黄素、姜黄素及其衍生物和金丝桃素作为声敏剂在声动力治疗动脉粥样硬化中的相关进展.

声动力治疗;声敏剂;中药提取物;动脉粥样硬化

动脉粥样硬化是一种常见的慢性炎症性心血管疾病[1],其中动脉粥样硬化斑块的破裂是急性心血管事件发生的主要原因,严重威胁人类健康[2].传统的动脉粥样硬化治疗包括药物治疗和手术介入治疗,是目前临床患者的主要选择.然而,这些疗法仍存在一些副作用,例如抗血小板药物会导致血小板含量过低,最终引起出血[3];抗血脂药会引起肌病[4];手术介入治疗也存在机械创伤大、术后再狭窄率高、支架内血栓发生率高的缺陷[5].因此,寻求一种损伤小、靶向性强的动脉粥样硬化治疗方法势在必行.

光动力疗法是一种应用感光材料(光敏剂)和光照,产生活性氧和其他物质靶向导致细胞或组织产生形态、功能上改变的治疗手段.在过去几十年间,由于光动力疗法具有可以选择性破坏靶向组织的特点,已应用于各种疾病中,例如癌症[6]、牙周炎[7]、心血管疾病[8].尽管光动力疗法取得了巨大的成效,但其在临床应用上的缺点却不容忽视.首先是可见光的穿透深度较浅,如果将光动力疗法应用于治疗动脉粥样硬化,那么只有浅表的血管可得到治疗;除此之外,光敏剂和光照选择性差可能导致皮肤毒性或其他正常组织的损伤.并且,这种损伤愈合后也会不可避免地留下疤痕[9].虽然恰当地选择光敏剂的种类、剂量和光照的波长、作用时间可以在一定程度上提高光动力疗法的效能并降低毒性,但这种疗法在治疗动脉粥样硬化方面仍然面临严峻考验.

1989年,Yumita等[10]发现血卟啉被超声激活可以导致明显细胞损伤,并把这种方法命名为声动力疗法.声动力疗法的原理是使低频超声和具有声敏活性的药物(声敏剂)同时作用,产生活性氧等物质,导致细胞损伤乃至死亡.与光动力疗法相比,声动力疗法在无创治疗非浅表的动脉粥样硬化斑块上展现出一些重要的优势:①超声是一种低成本的、安全的临床影像系统,很容易被广泛接受;②超声在软组织中的穿透深度可以达到数十厘米,并且可通过超声频率控制[11];③超声在穿透组织时有恰当的组织衰减系数,当到达目的地时,超声又有能力将能量集中在需要治疗的小范围内[12].换句话说,超声可以完全集中于一个特定的血管位置并有效激活或增加声敏剂所包围区域的细胞毒性,并对周围正常组织几乎没有伤害[13].因此,声动力疗法是一种理想的治疗手段,并且需要进行更多更为细致的科学研究.

1 声动力治疗原理

到目前为止,尽管在体外或体内模型中均已有声动力相关研究,但声动力治疗的确切机制仍不明确.大量文献报道未将超声和声敏剂间相互作用的机制阐述清晰,主要是因为机制与生物模型、实验系统、超声声敏剂种类,包括频率和强度的曝光参数均有关系[6].目前较为公认的可能机制有:①超声空化;②流体压力;③活性氧(reactive oxygen species,ROS);④结合多种机制共同作用[14-15].

超声生物效应分为热效应和非热效应[16].非热效应又被分为空化效应和其他机械效应[17].“空化”用来表示声空化:指气泡在声场的作用下被激发生长甚至涨破的运动过程[18].空化可分为惯性和非惯性空化,惯性空化过程包括气体气泡的生长、最大限度的膨胀和剧烈的崩溃.气泡爆炸释放的能量会引起周围微环境温度的升高和压力的骤然增大[19].而非惯性空化是指相对低强度声场中的小气泡振动的过程.惯性和非惯性空化均可产生机械力,然而只有惯性空化可产生化学效应[14].当气泡快速地在细胞间移动时,超声可以通过流体力学方式对细胞切割从而产生伤害,振荡气泡周围流体振荡产生的剪切力对细胞造成的损伤称为流体压力[14].

超声激活声敏剂导致的ROS产生可对细胞进行攻击,是声动力效果引起的结果[20-21]. ROS包括两大类:自由基和单线态氧.此外,如果产生足够多的ROS,将会引发一连串的生物学变化如细胞骨架收缩、染色质浓缩、DNA断裂、线粒体膜电位消失,而上述结果最终可以导致靶细胞的凋亡[22-23].

