晋西黄土区水肥调控对苹果玉米间作系统土壤含水量及分布的影响

2016-09-20 09:25高飞王若水许华森
中国水土保持科学 2016年4期
关键词:间作土壤水分水肥

高飞,王若水,许华森

(北京林业大学水土保持学院,100083,北京)



晋西黄土区水肥调控对苹果玉米间作系统土壤含水量及分布的影响

高飞,王若水†,许华森

(北京林业大学水土保持学院,100083,北京)

为探求适用于晋西黄土区果农间作系统的水肥管理制度,研究灌水施肥对土壤含水量的影响,避免盲目施肥和灌溉造成环境污染、资源浪费以及水土流失。以晋西黄土区典型的苹果+玉米间作系统为研究对象,设置双因素3水平水肥耦合试验,分析不同水肥调控下,玉米灌浆期和成熟期土壤水分空间分布及土壤水分效应。试验设置灌水量3水平分别为:田间持水量的50%、65%和85%,追肥量3水平分别为:N 289 kg/hm2+ P2O5118 kg/hm2+K2O 118 kg/hm2(F1,70%经验施肥量)、N 412.4 kg/hm2+P2O5168.8 kg/hm2+K2O 168.8 kg/hm2(F2,100%经验施肥量)、N 537 kg/hm2+ P2O219 kg/hm2+K2O 219 kg/hm2(F3,130%经验施肥量)。结果显示:灌浆期试验组较对照组土壤含水量最高提高7.6%,成熟期最高可提高10.9%,试验组较对照组土壤含水量水平分布差异变小;灌溉和施肥对土壤水分的垂直分布影响较大,可显著提高作物生育后期30~60 cm土层土壤含水量,可以缓解间作系统种间的水分竞争;试验组W3F1在玉米灌浆期土壤含水量最高,所以,推测其为最利于间作系统增产的水肥调控模式。本研究可为晋西黄土区果农间作系统灌溉和施肥管理,提供理论基础和技术支撑。

水肥耦合; 果农间作; 灌浆- 成熟期; 土壤含水量; 晋西黄土区

农林复合系统对控制水土流失、恢复生态平衡和提高经济收入都有重要作用,现已成为晋西黄土区农业经营的主要模式[1];但该地区土壤贫瘠,水肥资源有限,农林复合种植,必然引起强烈的种间水分和养分竞争[2-5],这不仅限制着作物产量的提高,影响果农经济收入,还会引起土地生产力的退化,破坏土壤结构,加剧水土流失。

有效缓解农林复合系统种间水肥竞争的方法,就是在水肥匮乏的关键时期,进行水和肥的补给。目前,国内外对水肥调控的研究主要集中于单作系统[6-9]。对农林复合系统水肥调控研究尚少,尤其在晋西黄土区,缺乏适于果农间作系统的水肥管理制度;而在针对复合农林系统的研究中,多着重于天然条件下,作物与林木种间关系的研究[11-12]。在不同水肥管理措施下,农林复合系统种间竞争与互补机制的研究鲜有报道。

晋西黄土区气候干旱,果农间作系统土壤中的水分主要靠天然降水补给,水分竞争成为限制作物生长的重要因素[13-14];因此,探究果农间作条件下土壤水分运动机制,对水肥调控的响应有重要理论价值。笔者采用不同的施肥和灌溉处理,对果农间作系统土壤水分质量分数及分布状况进行研究,探究不同水肥调控措施下,苹果(Malus pumila)×玉米(Zea mays L)间作系统种间水分竞争与互补机制,旨在为晋西黄土区果农间作系统灌溉和施肥管理制度的制定,提供理论依据。

1 研究区概况

试验区位于山西吉县国家野外科学试验站石山湾试验基地(E 110°31′~110°56′,N 36°00′~36°13′),属于黄土残垣沟壑区,表层为第四纪风积黄土,呈微碱性反应(pH7.9),土壤贫瘠,有机质质量分数在1%以下。属温带大陆性气候,年平均降水量575.9 mm,主要集中在6—8月,其约占全年降水量的80.6%,年平均蒸发量为1 723.9 mm,4—7月蒸发量占全年蒸发量的54%。年平均无霜期170 d左右,平均气温10 ℃,平均积温3 357.9 ℃。

