陕北黄土区植被恢复对切沟发育速率的影响

2016-09-20 09:25杨松张岩阿尼克孜肉孜李宏钧刘彦
中国水土保持科学 2016年4期
关键词:淤地坝覆盖度植被

杨松,张岩,阿尼克孜·肉孜,李宏钧,刘彦

(北京林业大学,水土保持与荒漠化防治教育部重点实验室,100083,北京)



陕北黄土区植被恢复对切沟发育速率的影响

杨松,张岩†,阿尼克孜·肉孜,李宏钧,刘彦

(北京林业大学,水土保持与荒漠化防治教育部重点实验室,100083,北京)

切沟是黄土高原常见的地貌形态,是流域产沙的主要来源,而植被常被看作抑制切沟发育的关键因子,为探究退耕还林(草)工程以来切沟发育速率的特征,本研究使用吴起研究区间隔6年的2期同时相QuickBird影像和分辨率为5 m的DEM,应用GIS技术分析研究区内的切沟发育速率及其影响因子。结果表明:2007—2013年研究区内小流域的年均切沟面积变化比例均<0.5%,其中无淤地坝小流域的年均切沟面积变化比例为0.13%,淤地坝小流域的年均切沟面积变化比例为0.12%;相关分析表明:在该研究区内沟间地的植被覆盖度是影响切沟发育的最主要影响因子;通过对30个无淤地坝小流域的年均切沟面积变化比例和植被覆盖度做非线性回归(R2=0.713)可得,当植被覆盖度>0.6时,其抑制切沟发育的效果最明显;方差分析表明:其他影响因子值(植被覆盖度和地貌因子)相近的条件下,有无淤地坝的6组小流域切沟发育速率无显著差异。总之,沟间地植被覆盖度是影响切沟发育的主要影响因子,而淤地坝对发育在沟缘线上的切沟无显著影响,促进植被恢复有利于抑制切沟发育。

黄土地区; 切沟发育速率; 植被覆盖度; 淤地坝; GIS; QuickBird影像

切沟是黄土高原常见的地貌形态,以不能横过妨碍耕作为主要特征[1],是流域产沙的主要来源[2]。切沟侵蚀被看作一种临界现象[3-4],影响其发生、发展的因素包括气候、植被、地形、地质以及人类活动等[1],而其中植被和土地利用常被看作比气候更重要的影响因子[4-5]。Li Zhen等[6]则将植被因子引入地貌临界模型中来预测切沟面积增长率;在晋西黄土区李镇等[7]通过回归分析得到覆盖度大于60%的植被在抑制切沟发育上效果显著;Li Yong等[8]和Li Zhen等[6]在黄土高原地区的研究均表明,流域沟间地的土地利用类型中林草地面积比例增加能够抑制切沟的发育;切沟的形成和发育与坡面侵蚀高度相关,通过人为方式对坡面进行综合治理能够有效地抑制切沟的发育[9],张岩等[10]基于陕北地区QuickBird影像,通过对比不同土地利用类型小流域的切沟面积变化,得出坡面水平条带整地措施可以有效地抑制切沟的发育。

切沟侵蚀定量研究始于20世纪70年代[1],随着科技的进步,切沟监测手段从传统的卷尺、插钎等实地测量方法发展到使用GPS、高精度遥感影像等[11-17]。分辨率为0.61 m的QuickBird影像为在大中时空尺度中研究小型切沟提供了可能性[18],A.Vrieling等[19]用多光谱QuickBird影像和实地调查数据验证ASTER影像(分辨率15 m)提取切沟的可行性;秦伟等[20]在黄土丘陵沟壑区基于QucikBird影像和数字高程模型(DEM),成功提取坡面浅沟及其地形参数;李镇等[7]利用QuickBird影像估算出晋西黄土丘陵沟壑区切沟侵蚀速率。