显然,声敏剂的选择是声动力研究中不可缺少的重要切入点之一,研究人员一直致力于探讨不同种类声敏剂所带来的声动力效果在动脉粥样硬化进展中起到的不同作用.近年来,在声敏剂的筛选研究中发现,中药提取物有很大的潜在声敏剂价值,下面将总结中药提取物声敏剂在声动力治疗动脉粥样硬化中的相关进展.

2 中药提取物声敏剂在声动力治疗动脉粥样硬化中的应用

2.1大黄素

大黄素是从天然草本植物大黄中提取而来,大黄本身具有抗炎、抗增殖及抗肿瘤等生物学特性[24-26].大黄素(emodin,见图1(a))是一种已知光敏剂[27],然而其是否可以作为声敏剂是未知的.2011年,已有研究表明大黄素(15 mg/L)介导的声动力治疗可以引起巨噬细胞凋亡和坏死[28].因此,大黄素介导的声动力治疗可能通过降低动脉粥样硬化斑块中巨噬细胞的浸润来达到治疗目的,成为未来一种潜在的治疗方法.

2.2姜黄素及其衍生物

姜黄素(curcumin,见图1(b))是一种疏水性多酚类物质,从草本植物姜黄的根茎中提取而来.诸多证据表明姜黄素具有抗炎、抗变异及抗癌的生物学特性[29-31].近期一项研究证实,姜黄素(40.7µmol/L)介导的声动力治疗可明显降低巨噬细胞存活率,细胞形态在声动力治疗后表现为线粒体膜电位下降以及细胞骨架的形态学改变等[32].上述研究结果表明,姜黄素具有声敏剂活性,姜黄素介导的声动力治疗可能是一种很有前景的治疗方式.本课题组为了提高姜黄素的声敏活性,对其进行了化学修饰,替换原有的不稳定的羟基合成羟基乙酰化姜黄素(hydroxyl-acylated curcumin,见图1(c)),并证实5µg/mL的羟基乙酰化姜黄素即可表现出明显的声敏活性.同时发现,在低强度超声作用下,羟基乙酰化姜黄素可通过细胞内产生的ROS激活线粒体Caspase-3/9信号通路,促进THP-1巨噬细胞发生凋亡,表明羟基乙酰化姜黄素可以作为一种新型声敏剂应用于声动力研究中[22].

2.3金丝桃素和伪金丝桃素

金丝桃素(hypericin,见图1(d))由连翘的全草提取而得,多环二酮结构的金丝桃素作为一种效果良好的光敏剂而被广泛应用,其主要优势为毒性小、肿瘤选择特异性高、排空率高、单线态氧产生率高以及抗炎等[33-35].本课题组在声动力研究中旨在筛选安全性高、使用剂量低的声敏剂,因此将金丝桃素列为研究筛选目标.结果发现,0.25µg/mL金丝桃素介导的声动力治疗可明显诱导THP-1巨噬细胞产生ROS,并促进细胞凋亡,证实金丝桃素确实具有声敏活性.同时发现,在此过程中是通过诱导促凋亡因子BAX的易位和线粒体通透性转换孔开放,释放细胞色素C,从而达到促使细胞凋亡的目的.与同剂量的大黄素、姜黄素及艾拉(一种非中药提取物声敏剂,见下文)相比,金丝桃素拥有更好的声敏效果,本研究结果表明其在介导声动力治疗动脉粥样硬化中有巨大潜力[36].

伪金丝桃素(psedo-hypericin,见图1(e))也由连翘的全草提取而来,与金丝桃素结构类似,同样具有光敏活性.本课题组为了验证伪金丝桃素是否存在声敏活性,且与金丝桃素相比是否具有更好的声敏效果,对该种中药提取物加以实验研究.结果显示,伪金丝桃素在0.4µg/mL时即可诱导巨噬细胞发生凋亡,与同剂量的艾拉相比效果更佳[37].