2 试验设计与方法

2.1试验设计

2.1.1灌水量设定试验于2014年4—9月进行。采用当地典型果农间作模式——苹果+玉米,根据该地区多年月平均降水量以及苹果和玉米的月平均耗水量[14-17],在作物需水关键期(6—9月)进行灌水处理,灌溉方式采用小畦灌溉。

灌水量根据苹果和玉米适宜的土壤水分范围[14-17],设定灌溉3水平分别为:0~60 cm土层平均重量含水量占田间持水量(Fc)的50%、65%与85%(田间持水量23.4%),并在玉米需水关键时期(拔节期、抽雄期和灌浆初期)进行灌溉。

灌水定额计算公式为

M=H×10 000(θw-θ0)n。

式中:M为灌水量,m3·hm2;H为土壤计划湿润层深度(0.6 m),m;θw为设定灌溉水平下土壤质量含水量,%;θ0为当时的土壤质量含水量,%;n为H(0.6 m)土层内的土壤孔隙率,%。

试验期间降雨及灌水情况如图1所示。2014年6—10月份累计降水量为307.16 mm。

图1 2014年6—10月降水量及灌溉量Fig.1 Precipitation and irrigation from June to October in 2014

2.1.2施肥量设定根据当地的施肥习惯和经验,肥料类型选用N、P、K复合肥,施肥量设定3个施肥水平,即:N 289 kg/hm2+ P2O5118 kg/hm2+ K2O 118 kg/hm2(F1,70%经验施肥量)、N 412.4 kg/hm2+P2O5168.8 kg/hm2+K2O 168.8 kg/hm2(F2,100%经验施肥量)、N 537 kg/hm2+P2O219 kg/hm2+K2O 219 kg/hm2(F3,130%经验施肥量)。生育期内,试验肥随灌溉水均匀施入土壤中,施肥灌溉具体时间及用量如表1所示。

表1 试验设计

根据双因素3水平试验设置,共设9个处理,另设1组空白对照处理,每个处理重复3次,随机区组设计。试验苹果树为4年生,株高2.2 m,胸径4.2 cm,冠幅1.5 m,冠高1.2 m,尚未开始坐果,株行距为4 m×5 m;玉米株行距为0.5 m×0.6 m,每个小区共4颗果树,小区边缘距离树1 m(图2),小区面积为42 m2。

图2 试验小区及水分监测点布设图Fig.2 Experiment plot and water monitoring points

2.2土壤水分监测

采用105 ℃烘干法测土壤质量含水量。在垂直于果树行方向上布设3条取样线(图2),样线上布设取样点。土壤水分采样点从距树行0.5 m开始,每隔1 m布设1个取样点,取样深度为0~10、10~20、20~30、30~40、40~50和50~60 cm。分别在灌浆期(8月27日)和成熟期(9月25日)进行2次土壤水分监测。

2.3数据处理

运用Excel2010软件进行数据统计及图表制作,运用SPSS16.0软件进行方差分析及多重比较。为了更好的表述水肥耦合对各层次土壤含水量的影响,引入农林间作系统水肥耦合的土壤水分效应(农林复合系统中,将林木对间作系统水分的综合影响程度,定义为农林间作系统的土壤水分效应[1]。),其计算公式为:

E=(Sm-Sr)/ Sr×100%。

式中:E为土壤水分效应,%;Sm为某水肥处理模式某土层平均含水量,%;Sr为相应的空白对照相应层次的土壤含水量,%。

3 结果与分析

3.1水肥调控对土壤含水量的影响

由表2可知,施肥量、灌水量以及水肥交互作用均对土壤含水量影响显著(P<0.01);从F值可知,肥料的影响略大于灌溉,水肥交互效应对土壤含水量的影响较小。试验组土壤含水量显著大于对照(P<0.05)。灌浆期,试验组W1F1和W3F1土壤含水量分别为19.64%和19.85%,显著高于其他组。成熟期,试验组W1F1土壤含水量高达20.04%,显著高于其他组。

表2 灌水量与施肥量因素方差分析

注:*表示0.05水平上差异显著,**表示0.01显著性水平上差异显著。不同字母表示在P<0.05下的显著性。CK:对照。下同。Note:*indicates significant difference at P < 0.05,** indicates significant difference at P < 0.01.Different small letters in the same column indicate significant difference among treatments at P < 0.05.CK:Control.The same as below.