吴起县处于黄土丘陵沟壑区第四副区,且为国家退耕还林(草)工程示范县,自1999年退耕还林(草)工程以来,境内植被覆盖度显著增加,生态环境明显改善[21],然而对于切沟发育速率的研究却鲜有报道。淤地坝通过拦泥淤地抬高侵蚀基准面,可以防治沟道下切和沟岸坍塌,有效地减轻沟道侵蚀的作用[22]。有研究[22]表明淤地坝对淤积面以下部分的减蚀作用最明显:沟道被泥沙淤埋,不再发生侵蚀;然而对于发育在沟缘线上切沟的影响却不得而知。本文基于2期同时相QuickBird影像,应用GIS技术分析吴起研究区内植被恢复对切沟侵蚀速率的影响,并通过对比分析,探究淤地坝对发育在沟缘线上切沟的影响,以期为该研究区防治切沟侵蚀提供参考。

1 研究区概况

研究区位于延安市西北部的吴起县境内,地理位置为E 108°8′7″~108°16′20″,N 36°48′6″~36°58′3″,总面积98.8 km2,海拔1 245~1 585 m。境内山川梁峁多,属于典型的黄土高原梁状丘陵沟壑区。年均降雨量478.3 mm,且主要集中在7—9月,年均温7.8 ℃,无霜期96~146 d,多年平均陆面蒸发量为400~450 mm,属于典型半干旱地区[23]。2000—2009年,退耕还林(草)工程的实施,境内林草覆盖面积明显增长,植被盖度低于15%的面积比例从89.18%剧减到0.01%,植被类型以落叶阔叶和灌木草丛为主[21]。本研究在研究区内随机选取30个无淤地坝的小流域和6个有淤地坝的小流域(图1),基本信息见表1。

图1 小流域在研究区内的分布Fig.1 Distribution of small catchments in the study area

流域面积Catchmentarea/hm2植被覆盖度Vegetationcoverage地貌因子(AS2)Geomorphologicfactor灌木林地面积比例Proportionofshrubland/%草地面积比例Proportionofgrassland/%耕地面积比例Proportionoffarmland/%其他用地面积比例Proportionofotherland/%均值Mean10.300.630.9958.5734.104.422.91范围Range3.6~26.10.52~0.760.12~3.4617.37~72.1727.83~82.637.12~45.362.57~14.82

注:AS2为切沟上坡来水的动能,其中A为切沟的上坡汇水面积,S为切沟发育的临界坡度。Note:AS2means the kinetic energy of flowing water from the inter-valley,while A means the area of inter-valley,S means the threshold slope of gully development.

2 材料与方法

2.1数据来源与处理

应用2007年6月30号和2013年7月5号2期分辨率为0.61 m的QuickBird影像,计算研究区内的植被覆盖度,通过目视解译划分土地利用类型并提取沟缘线。根据研究区1∶10 000地形图,建立分辨率为5 m的数字高程模型DEM(Digital Elevation Model),应用Arcgis10.1获取影像切沟发育的局部坡度以及辅助影像提取沟缘线,所有图层数据均采用高斯克吕格投影和WGS_1984_UTM_Zone_49N坐标系。

2.2切沟参数提取

2.2.1沟缘线及其局部坡度的提取沟缘线是流域内沟间地和沟谷区的分界线,以上为沟间地,以下为沟谷区。李镇等[18]用三维激光扫描全站仪实地测得的切沟DEM(分辨率0.15 m)验证基于QuickBird影像提取切沟参数的精确度,结果证明基于QuickBird影像提取切沟参数具有较高可信度。本研究首先对2期同时相影像进行配准,采用目视解译方法提取2007年沟缘线,再以2007年沟缘线为基础提取2013年沟缘线,最后将小流域分割获得沟间地和沟谷区。基于分辨率为5 m的DEM,以10 m(2个像元)为半径做缓冲区,提取沟缘线以上10 m区域的坡度为局部坡度。

2.2.2切沟面积变化发育在沟缘线上的切沟面积的变化相当于沟缘线所围沟谷区面积的变化[7],已有研究表明切沟面积变化能够说明切沟发育的严重程度[10]。将同一流域2007年和2013年的沟谷区面积做差,即为该流域内的切沟面积变化。