图1 应用于动脉粥样硬化治疗中的中药提取物声敏剂化学结构式Fig.1 Chemical structures of sonosensitizers derived from Chinese herb products used in atherosclerosis treatment

3 非中药提取物声敏剂在声动力治疗动脉粥样硬化中的应用

3.1艾拉

艾拉(5-氨基酮戊酸,5-aminolevulinic acid,ALA,见图2(a))是血红素合成途径中原卟啉Ⅸ(见图2(b))的生物学前体[38].艾拉可以通过静脉注射聚集在肿瘤组织中,并在低频超声的激活下产生ROS[15].在过去的若干年中,艾拉介导的声动力治疗在肿瘤细胞应用中的研究相对广泛[38-41],但在动脉粥样硬化斑块模型中是否也能达到治疗效果却未可知.体外研究发现,艾拉介导的声动力治疗可通过对THP-1巨噬细胞作用使其产生ROS,同时伴随着线粒体膜电位的消失[23].Chen等[42]发现,通过阻滞电压依赖性阴离子通道,可明显抑制钙离子参与的艾拉介导声动力治疗中所引起的氧化应激反应及巨噬细胞凋亡;并且推测艾拉介导的声动力治疗可能通过降低巨噬细胞在动脉粥样硬化斑块中的浸润,从而达到治疗动脉粥样硬化斑块的效果,在此过程中电压依赖性阴离子通道起到了重要作用.

图2 应用于动脉粥样硬化中的非中药提取物声敏剂化学结构式Fig.2 Chemical structures of sonosensitizers derived from non-Chinese herb products used in atherosclerosis treatment

血管平滑肌细胞是一种高度特化的细胞,可以调节血管张力、血压及血流量[43].在血管再狭窄过程中,血管平滑肌细胞从已分化表型转变为去分化表型[44].文献[45]的研究结果表明,艾拉介导的声动力治疗通过局部产生ROS对血管平滑肌细胞增殖和迁移能力均有抑制,且提高了平滑肌特异蛋白的表达,调节血管平滑肌细胞表型从去分化表型转变为分化表型,并激活p38丝裂原活化蛋白激酶.由此推测,艾拉介导的声动力治疗可能在临床血管再狭窄的治疗中起到重要作用.

富含脂质的泡沫细胞的存在是动脉粥样硬化病变的一个标志[46],泡沫细胞分泌的炎性因子在动脉粥样硬化斑块的各个时期均加速斑块进展[47].2014年,Wang等[48]的研究表明,艾拉介导的声动力治疗可通过产生ROS激活THP-1巨噬细胞源性泡沫细胞线粒体凋亡途径和内质网应激.2015年,Li等[49]在动脉粥样硬化模型兔中证明艾拉介导的声动力治疗可促进斑块稳定,诱导巨噬细胞消除并抑制基质降解.2016年,Tian等[50]首次在人动脉粥样硬化斑块中发现程序性坏死现象,并在体外建立的泡沫细胞模型中成功通过艾拉介导的声动力治疗达到抑制程序性坏死、激活Caspase-3/8通路促进细胞凋亡的目的.

3.2原卟啉Ⅸ

原卟啉Ⅸ(protoporphyrinⅨ,PpⅨ,见图2(b))是血红素的前体,通过结合线粒体转运蛋白参与血红素代谢[51].原卟啉Ⅸ及其衍生物已广泛应用于光动力和声动力治疗中,达到杀伤癌细胞的目的.已有研究表明,在动脉粥样硬化斑块中,PpⅨ具有显著选择性积累于动脉粥样硬化斑块中的特点,比正常血管壁内原卟啉含量高12倍[52].基于上述特点,PpⅨ在声动力治疗动脉粥样硬化中可作为效果显著的声敏剂.巨噬细胞在动脉粥样硬化形成过程中起着重要作用,斑块中巨噬细胞的表型及数量将影响疾病与斑块的进展[53].近期研究发现,原卟啉Ⅸ可在体外巨噬细胞中积累,使用1.0 MHz及0.5 W/cm2超声参数进行声动力治疗可诱导细胞存活率下降[54].根据流式检测、hoechst 33342和碘化丙啶(propidium iodide,PI)染色发现细胞死亡形式主要以凋亡为主,同时发现了单线态氧的产生及细胞骨架的破坏.

4 结束语

在过去的20年间,有关声动力治疗机制或疗效的研究逐渐增多,然而将其应用于动脉粥样硬化治疗的研究中却是近几年刚刚出现的.本研究主要总结了目前较公认的声动力治疗机制,以及声敏剂在声动力治疗动脉粥样硬化中的应用,着重阐述诸如大黄素、姜黄素及其衍生物、金丝桃素等中药声敏剂的应用及潜在价值.声动力治疗是一种无创、安全、有针对性的治疗手段,具有十分广阔的应用前景,随着中药提取物声敏剂的逐渐涌现,相信不久的将来将实现临床应用.

[1]LOTTA L A.Genome-wide association studies in atherothrombosis[J].European Journal of Internal Medicine,2010,21(2):74-78.