3.2水肥调控对土壤含水量水平分布的影响

灌浆期各处理土壤含水量,均随距树行距离的增加而增加(图3)。对照组及W2F2土壤水分水平分布达到差异显著水平(P<0.05);其他试验组,不同距离处土壤含水量之间差异不显著(P>0.05)。

成熟期相同灌溉水平,土壤含水量水平分布较相似(图4)。灌溉水平为W2的3个试验组以及CK(对照)组土壤含水量,均随距树行距离的增加而增加;试验组W1F3和W2F3土壤含水量水平分布较平稳。试验组W1F1、W3F1、W1F2和W3F2,表现为距树行0.5 m处间作区的土壤含水量显著高于作物区的土壤含水量(P<0.05)。

3.3水肥调控对土壤含水量垂直分布的影响

灌浆期,果农间作系统土壤含水量垂直分布达到差异显著水平(P<0.05)。随着土层深度的增加,土壤含水量逐渐增加(图5),且多在20 cm土层处,发生差异性变化。

作物成熟期,试验组的土壤含水量均随着土层深度的增加先减少后增大(图6)。在20~30 cm处出现极小值。试验组及对照组土壤含水量均在0~30 cm土层内单调递减。在30~60 cm土层中,对照组的含水量持续减小,而试验组含水量则逐渐增加。

图3 玉米灌浆期各处理土壤水分水平分布Fig.3 Horizontal distribution of soil moisture content at filling stage of maize

图4 玉米成熟期各处理土壤水分水平分布Fig.4 Horizontal distribution of soil moisture content at maturing stage of maize

图5 玉米灌浆期期各处理土壤水分垂直分布Fig.5 Vertical distribution of soil moisture content at filling stage of maize

图6 玉米成熟期各处理土壤水分垂直分布Fig.6 Vertical distribution of soil moisture content at maturing stage of maize

3.4水肥调控对土壤水分效应的影响

灌浆期及成熟期土壤水分效应垂直分布趋势大体一致(表3),从表层到深层表现为增、减、增的变化趋势,在10~20 cm土层处出现极大值,在20~30 cm土层处出现极小值,且灌浆期30~60 cm土层之间水分效应差异不显著,成熟期0~20 cm土层之间水分效应差异不显著。灌浆期土壤水分效应均值表现为W3F1> W1F1> W3F3> W3F2> W2F1> W1F2> W2F3> W1F3> W2F2;成熟期平均水分效应均值表现为W1F1> W1F2> W3F2> W3F1> W2F1> W1F3> W2F3> W3F3> W2F2;试验组W3F1在灌浆期水分效应最高,试验组W2F2在2个生育期,均表现为水分负效应。

4 讨论

4.1水肥调控对土壤含水量的影响

不同水肥调控模式对间作系统的储水及保水能力影响差异较大。施肥水平为F1的组显著高于施肥水平为F2和F3的组,因此,本试验中施肥量525 kg/hm2为最适宜的施肥量。灌浆期作物需要有充足的水分作为溶媒,才能保证把茎、叶中所积累的营养物质顺利地运转到籽粒中去[20],这一时期良好的水分供应是产量形成的基础。此时期,试验组W3F1土壤含水量最高,所以推测这一水肥配比,是最利于间作系统增产的水肥调控模式。成熟期作物生长势较弱,耗水量处于一生中最少的时期,加之监测前有较为充沛的降水,表现为成熟期土壤含水量大于灌浆期。

4.2水肥调控对土壤含水量水平分布的影响

灌浆期各处理的土壤含水量,均随距树行距离的增加而增加。灌浆期,植物生理活性均较强,距树行较近时,果树和农作物的生态位重叠大,水分竞争激烈;而随着距树行距离的增加,生态位重叠减少,种间水分竞争变弱[21]。同时,4年生果树的郁闭度小,远离果树行,玉米植株相对高大,种间遮阴明显,减弱地表蒸发,导致土壤含水量逐渐升高,这与高路博等[21]在同一地区,对同龄果树的研究结果一致。

表3 土壤水分效应

注:不同字母表示在P<0.05下的显著性.Note:Different small letters in the same column indicate significant difference among treatments at P < 0.05.