2.2.3植被覆盖度提取归一化植被指数(Normalized Difference Vegetation Index,NDVI)是植被恢复的指示因子[24],其公式为

NDVI=(NIR-R)/(NIR+R)。

(1)

式中:NIR(Near Infrared)为近红外波段(0.7~1.1 μm)的反射率;R(Red)为红色波段(0.4~0.7 μm)的反射率。应用Erdas软件计算植被归一化指数,再根据所得NDVI值计算植被盖度。植被覆盖度与NDVI 的关系公式[25]为

fc=(NDVI-NDVIsoil)/( NDVIveg-NDVIsoil)。

(2)

式中:fc为植被覆盖度;NDVI为像元NDVI值;NDVIsoil为裸露或无植被覆盖区域的NDVI值;NDVIveg为纯植被像元的NDVI值。为提高选取NDVIsoil和NDVIveg的准确性,根据NDVI的累计统计数据,以1%~99%为置信区间,取1%分位数对应的NDVI值为NDVIsoil,99%分位数对应的NDVI值为NDVIveg,计算2007年和2013年各小流域的植被覆盖度。

2.2.4土地利用类型的提取为突出表现影像中植被特征,对QuickBird影像进行RGB(4,3,2)标准假彩色合成,根据野外实地考察经验,通过影像上地物的大小、形态、色调以及纹理等推断目标地物,并参考第1次全国水利普查土地利用类型的划分标准[26]提取研究区内的土地利用类型。本研究所涉及到土地利用类型见表2。

表2 土地利用分类

3 结果与分析

3.1小流域切沟发育速率特征与影响因子分析

3.1.1切沟发育速率的统计特征对吴起研究区内无淤地坝的30个小流域以及有淤地坝的6个小流域的年均切沟面积变化进行频率统计(图2),可以看出,2007—2013年该研究区小流域的年均切沟面积变化比例均在0.5%以下,其中无淤地坝小流域中有将近87%的流域集中在0~0.2%之间,平均值为0.13%,而淤地坝小流域的年均切沟面积变化均在0.2%以内,平均值为0.12%。

3.1.2无淤地坝小流域内切沟发育速率与其影响因子的相关性无淤地坝小流域内的切沟发育与其影响因子的相关分析结果见表3,在该研究区内切沟面积增加比例与流域沟间地的植被覆盖度(2007年和2013年植被覆盖度的平均值)的相关性最强(R=-0.619,P<0.01),即说明植被恢复能抑制切沟的发育;已有研究表明在黄土丘陵区灌木抑制土壤侵蚀的效果最为明显[27],通过相关分析可以看出流域沟间灌木地林地面积的增加能够有效地抑制切沟的发展,相关系数为-0.511,显著水平0.01;地貌因子(AS2)与切沟发育的相关系数是0.482,显著性水平0.01,地貌因子代表上坡来水的动能,一直被作为影响切沟的重要因子,而在植被覆盖度较高的情况下,其促进切沟发育的作用在一定程度上减弱[11];流域的植被覆盖度与灌木林地面积比例在0.01显著性水平上呈现正相关(R=0.724),即该研究区内的灌木林地是影响该地区植被覆盖度的主要因子。

3.1.3植被覆盖度的影响2007—2013年,研究区内植被覆盖度增长28.7%,林地和草地面积达到94.5%。已有研究表明,在黄土高原地区,植被覆盖度大于60%能够有效地减弱土壤侵蚀[6]。对30个无淤地坝小流域的年均切沟面积变化比例和植被覆盖度做非线性回归,其判定系数R2为0.713。由图3可知,拟合方程为指数方程,年均切沟面积变化比例随着植被覆盖度的增大呈现出单调递减的趋势,并在植被覆盖度达到0.6之后趋于平缓。由此可以说明在该研究区内植被覆盖度达到0.6以上能够有效地抑制切沟发育,与以往的研究结果[7]一致。