[2]MOZAFFARIAN D,BENJAMIN E J,GO A S,et al.Heart disease and stroke statistics—2012 update:a report from the American Heart Association[J].Circulation,2014,131(4):e29-e322.

[3]FERGUSON J J,KEREIAKES D J,ADGEY A A,et al.Safe use of platelet GPⅡb/Ⅲa inhibitors[J].American Heart Journal,1998,135(4):D40-D51.

[4]NEUVONEN P J,MIKKO N,BACKMAN J T.Drug interactions with lipid-lowering drugs:mechanisms and clinical relevance[J].Clinical Pharmacology and Therapeutics,2007,80(6):565-581.

[5]ROCKSON S G,LORENZ D P,CHEONG W F,et al.Photoangioplasty an emerging clinical cardiovascular role for photodynamic therapy[J].Circulation,2000,102(5):591-596.

[6]CHEN H,ZHOU X,YU G,et al.Recent progress in development of new sonosensitizers for sonodynamic cancer therapy[J].Drug Discovery Today,2014,19(4):502-509.

[7]SGOLASTRA F,PETRUCCI A,GATTO R,et al.Photodynamic therapy in the treatment of chronic periodontitis:a systematic review and Meta-analysis[J].Lasers in Medical Science,2013,28(2):669-682.

[8]MARIA K,KONSTANTINOS T,ARCHONTOULA M,et al.Vulnerable plaque and inflammation:potential clinical strategies[J].Curr Pharm Des,2011,17(37):4190-4209.

[9]MARTIJN T,PAUL B,SCHELLENS J H M,et al.Photodynamic therapy in oncology[J].Oncologist,2006,11(9):1034-1044.

[10]YUMITA N,NISHIGAKI R,UMEMURA K,et al.Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound[J].Jpn J Cancer Res,1989,80(3):219-222.

[11]BAILEY M R,KHOKHLOVA V A,SAPOZHNIKOV O A,et al.Physical mechanisms of the therapeutic effect of ultrasound(a review)[J].Acoustical Physics,2003,49(4):369-388.

[12]KUROKI M,HACHIMINE K H,SHIBAGUCHI H,et al.Sonodynamic therapy of cancer using novel sonosensitizers[J].Anticancer Research,2007,27(6A):3673-3678.

[13]SHI J,CHEN Z,WANG B,et al.Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy[J].ACS Applied Materials and Interfaces,2015,7(51):28554-28565.

[14]ROSENTHAL I,SOSTARIC J Z,RIESZ P.Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound[J].Ultrasonics Sonochemistry,2004,11(6):349-363.

[15]HIROTOMO S,HIROFUMI T,MOTOMU K,et al.Sonodynamic cancer therapy:a non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer[J].Anticancer Research,2011,31(7):2425-2429.

[16]BAKER K G,ROBERTSON V J,DUCK F A.A review of therapeutic ultrasound:biophysical effects[J].Physical Therapy,2001,81(7):1351-1358.

[17]SUSLICK K S.Ultrasound:its chemical,physical and biological effects[M].Weinheim:Vch Publishers,1988.

[18]APFEL R E.Acoustic cavitation:a possible consequence of biomedical uses of ultrasound[J]. British Journal of Cancer Supplement,1982,5(1):140-146.

[19]DAVID C,CONOR M E,COLIN F,et al.Treating cancer with sonodynamic therapy:a review[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group,2015,31(2):107-117.

[20]LI Y,PAN W,PING Z,et al.Apoptosis induced by sonodynamic treatment by protoporphyrinⅨon MDA-MB-231 cells[J].Ultrasonics,2012,52(4):490-496.

[21]XIN S,XU H,JING S,et al.Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy[J].Ultrasonics Sonochemistry,2015,22:7-14.

[22]ZHENG L,SUN X,ZHU X,et al.Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin[J].PLoS One,2014,9(3):e93133.

[23]CHENG J,SUN X,GUO S,et al.Effects of 5-aminolevulinic acid-mediated sonodynamic therapy on macrophages[J].International Journal of Nanomedicine,2013,8(1):669-676.

[24]TAO L,HUI J,SUN Q R,et al.Neuroprotective effects of emodin in rat cortical neurons against beta-amyloid-induced neurotoxicity[J].Brain Research,2010,1347(1):149-160.

[25]QIN H,MAZHAR N,YUEN F W,et al.In vitro anti-fibrotic activities of herbal compounds and herbs[J].Nephrology Dialysis Transplantation,2009,24(10):3033-3041.