除W2F2及CK外,距树行不同距离处,土壤含水量之间差异不显著。张恩和等[22]在对复合系统根系时空分布特征进行研究时发现,间作系统的根系会向竞争弱势的一方呈偏态分布;所以,果农间作系统里,作物作为竞争弱势一方根系更多的偏向种内一侧,导致间作区内,水平方向水分竞争差异较小。此外,试验过程中,向土壤中补充了水分和养分,有效的缓解了种间竞争。

成熟期土壤含水量水平分布较灌浆期差异大,作物成熟期根系的吸收活动较弱。廖荣伟等[23]对玉米根系后期分布进行研究,发现玉米成熟期根系水平幅度较乳熟期窄,加之监测前较为充沛的降雨,可以推测这一时期的种间竞争,对水分水平分布影响较小,土壤质地、结构及持水能力可能是土壤水分水平分布的主要影响因素。W1、W3以及CK土壤水分水平分布与树行距呈负相关。其原因可能是作物根系对水分的截持能力较弱,而果树强大的根系网,可以有效地截持土壤水分,表现为近果树区土壤含水量显著高于作物区。而灌溉水平为W2的试验组,水分分布却截然相反,张岁岐等[24]的研究表明,生育后期灌水可以有效的减少表层根系的衰退;然而过高和过低的灌水,都不利于根系的生长[25-27],所以推测灌溉水平为W2的试验组,可使玉米根系在生育后期仍然维持较高的活力。此外,也可能是不同田块之间的差异造成此现象。

4.3水肥调控对土壤含水量垂直分布的影响

灌浆期,果农间作系统的土壤水分在垂直方向上,总体呈现随着土层深度的增加而增加,试验组及对照组分布无明显差异。赵秉强等[28]对间作系统,玉米根系分布及活性的研究表明,玉米根系呈“T”形分布,表层(0~20 cm)约占根系总量的75%,且根重量随土层深度的增加而逐渐递减;所以,土壤水分在表层竞争较激烈,加之地表蒸发的影响,表现为土壤水分质量分数逐层递增。这一研究结果与云雷等[29]在同一地区的研究结果相同。

成熟期,试验组土壤水分随土层深度的增加先减小后增大,而对照组土壤含水量逐渐递减。研究区受强对流天气的影响,多为短时局地雷暴降雨[30],降雨易产生地表径流而损失,无法对深层土壤水分进行补给,监测前的降水仅仅对上层(0~30 cm)土壤含水量有较好的补给。王虎等[31]对灌水施肥条件下,土壤水分分布的研究发现,灌水可以增加土壤水分的竖向运动,试验组的畦灌,可有效的补给30~60 cm土层的土壤含水量。盛钰等[7]用水肥耦合对玉米田间土壤水分运移的影响研究发现:玉米生育后期,根系活力降低,在30 cm土层处,根系吸收活力最大;所以,各试验组土壤水分表现为先减少后增大,并在30 cm土层处出现极小值,而对照组,由于30~60 cm土层的土壤,长期得不到水分补给,加之植物的吸收利用,土壤含水量持续递减。

4.4水肥调控对土壤含水量水分效应的影响

不同水肥调控模式,土壤水分效应垂直分布特征相似,在10~20 cm土层处出现极大值,在20~30 cm土层处出现极小值,这可能与水肥调控下,玉米不同生育期根系分布及吸水性能的差异有关。黄高宝[32]对小麦玉米间作系统根系分布研究发现,水肥可以促进根系向下层分布;王启现等[33]的研究也发现,施肥可以改变玉米根系在表土层(0~20 cm)及亚表土层(20~40 cm)的分布比例:因此推测,水肥处理的试验组玉米主要吸水区在20~30 cm土层处,而对照组作物主要吸水区在10~20 cm土层。所以,水分效应分别在10~20和20~30 cm土层出现极大值和极小值。这需要进一步的试验来证实。

试验组W3F1在灌浆期,平均水分效应值最高可达8.91%,试验组W2F2在2个生育期,均表现为水分负效应,灌浆期为-2.36%,成熟期为-0.21%;所以,在本次研究中,当灌水量为1 300 m3/hm2、施肥量总量为525 kg/hm2时,是最利于作物产量形成的水肥管理模式,而当灌水量为700 m3/hm2、施肥量为750 kg/hm2时,间作系土壤保水储水能力最差。