图2 年均切沟面积变化比例频率统计Fig.2 Frequency statistic for annual average change proportion of gully area

相关因素Impactfacter切沟面积增加比例Proportionofincreasingingullyarea植被覆盖度Vegetationcoverage地貌因子Geomorphologicfactor(AS2)灌木林地面积比例Proportionofshrudland切沟面积增加比例Proportionofincreasingingullyarea1-0.619**0.482**-0.511**植被覆盖度Vegetationcoverage1-0.3280.724**地貌因子Geomorphologicfactor(AS2)1-0.431*灌木林地面积比例Proportionofshrudland1

注:**表示显著性水平为0.01,*表示显著性水平为0.05。Note:**indicates significance level of 0.01,*indicates significance level of 0.05.

图3 年均切沟面积变化比例与植被覆盖度的非线性回归Fig.3 Non-linear regression between annual average change proportion of gully area and vegetation coverage

3.2淤地坝对切沟发育的影响

为探究淤地坝对发育在流域沟缘线上切沟的影响,以6个淤地坝小流域为基础,从30个无淤地坝小流域中挑选切沟发育影响因子值(植被覆盖度、地貌因子)相近的6个小流域,对其切沟面积变化进行方差分析,结果表明2组数据在0.05的显著性水平上无显著差异。由表4可知,6组小流域内影响切沟发育的影响因子值相对较为接近,各组年均切沟面积变化比例差别很小。主要原因可能是沟缘线上的切沟发育主要取决于上坡来水动能,而在沟缘线以下沟谷区的淤地坝不能干扰上坡来水,因此无法对切沟的发育产生影响。

4 讨论

高精度遥感影像为小型切沟形态参数分析提供了可能性。本研究基于2期同时相QuickBird影像,利用GIS技术得到研究区内无淤地坝流域和有淤地坝流域的年均切沟面积变化比例,并对影响切沟发育的因子进行分析。研究发现该研究区内影响切沟发育的主导因子是沟间地的植被覆盖度,说明植被恢复能够有效地抑制切沟的发育;通过对比有无淤地坝小流域可得淤地坝对发育在沟缘线上的切沟发育速率无显著影响。笔者估算的切沟发育速率小于张岩等[10]在陕西绥德的结果,但是大于李镇等[7]在晋西北估算结果,可见,黄土高原不同地区的切沟发育速率是有差异的。该研究区内各个小流域之间的距离均在9.8 km以内,流域之间的地质、气候等因素的空间差异很小;因此忽略其对切沟发育的影响。在今后的研究中,应根据不同黄土地区的降水、土壤性质、植被覆盖度、地貌特征以及土地利用类型等因素综合分析不同黄土地区切沟发育的特征。笔者所选取的切沟是发育在沟缘线上的切沟,其发育主要取决于上坡来水的动能,而处在沟谷区的淤地坝无法对上坡来水造成影响,淤地坝的减蚀作用通过淤积物进入沟道抬高侵蚀基准面,削弱重力侵蚀,淤地坝是否对沟谷区内的切沟具有显著影响还有待进一步研究。

表4 2类流域比较

5 结论

1)2007—2013年吴起研究区内小流域的年均切沟面积变化比例均在0.5%以下,其中30个无淤地坝小流域中有将近87%的流域集中在0~0.2%之间,平均值为0.13%,而6个淤地坝小流域的年均切沟面积变化均在0.2%以内,平均值为0.12%。

2)相关分析显示,在30个无淤地坝小流域中沟间地的植被覆盖度是影响切沟发育的最主要因子(R=-0.619,P<0.01),说明该地区植被恢复是防治切沟发育的有效措施。在植被覆盖度较高的情况下地貌因子对切沟发育的影响被一定程度的削弱,但二者之间还是具有较强的正相关性(R=0.482,P<0.01)。

3)对30个无淤地坝小流域的植被覆盖度与年均切沟面积变化比例进行回归分析可得,当流域沟间地植被覆盖度>0.60时能够有效地抑制切沟的发育。方差分析结果表明,有无淤地坝小流域的切沟面积变化无显著差异,即淤地坝对发育在沟缘线上的切沟发育速率无显著影响。

[1]伍永秋,刘宝元.切沟、切沟侵蚀与预报[J].应用基础与工程科学学报,2000,8(2):134.