[26]CAI J,RAZZAK A,HERING J,et al.Feasibility evaluation of emodin(rhubarb extract)as an inhibitor of pancreatic cancer cell proliferation in vitro[J].Journal of Parenteral and Enteral Nutrition,2008,32(2):357-360.

[27]ESTHER B,GEERT C,NICO H,et al.Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy[J].FASEB Journal,2006,20(6):756-758.

[28]GAO Q,WANG F,GUO S,et al.Sonodynamic effect of an anti-inflammatory agent—emodin on macrophages[J].Ultrasound in Medicine and Biology,2011,37(9):1478-1485.

[29]BUHRMANN C,MOBASHERI A,BUSCH F,et al.Curcumin modulates NF-κB-mediated inflammation in human tenocytes in vitro:role of the phosphatidylinositol 3-kinase-Akt pathway[J]. Journal of Biological Chemistry,2011,286(32):28556-28566.

[30]SAMUHASANEETO S,THONG-NGAM D,KULAPUTANA O,et al.Curcumin decreased oxidative stress,inhibited NF-kappaB activation,and improved liver pathology in ethanol-induced liver injury in rats[J].Journal of Biomedicine and Biotechnology,2009,2009(1):981963.

[31]ISSEI D,YUNKYUNG H,NORIYUKI Y,et al.Inhibitory effect of curcumin on IMP dehydrogenase,the target for anticancer and antiviral chemotherapy agents[J].Bioscience Biotechnology and Biochemistry,2010,74(1):185-187.

[32]WANG F,GAO Q,GUO S,et al.The sonodynamic effect of curcumin on THP-1 cell-derived macrophages[J].Biomed Research International,2013,2013(1):121-128.

[33]SARRIS J,PANOSSIAN A,SCHWEITZER I,et al.Herbal medicine for depression,anxiety and insomnia:a review of psychopharmacology and clinical evidence[J].European Neuropsychopharmacology,2011,21(12):841-860.

[34]EHRENSHAFT M,ROBERTS J E,MASON R P.Hypericin-mediated photooxidative damage of α-crystallin in human lens epithelial cells[J].Free Radical Biology and Medicine,2013,60:347-354.

[35]BOˇZIN B,KLADAR N,GRUJI´C N,et al.Impact of origin and biological source on chemical composition,anticholinesterase and antioxidant properties of some St.John's Wort Species(Hypericum spp.,Hypericaceae)from the central balkans[J].Molecules,2013,18(18):11733-11750.

[36]LI X,GAO L,ZHENG L,et al.The efficacy and mechanism of apoptosis induction by hypericin-mediated sonodynamic therapy in THP-1 macrophages[J].International Journal of Nanomedicine,2015,10:821-838.

[37]KERB R,BROCKM¨OLLER J,STAFFELDT B,et al.Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin[J].Antimicrobial Agents and Chemotherapy,1996,40(9):2087-2093.

[38]LV Y,FANG M,ZHENG J,et al.Low-intensity ultrasound combined with 5-aminolevulinic acid administration in the treatment of human tongue squamous carcinoma[J].Cellular Physiology and Biochemistry,2012,30(2):321-333.

[39]HE Y,XIA X,XU C,et al.5-aminolaevulinic acid enhances ultrasound-induced mitochondrial damage in K562 cells[J].Ultrasonics,2010,50(8):777-781.

[40]BARBARA K,KRISTJAN P.ALA and its clinical impact,from bench to bedside[J].Photochemical and Photobiological Sciences,2008,7(3):283-289.

[41]SONG W,CUI H,ZHANG R,et al.Apoptosis of SAS cells induced by sonodynamic therapy using 5-aminolevulinic acid sonosensitizer[J].Anticancer Research,2011,31(1):39-45.

[42]CHEN H,GAO W,YANG Y,et al.Inhibition of VDAC1 prevents Ca2+-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages[J].Apoptosis,2014,19(12):1712-1726.

[43]RENSEN S S M,DOEVENDANS P A F M,EYS G J J M V.Regulation and characteristics of vascular smooth muscle cell phenotypic diversity[J].Netherlands Heart Journal,2007,15(3):100-108.

[44]CHEN K H,GUO X,MA D,et al.Dysregulation of HSG triggers vascular proliferative disorders[J].Nature Cell Biology,2004,6(9):872-883.