5 结论

在本试验中,施肥总量为525 kg/hm2的处理,使间作系统水分状况优于施肥总量为750 kg/hm2和975 kg/hm2的处理,试验组W3F1在玉米灌浆期,土壤含水量最高;所以,拔节期灌水300 m3/hm2,抽雄期灌水300 m3/hm2,灌浆期灌水700 m3/hm2,拔节期不施肥,抽雄期施肥262.5 kg/hm2,灌浆期施肥262.5 kg/hm2,可使间作系统在灌浆期维持较好的水分状态,从而利于系统产量的形成。合理的灌水、施肥,可以缓解果农间作系统的种间竞争。灌浆期植物根系吸水活性大,种间竞争激烈,而试验组较对照组土壤水分水平分布差异小,说明合理的水肥制度,可以缓解间作系统种间的水分竞争;灌水、施肥对土壤水分的垂直分布影响较大,可显著提高作物生育后期,30~60 cm土层的土壤含水量。

[1]云雷.晋西黄土区果农间作系统种间关系研究[D].北京:北京林业大学,2011:12-14.

Yun Lei.Research on interspecific relationship in economic tree and crop intercropping system on loess region of western Shanxi Province [D].Beijing:Bejing Forestry University,2011:12-14.(in Chinese)

[2]Miller A W,Pallardy S G.Resource competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri [J].Agroforestry Systems,2001,53(3):247.

[3]Gillespie A R,Jose S,Mengel D B,et al.Defining competition vectors in a temperate alley cropping system in the midwestern USA[J].Agroforestry Systems,2000,48(1):25.

[4]Casper B B,Jackson R B.Plant competition underground [J].Annual Review of Ecology and Systematics,1997,28(1):545.

[5]Bazie H R,Bayala G,Zombre J,et al.Separating competition-related factors limiting crop performance in an agroforestry parkland system in Burkina Faso[J].Agroforestry Systems,2012,84(3):377.

[6]吴立峰,张富仓,周罕觅,等.不同滴灌施肥水平对北疆棉花水分利用率和产量的影响[J].农业工程学报,2014,30(20):137.

Wu Lifeng,Zhang Fucang,Zhou Hanmi,et al.Effect of drip irrigation and fertilizer application on water use efficiency and cotton yield in North of Xinjiang [J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(20):137.(in Chinese)

[7]盛钰,赵成义,贾宏涛.水肥耦合对玉米田间土壤水分运移的影响[J].干旱区地理,2005,28(6):811.

Sheng Yu,Zhao Chengyi,Jia Hongtao.Effects of water and fertilizer coupling on soil moisture movement in corn fields[J].Arid Land Geography,2005,28(6):811.(in Chinese)

[8]王增丽,冯浩,温广贵.不同水肥调控措施对土壤水分及制种玉米产量的影响[J].排灌机械工程学报,2015,33(2):152.

Wang Zengli,Feng Hao,Wen Guanggui.Effects of different water and nutrient schedules on farmland moisture and seed maize yield[J].Journal of Drainage and Irrigation Machinery Engineering (JDIME) ,2015,33(2):152.(in Chinese)

[9]李巧珍,郭家选,徐春英,等.水肥调控措施对华北农田土壤水分及冬小麦产量的影响[J].麦类作物学报,2014,34(3):372.

Li Qiaozhen,Guo Jiaxuan,Xu Chunying,et al.Effects of water-fertilizer measures on soil moisture and winter wheat yield in Huabei Area [J].Journal of Triticeae Crops,2014,34(3):372.(in Chinese)

[10]赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792.

Zhao Ying,Zhang Bin,Wang Mingzhu.Assessment of competition for water,fertilizer and light between components in the alley cropping system [J].Acta Ecologica Sinica,2006,26(6):1792.(in Chinese)

[11]赵英,张斌.低丘红壤区农林间作系统水分利用竞争性评价[J].土壤,2012,44(4):671.

Zhang Ying,Zhang Bin.Competitive assessment of water use in alley cropping system in low hilly red soil region [J].Soils,2012,44(4):671.(in Chinese)

[12]张向前,黄国勤,卞新民,等.间作对玉米品质、产量及土壤微生物数量和酶活性的影响[J].生态学报2012,32(22):7082.