Wu Yongqiu,Liu Baoyuan.Gully,gully erosion and prediction [J].Journal of Basic Science and Engineering,2000,8(2):134.(in Chinese)

[2]Martinez-Casasnovas J A,Anton-Fernandez C,Ramos M C.Sediment production in large gullies of the Mediterranean area (NE Spain) from high-resolution digital elevation models and geographical information systems analysis [J].Earth Surface Processes and Landforms,2003,28(5):443.

[3]Valentin C,Poesen J,Li Y.Gully erosion:Impacts,factors and control [J].Catena,2005,63(2):132.

[4]Poesen J,Nachtergale J,Vertsraeten G,et al.Gully erosion and environmental change:Importance and research needs [J].Catena,2003,50:91.

[5]Descroix L,Gonzalez Barrios J L,Viramontes D,et al.Gully and sheet erosion on subtropical mountain slopes:Their respective roles and the scale effect [J].Catena,2008,72(3):325.

[6]Li Zhen,Zhang Yan,Zhu Qingke,et al.Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau [J].Geomorphology,2015,228:462.

[7]李镇,张岩,姚文俊,等.基于QuickBird影像估算晋西黄土区切沟发育速率[J].农业工程学报,2012,28(22):141.

Li Zhen,Zhang Yan,Yao Wenjun,et al.Estimating gully development rates in hilly loess reign of western Shanxi province based on QuickBird images [J].Transactions of the Chinese society of agricultural engineering,2012,28(20):141.(in Chinese)

[8]Li Yong,Poesen J,Yang J C,et al.Evaluating gully erosion using 137Cs and 210Pb/137Cs ratio in a reservoir catchment [J].Soil and Tillage Research,2003,69(1/2):107.

[9]王文娟,张树文,方海燕.东北典型黑土区坡沟侵蚀耦合关系[J].自然资源学报,2012,27(12):2113.

Wang Wenjuan,Zhang Shuwen,Fang Haiyan.Coupling mechanism of slope-gully erosion in typical black soil area of northeast China [J].Journal of Natural Resources,2012,27(12):2113.(in Chinese)

[10] 张岩,杨松,李镇,等.陕北黄土区水平条带整地措施对切沟发育的影响[J].农业工程学报,2015,31(7):125.

Zhang Yan,Yang Song,Li Zhen,et al.Effect of narrow on gully erosion in Northern Shaanxi loess area [J].Transactions of the Chinese Society of Agricultural,2015,31(7):125.(in Chinese)

[11] Crouch R J.The relationship of gully sidewall shape to sediment production [J].Australian Journal of Soil Research,1987,25(4):531.

[12] Wu Yongqiu,Cheng Hong.Monitoring of gully erosion on the Loess Plateau of China using a global positioning system [J].Catena,2005,63(3/4):154.

[13] Wu Yongqiu,Zheng Qiuhong,Zhang Yongguang,et al.Development of gullies and sediment production in black soil region of northeastern China [J].Geomorphology,2008,101(4):683.

[14] Perroy L,Bookhagenb B,Asner G P,et al.Comparison of gully erosion estimates using airborne and groimd-based LiDAR on Santa Ctuz Island,California [J].Geomorphology,2010,118(3-4):288.

[15] Shruthi B V,Kerle N,Jetten V.Object-based gully feature extraction using high spatial resolution imagery [J].Geomorphology,2011,134(15):260.

[16] 何福红,高丙舰,王焕芝,等.基于GIS的侵蚀冲沟与地貌因子的关系[J].地理研究,2013,10(32):1856.

He Fuhong,Gao Bingjian,Wang Huanzhi,et al.Study on the relationship between gully erosion and topographic factors based on GIS in small watershed of Jiaodong Peninsula [J].Geographical research,2013,10(32):1856.(in Chinese)

[17] 李镇,张岩,姚文俊.切沟侵蚀监测与预报技术研究述评[J].中国水土保持科学,2012,10(6):110.