[45]DAN J,SUN X,LI W,et al.5-aminolevulinic acid-mediated sonodynamic therapy promotes phenotypic switching from dedifferentiated to differentiated phenotype via reactive oxygen species and p38 mitogen-activated protein kinase in vascular smooth muscle cells[J].Ultrasound in Medicine and Biology,2015,41(6):1681-1689.

[46]MOORE K J,TABAS I.Macrophages in the pathogenesis of atherosclerosis[J].Cell,2011,145(3):341-355.

[47]IRA T,KEVIN J W,JAN B.Subendothelial lipoprotein retention as the initiating process in atherosclerosis:update and therapeutic implications[J].Circulation,2007,116(16):1832-1844.

[48]WANG H,YANG Y,CHEN H,et al.The predominant pathway of apoptosis in THP-1 macrophagederived foam cells induced by 5-aminolevulinic acid-mediated sonodynamic therapy is the mitochondria-caspase pathway despite the participation of endoplasmic reticulum stress[J]. Cellular Physiology and Biochemistry,2014,33(6):1789-1801.

[49]LI Z,SUN X,GUO S,et al.Rapid stabilisation of atherosclerotic plaque with 5-aminolevulinic acid-mediated sonodynamic therapy[J].Thrombosis and Haemostasis,2015,114(4):793-803.

[50]TIAN F,YAO J,YAN M,et al.5-aminolevulinic acid-mediated sonodynamic therapy inhibits RIPK1/RIPK3-dependent necroptosis in THP-1-derived foam cells[J].Scientific Reports,2016,6:21992.

[51]CHUNG J,CHEN C,PAW B H.Heme metabolism and erythropoiesis[J].Current Opinion in Hematology,2012,19(3):156-162.

[52]PENG C,LI Y,LIANG H,et al.Detection and photodynamic therapy of inflamed atherosclerotic plaques in the carotid artery of rabbits[J].Journal of Photochemistry and Photobiology B Biology,2011,102(1):26-31.

[53]MOORE K J,SHEEDY F J,FISHER E A.Macrophages in atherosclerosis:a dynamic balance[J]. Nature Reviews Immunology,2013,13(10):709-721.

[54]GUO S,SUN X,CHENG J,et al.Apoptosis of THP-1 macrophages induced by protoporphyrinⅨ-mediated sonodynamic therapy[J].International Journal of Nanomedicine,2013,8(13):2239-2246.

Application of sonosensitizers derived from Chinese herb products in sonodynamic therapy for atherosclerosis treatment

KOU Jiayuan1,JIANG Yueqing1,TIAN Ye1,2,YANG Liming1
(1.Department of Pathophysiology,Harbin Medical University,Harbin 150081,China;2.Department of Cardiology,First Affiliated Hospital,Harbin Medical University,Harbin 150001,China)

At present,morbidity of cardiovascular disease induced by atherosclerosis(AS)is becoming higher.Besides expensive intervention and bypass surgery,it is extremely urgent to look for a popular and effective method for the treatment of AS.Sonodynamic therapy(SDT)is a non-invasive targeting therapy,and is promising for AS treatment based on the SDT-related research.Sonosensitizer,an application of SDT,is an entry points of the SDT investigation.Therefore,different sonodynamic effects with different sonosensitizers are investigated by researchers in AS treatment.In recent years,it is found that sonosensitizers derived from Chinese herb products play an important role in SDT,exerting potent sonodynamic effects for AS treatment.This review briefly summarizes the action of SDT and relevant development of SDT with emodin,curcumin,hypericin and itsderived derivatives as sonosensitizers for AS treatment.

sonodynamic therapy;sonosensitizer;Chinese herb product;atherosclerosis

R 285

A

1007-2861(2016)03-0318-08

10.3969/j.issn.1007-2861.2016.03.012

2016-04-19

国家自然科学基金资助项目(81571833,81271734,81000688);地方高校国家级大学生创新创业训练计划资助项目(201510226011)

杨力明(1978—),男,教授,博士,研究方向为中药声敏剂介导的声动力治疗动脉粥样硬化.

E-mail:cooperationyang@126.com

猜你喜欢
艾拉姜黄提取物
太仓艾拉德物流设备有限公司
虫草素提取物在抗癌治疗中显示出巨大希望
中药提取物或可用于治疗肥胖
太仓艾拉德物流设备有限公司
艾拉的任务
Curcumin in The Treatment of in Animals Myocardial ischemia reperfusion: A Systematic review and Meta-analysis
神奇的落叶松提取物
姜黄提取物二氧化硅固体分散体的制备与表征
姜黄素对人胃癌AGS细胞自噬流的作用
紫地榆提取物的止血作用