Zhang Xiangqian,Huang Guoqin,Bian Xinmin,et al.Effects of intercropping on quality and yield of maize grain,microorganism quantity,and enzyme activities in soils[J].Acta Ecologica Sinica,2012,32( 22) :7082.(in Chinese)

[13]乔艳琴,樊军,高宇,等.黄土高原水蚀风蚀交错区植被间土壤水分竞争[J].自然资源学报,2014,29(5):801.

Qiao Yanqin,Fan Jun,Gao Yu,et al.Competition for soil moisture between different vegetation types in the water and wind crisscross region of the Loess Plateau[J].Journal of natural resources,2014,29(5):801.(in Chinese)

[14]任玉忠,王水献,谢蕾,等.干旱区不同灌溉方式对枣树水分利用效率和果实品质的影响[J].农业工程学报,2012,28(22):95.

Ren Yuzhong,Wang Shuixian,Xie Lei,et al.Effects of irrigation methods on water use efficiency and fruit quality of jujube in arid area[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(22):95.(in Chinese)

[15]任丽雯,王兴涛,刘明春,等.干旱胁迫对土壤水分动态及玉米水分利用效率影响研究[J].中国农学通报,2015,31(32):142.

Ren Liwen,Wang Xingtao,Liu Mingchun,et al.Effects of drought stress on soil moisture dynamics and water use efficiency in corn[J].Chinese Agricultural Science Bulletin,2015,31(32):142.(in Chinese)

[16]冯鹏,王晓娜,王清郦,等.水肥耦合效应对玉米产量及青贮品质的影响[J].中国农业科学,2012,45(2):376.

Feng Peng,Wang Xiaona,Wang Qingli,et al.Coupling effect of water and fertilizer on yield and silage quality of maize[J].Scientia Agricultura Sinica,2012,45(2):376.(in Chinese)

[17]张建军,樊廷录,党翼,等.密度与氮肥运筹对陇东旱塬全膜双垄沟播春玉米产量及生理指标的影响[J].中国农业科学,2015,48(22):4574.

Zhang Jianjun,Fan Tinglu,Dang Yi,et al.The effects of density and nitrogen management on the yield and physiological indices of spring maize under plastic-covered ridge and furrow planting in loess plateau east of Gansu[J].Scientia Agricultura Sinica,2015,48(22):4574.(in Chinese)

[18]周罕觅,张富仓,Roger Kjelgren,等.水肥耦合对苹果幼树产量、品质和水肥利用的效应[J].农业机械学报,2015,46(12):173.

Zhou Hanmi,Zhang Fucang,Roger Kjelgren,et al.Effects of water and fertilizer coupling on yield,fruit quality and water and fertilizer use efficiency of young apple tree[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(12):173.(in Chinese)

[19]周振民.黄土高原丘陵沟壑区苹果园水肥耦合试验研究[J].灌溉排水学报.2009,28(2):109.

Zhou Zhenmin.Water and fertilizer coupling experiment on the apple orchard in loess plateau region[J].Journal of Irrigation and Drainage,2009,28(2):109.(in Chinese)

[20]张继澍.植物生理学[M].北京:高等教育出版社,2006:54-58.

Zhang Jixu.Plantphysiology[M].Beijing:Higher Education Press,2006:54-58.(in Chinese)

[21]高路博,毕华兴,许华森,等.晋西黄土区幼龄苹果+花生间作地土壤水分的时空分布特征[J].中国水土保持科学,2013,11(4):93.

Gao Lubo,Bi Huaxing,Xu Huasen,et al.Spatial and temporal distribution of soil moisture in young Malus pumila +Arachis hypogaea intercropping system on the Loess Plateau of West Shanxi Province[J].Science of Soil and Water Conservation,2013,11(4):93.(in Chinese)

[22]张恩和,黄高宝.间套种植复合群体根系时空分布特征[J].应用生态学报,2003,14(8):1301.

Zhang Enhe,Huang Gaobao.Temporal and spatial distribution characteristics of the crop root in intercropping system[J].Chinese Journal of Apple ecology,2003,14(8):1301.(in Chinese)

[23]廖荣伟,刘晶淼,白月明,等.玉米生长后期的根系分布研究[J].中国生态农业学报,2014,22(3):284.