Li Zhen,Zhang Yan,Yao Wenjun.A review of monitoring and predicting technology on gully erosion [J].Science of soil and water conservation,2012,10(6):110.(in Chinese)

[18] 李镇,张岩,杨松,等.QuickBird影像目视解译法提取切沟形态参数的精度分析[J].农业工程学报,2014,30(20):179.

Li Zhen,Zhang Yan,Yang Song,et al.Error assessment of extracting morphological parameters of bank gullies by manual visual interpretation based on QuickBird imagery [J].Transactions of the Chinese society of agricultural engineering,2014,30(20):179.(in Chinese)

[19] Vrieling A,Rodrigues S C,Bartholomeus H,et al.Automatic identification of erosion gullies with ASTER imagery in the Brazilian Cerrados [J].International Journal of Remote Sensing,2007,28(12):2723.

[20] 秦伟,朱清科,赵磊磊,等.基于RS和GIS对黄土沟壑丘陵区浅沟侵蚀地形特征研究[J].农业工程学报,2010,26(6):58.

Qin Wei,Zhu Qingke,Zhao Leilei,et al.Topographic characteristics of ephemeral gully erosion in loess hilly and gully region based on RS and GIS [J].Transactions of the Chinese Society of Agricultural Engineering,2010,26(6):58.(in Chinese)

[21] 许志超,张岩,刘宪春,等.半干旱黄土区退耕还林十年植被恢复变化分析-以陕西吴起县为例[J].生态环境学报,2011,20(1):91.

Xu Zhichao,Zhang Yan,Liu Xianchun,et al.Vegetation restoration since the project of returning cropland to forest in the semiarid Loess Plateau:A case study of Wuqi county,Shaanxi province [J].Ecology and Environmental Sciences,2011,20(1):91.(in Chinese)

[22] 曾茂林,朱小勇,康玲玲,等.水土流失区淤地坝的拦泥减蚀作用及发展前景[J].水土保持研究,1999,6(2):126.

Zeng Maolin,Zhu Xiaoyong,Kang Lingling,et al.Effects of sediment reduced ion and erosion control and development prospects of warping dam in water and soil loss areas [J].Research of Soil and Water Conservation,1999,6(2):126.(in Chinese)

[23] 郭建英,何京丽,李锦荣,等.沙棘造林对吴起县土壤水蚀的影响[J].国际沙棘研究与开发,2013,11(2):18.

Guo Jianying,He Jingli,Li Jirong,et al.The effect of soil water erosion about conversion of cropland to forest on Wuqi County [J].The Global Seabuckthorn Research and Development,2013,11(2):18.(in Chinese)

[24] 张宏斌,唐华俊,杨桂霞,等.2000-2008年内蒙古草原MODIS NDVI时空特征变化[J].农业工程学报,2009,25(9):168.

Zhang Hongbin,Tang Huajun,Yang Guixia,et al.Changes of spatial-temporal characteristics based on MODIS NDVI data in Inner Mongolia grassland from 2000 to 2008 [J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(9):168.(in Chinese)

[25] Leprieur C,Verstraete M M,Pinty B.Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data [J].Remote Sensing Review,1994,52(10):265.

[26] 国务院第一次全国水利普查领导小组办公室.第一次全国水利普查培训教材:水土保持普查[M].北京:中国水利水电出版社:2010,53.

The state council leading group office of the first national water census.The training textbook of the first national water census:soil and water conservation survey [M].Beijing:China Water & Power Press:2010,53.(in Chinese)

[27] 赵护兵,刘国彬,曹清玉.黄土丘陵不同植被类型对水土流失的影响[J].水土保持研究,2004,11(2):153.

Zhao Hubing,Liu Guobin,Cao Yuqing.Influence of different vegetation on soil erosion in loess hilly region [J].Research of Soil and Water Conservation,2004,11(2):153.(in Chinese)

Effects of vegetation restoration on gully development rates in Northern Shaanxi

Yang Song,Zhang Yan,Anikezi·Rouzi,Li Hongjun,Liu Yan

(Key Laboratory of Soil & Water Conservation and Desertification Combating,Ministry of Education, Beijing Forestry University,100083,Beijing,China)

[Background] Gully erosion is one of the major forms of soil erosion threatening land resources on the Loess Plateau.Gully development is a threshold-dependent process controlled by a wide range /of factors and vegetation is frequently considered as one of the key factors to control gully erosion.[Methods] In order to give great insight to gully development characteristics since the project of returning cropland to forest (grass) in 1999,30 small catchments without check dam and 6 catchments with check-dams were selected in Wuqi County of northern Shaanxi province,which is in the second sub-zone of loess hilly region with active gully erosion.Based on two same time phases QuickBird images of 0.61 m-resolution with a 6-year interval and digital elevation model (DEM) with pixel size of 5 m,valley shoulder lines in the studied small catchments were extracted by visual interpretation and the rates of gully area change were estimated with GIS technology.Average vegetation coverage,local slope,upslope drainage area,land uses,and the change rates of gully area from 2007 to 2013 were calculated to assess the factors influencing gully growth.[Results] 1) Annual average growth rate of gully area in all 36 studied catchments was less than 0.5%,with averagely 0.13% in the catchments without check dam and 0.12% in the catchments with check dams.2) Pearson’s correlation analysis among gully growth rates and the factors influencing gully erosion showed that vegetation coverage on inter-valley was of the most importance with r=0.619 at significance level of 0.01,followed by proportion of shrub land.The geomorphologic factor (AS2,where S is local slope gradient and A is drainage area),which was considered the predictor of gully initiation,was not related significantly to gully area growth rates owing to high vegetation coverage.3) The vegetation coverage increased by 28.7% and the proportion of woodland and grassland area increased to 94.5% from 2007 to 2013 in the studied area.Non-linear regression curve between growth rates of gully area and vegetation coverage in 30 catchments without check dam,with R2was 0.713,indicated that vegetation coverage larger than 60% in inter-valley significantly inhibited the gully erosion.4) Analysis of variation showed that there was no significant difference of the gully area growth rate between 6 pairs of catchments with and without check dams (with the similar vegetation coverage and geomorphology),indicating that check dam in the area of gully presented no significant effect on the gully development on valley shoulder line.[Conculsions] This study indicates that vegetation restoration owing to the project of returning cropland to forest or grassland reduced gully growth rate significantly,which could provide reference for understanding gully development mechanism and help to select the effective ecological measures to control gully erosion.

the Loess Plateau; gully erosion rate; vegetation coverage; check dam; GIS; QuickBird imagery

2015-09-28

2016-05-20

项目名称:国家自然科学基金“黄土丘陵区退耕还林对切沟发育和侵蚀过程的影响机制”( 41271301)

杨松(1990—),男,硕士研究生。主要研究方向:自然资源监测与管理。E-mail:564838726@qq.com

简介:张岩(1970—),女,副教授,硕士生导师。 主要研究方向:土壤侵蚀和水土保持。E-mail:zhangyan9@bjfu.edu.cn

S157.1

A

1672-3007(2016)04-0018-08

10.16843/j.sswc.2016.04.003

猜你喜欢
淤地坝覆盖度植被
呼和浩特市和林格尔县植被覆盖度变化遥感监测
基于植被复绿技术的孔植试验及应用
陕西榆林地区无定河流域淤地坝遥感解译
淤地坝坝系工程除险加固施工时序安排探讨
八步沙林场防沙治沙区植被覆盖度时空演变分析
基于NDVI的晋州市植被覆盖信息提取
辽宁省地表蒸散发及其受植被覆盖度影响研究
与生命赛跑的“沙漠植被之王”——梭梭
黄土高原地区淤地坝建设战略思考
坝系工程除险加固时防洪标准和洪水组合问题探讨