Liao Rongwei,Liu Jingmiao,Bai Yueming,et al .Spatial distribution and temporal variation of maize root in the soil under field conditions[J].Chinese Journal of Eco-Agriculture,2014,22(3):284.(in Chinese)

[24]张岁岐,周小平,慕自新,等.不同灌溉制度对玉米根系生长及水分利用效率的影响[J].农业工程学报,2009,25(10):1.

Zhang Suiqi,Zhou Xiaoping,Mu Zixin,et al.Effects of different irrigation patterns on root growth and water use efficiency of maize[J].Transactions of the CSAE,2009,25(10):1.(in Chinese)

[25]刘志刚,王纪章,徐云峰,等.基质配方和灌溉方式对生菜根系和产量的影响[J].农业机械学报,2014,45(2):156.

Liu Zhigang,Wang Jizhang,Xu Yunfeng,et al.Lettuce yield and root distribution in substrates under drip irrigation and micro-sprinkler irrigation[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(2):156.(in Chinese)

[26]徐国伟,王贺正,翟志华,等.不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J].农业工程学报,2015,31(10):132.

Xu Guowei,Wang Hezheng,Zhai Zhihua,et al.Effect of water and nitrogen coupling on root morphology and physiology,yield and nutrition utilization for rice[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(10):132.(in Chinese)

[27]蔡红光,袁静超,闫孝贡,等.不同灌溉方式对春玉米根系分布、养分累积及产量的影响[J].玉米科学,2014,22(4):109.

Cai Hongguang,Yuan Jingchao,Yan Xiaogong,et al .Effect of irrigation on root distribution,nutrient accumulation and grain yield in spring maize[J].Journal of Maize Sciences,2014,22(4):109.(in Chinese)

[28]赵秉强,张福锁,李增嘉,等.间套作条件下作物根系数量与活性的空间分布及变化规律研究 Ⅱ.间作早春玉米根系数量与活性的空间分布及变化规律[J].作物学报,2001,27(6):974.

Zhao Bingqiang,Zhang Fusuo,Li Zengjia,et al .Vertical distribution and its change of root quantity & activity of crops in the “ winter wheat‖ early spring maize /summer maize” cropping SystemⅡ :the vertical distribution and its changes of root quantity& activity of the early spring inter-planted maize[J].Acta Agronomica Sinica,2001,27(6):974.(in Chinese)

[29]云雷,毕华兴,任怡,等.晋西黄土区果农间作界面土壤水分分布[J].东北林业大学学报,2009,37(9):70.

Yun Lei,Bi Huaxing,Ren Yi,et al.Soil moisture distribution at fruit crop intercropping boundary in the Loess Region of Western Shanxi[J].Journal of Northeast Forestry University ,2009,37(9):70.(in Chinese)

[30]纳磊.晋西黄土区嵌套流域场降雨径流过程及其模拟研究[D].北京:北京林业大学,2008:27-28.

Na Lei.Study on rainfall-runoff process and the simulation in the watershed on the Loess Plateau[D].Beijing:Beijing Forestry University,2008:27-28.(in Chinese)

[31]王虎,王旭东,赵世伟.滴灌施肥条件下土壤水分和速效钾的分布规律[J].土壤通报,2011,42(1):27.

Wang Hu,Wang Xudong,Zhao Shiwei.Soil water and available K in Lou Soil under drip fertilization[J].Chinese Journal of Soil Science,2011,42(1):27.(in Chinese)

[32]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53.

Huang Gaobao,Zhang Enhe.Coordinating of root-water-fertilizer relation of spring wheat-spring corn intercropping system under regulated deficit irrigation[J].Transactions of the CSAE,2002,18(1):53.(in Chinese)

[33]王启现,王璞,杨相勇,等.不同施氮时期对玉米根系分布及其活性的影响[J].中国农业科学,2003,36(12):1469.

Wang Qixian,Wang Pu,Yang Xiangyong,et al.Effects of nitrogen application time on root distribution and its activity in maize[J].Scientia Agricultura Sinica,2003,36(12):1469.(in Chinese)

Effects of water and fertilizer coupling on soil moisture content and distribution in apple and maize intercropping system in the loess region of western Shanxi Province

Gao Fei,Wang Ruoshui,Xu Huasen

(School of Soil and Water Conservation,Beijing Forestry University,100083,Beijing,China)

[Background] The fragile ecosystem in the Losses Plateau is facing the crisis of degradation at present,which seriously impede the development of local economy.Agroforestry system which can restore the ecological balance,reduce the soil and water loss amount thus increase the economic income has become the main agricultural practice recently in losses region of west Shanxi province.However,the unreasonable management for irrigation and fertilization in agroforestry system may also increase the interspecific competition,which may cause the reduction of yields even the occurrence of soil erosion.Therefore,it is essential to find a more effective and economical irrigation and fertilization method in agroforestry of this area to ease the interspecific competition and conserve both the moisture and soil.[Methods] An experiment of water and fertilizer coupling with 2 factors (irrigation and fertilizer) and 3 application rate levels was carried out in a typical apple×maize intercropping system in the loess region of Shanxi Province.The effect of different irrigation and fertilization regimes on soil moisture especially the spatial and temporal distribution at filling and maturing stage of maize were analyzed.There were 9 treatments in the study based on the irrigation and fertilization coupling (W1F1,W2F1,W3F1,W1F2,W2F2,W3F2,W1F3,W2F3,and W3F3).The regimes were designed based on 3 irrigation levels:a) Low,(W1),50% Fc (field capacity); b) Medium,(W2),65% Fc; and c) High,(W3),85% Fc.The fertilizer levels were:F1,(N (289 kg/ha)+ P2O5(118 kg/ha) + K2O (118 kg/ha));F2(N (412.4 kg/ha)+ P2O5(168.8 kg/ha) + K2O (168.8 kg/ha)); F3(N (537 kg/ha) + P2O5(219 kg/ha) + K2O (219 kg/ha)); and CK (no irrigation and fertilization throughout the growth season).All irrigation and fertilizer application amount were set up based on the water and nutrients requirements for maize and apple trees in this area.[Results] The application of irrigation and fertilization enhanced soil moisture by 7.6% than CK at filling stage,and 10.9% at maturing stage.The maximum soil moisture achieved in W3F1treatment at filling stage.There was no significant difference in soil moisture along the distances from the tree line to maize in the plot,suggesting that the reasonable irrigation and fertilization alleviated the soil water competition between different species in intercropping system.Moreover,the soil moisture decreased firstly with the increase of soil depth within 0-30 cm depth and then increased whereas the trend maintained constantly the soil moisture decreased with the increase of soil depth (0-60 cm) in CK.Accordingly,the application of water and fertilizer increased the soil moisture in deep soil layer (30-60 cm) significantly at maturing stage.[Conclusions] According to the results in jointing-filling stage,the soil moisture (0-60 cm) was optimal when the total irrigation and fertilizer amount were 1 300 m3/ha and 525 kg/ha,respectively.Consequently,the results of this study may provide theoretical basis and technical support for the local farmers to manage water and fertilizer in a more effective way for intercropping system in the loess region of western Shanxi Province.

fertilizer coupling; fruit crop intercropping; filling-maturation stage; soil moisture content; the loess region of western Shanxi Province

2015-09-13

2016-01-10

项目名称:国家自然科学基金“晋西黄土区果农间作系统的水肥耦合试验研究”(31300530)

高飞(1991—),女,硕士研究生。主要研究方向:复合农林。E-mail:15201443407@163.com

简介:王若水(1983—),男,博士,讲师。主要研究方向:农业水土资源高效利用,盐碱地水盐调控,复合农林。E-mail:wrsily_2002@163.com

S274.3

A

1672-3007(2016)04-0094-11

10.16843/j.sswc.2016.04.012

猜你喜欢
间作土壤水分水肥
不同间作模式对山苍子光合特性及其栽培土壤水分和养分的影响
雅苒致力于推动水肥一体化
“水肥一体”新系统 助力增收有一手
磷素添加对土壤水分一维垂直入渗特性的影响
不同间作物对连作葡萄生长影响初探
核桃柴胡间作技术
浅谈水肥一体化技术在北方贫困山区的应用与推广
Spatial and temporal variations of the surface soil moisture in the source region of the Yellow River from 2003 to 2010 based on AMSR-E
马铃薯/玉米间作栽培对土壤和作物的影响
基于水肥耦合模型的上海地区设施番茄水肥方案研究