刘晓芸
【摘 要】 供给侧改革是当前经济改革重点,会计领域也要适应供给侧改革需要。为此,文章分析传统财务会计信息流程存在的信息收集有限、滞后、信息不完整、决策功能弱化、会计信息报表单一等问题,提出了供给侧会计信息集成优化原则,利用大数据、云平台,设计了会计信息集成应用方案,以实现传统会计向决策管理会计信息转变,适应供给侧改革的要求。
【关键词】 供给侧改革; 会计信息; 集成应用
【中图分类号】 F23 【文献标识码】 A 【文章编号】 1004-5937(2016)15-0019-03
2016年是我国加强供给侧结构性改革之年,要完成“三去一降一补”五大任务,在供给与需求两端要将改善供给结构作为主攻方向,推进结构改革,矫正要素配置扭曲,扩大有效供给,克服产能过剩结构性矛盾、企业盈利下降、工业品价格持续下降、财政收入下降和经济风险上升等问题,提高供给结构对需求变化的适应性与灵活性,促进经济社会持续健康发展[ 1 ]。五大任务的实施,必须提供可靠的会计信息,及时掌握成本、库存、资金等动态信息,为决策者掌握与使用。尤其是在“互联网+”、“大众创业、万众创新”的今天,利用大数据、云平台特有功能集成更多经济要素信息,生成多样化、个性化会计报告,为产业结构的调整提供准确可靠的信息,实现传统会计信息向决策化、价值化转变,对降低企业成本、增强企业创新能力、提高供给侧质量与效率、实现“三去一降一补”具有重要意义。
一、供给侧改革中会计信息应用存在的问题
当前企业会计业务处理通过会计信息管理系统,根据“原始凭证录入—结转凭证生成—编制财务报表—撰写财务分析报告—作出经营管理决策”的流程,形成会计期间完整的财务报告信息,管理层根据财务分析报告作事后总结,安排未来的生产经营计划。从信息流程中可以看出,传统财务会计的不足主要表现如下[ 2-3 ]:
(一)以会计数据为出发点,数据源受限
按照传统会计数据采集模式,仅有与会计核算直接关联的经济业务数据进入核算系统,而相当一部分反映经济活动有重要价值、影响经济活动决策的数据信息未能采集到会计核算系统,使决策者未能及时掌握经济活动全貌,从而无法系统了解企业经营状况等。同时,面对会计信息需求的个性化、碎片化,传统会计对数据加工处理形成的数据报表不能满足个性化需求。
(二)会计信息时效差,影响决策时效
传统会计信息业务处理的流程大部分集中在事后,财务报表只能在所有凭证录入完毕后才能生成,管理者不能及时从宏观角度分析企业经济运行状况,它是一个有纠正的反馈系统,但这个反馈系统是企业经营出现问题后的滞后纠偏系统。面对稍纵即逝的市场,客户的需求时刻在变,企业经营活动的决策要求“准”且“快”,但依靠传统会计信息处理流程无法满足这一要求。
(三)非结构数据被忽略,数据信息不完整
进入会计信息的除了原始凭证录入结构化数据以外,还忽略了与企业经济活动密切相关、富含经济价值的非结构化数据。面对数据存储分散、数据总量大、增长速度快、蕴含信息多的非结构化数据,缺乏有效的智能化处理,因而没有纳入会计信息系统,导致绝大部分有丰富价值的非结构化数据不能够体现于会计信息控制流程中,不能有效挖掘它所蕴含的巨大价值。
(四)传统会计重核算,轻管理
随着市场环境快速变化,非财务信息也要融入会计信息中,如企业外部投资及上下游产业信息,通过与“互联网+”和“云计算”紧密结合,集成各类会计信息,不仅提供现有的财务处理数据,还要提供企业经营决策所需要的内外部行为信息和趋势信息,强调供给侧会计管理,以提高公司企业管理者的前瞻性和预测性,将以往的记账、报账等会计工作向企业战略规划、经营决策、过程控制和业绩评价优化的方向转变,以适应供给侧改革要求。
以上看出,现有会计信息不完整,时效性差,会计信息质量不高,尤其在新形势下极其不适应供给侧改革信息的膨胀与多变。要以会计信息价值增值为目标,采集“三去一降一补”市场信息,对非结构化数据采用智能数据处理方法,与结构化数据融合,挖掘会计信息因果关系,寻找分析控制隐藏的信息,保证会计报告完整、客观、不失真,满足会计信息不确定性和个性化的需求。所以,在大数据时代下,必须对传统会计完善、改革,改革与时代不相适应的部分,使其做到完整地反映经济事项,为供给侧改革提供有价值的会计信息。
二、供给侧改革会计信息集成应用
(一)供给侧会计信息集成原则
1.财务会计与管理会计融合使用。要将财务会计算账、报账的核算会计功能进行扩展,向决策优化、提高全要素生产率转变;要将企业的财务、经济业务和管理等方面整合起来,打造一个新的管理模式,利用管理会计信息功能,不断挖掘企业的潜在信息价值,节约成本,提高核心竞争力。
2.反馈机制与前馈机制相结合。要增强供给结构对需求变化的适应性、灵活性和主动性,就要采用管理会计信息,利用前馈机制预测需求信息变化,在企业形成实际产能前进行有效控制,要对供给侧结构的实施效果优劣进行反馈纠正,实现反馈机制与前馈机制结合运用。
3.常规报表输出与个性化报表输出相结合。常规会计报表主要是资产负债表、利润表和现金流量表及股东权益变动表,是标准化财务报告形式,它方便审计等标准化、格式化业务使用。随着供给侧市场经济的发展,会计信息呈现广泛性、差异性和易变性等特征,企业对信息的结构要求存在着差异性,只有报表输出个性化才能满足不同需求。
4.会计信息多元化。会计信息既要集成常规核算会计信息,又要有非财务业务信息,如研发、生产、采购、销售等信息,还要有企业外部信息,如行业市场环境信息、政府供给侧结构性改革政策的信息,以丰富信息来源。
(二)供给侧会计信息集成应用方案
根据会计信息集成应用原则,在大数据时代,与企业经营、效益密切相关的数据日益发生变化,如生产、库存、销售等既有各种结构化会计数据,也有半结构化数据和非结构化会计数据。企业在会计信息流程上必须利用云平台,将海量结构化数据、半结构化数据和非结构化数据均纳入会计信息流程中,将企业决策层、人事部门、采购部门、仓管部门、销售部门等内部利益相关者和股东、债权人、政府等外部利益相关者逐渐添加到财务流程。构建财务与经济业务一体、多种形式数据整合的协同机制,进行数据分析与挖掘,除了形成常规会计报告以外,还要根据需要形成个性化报表和决策性报表。因此运用大数据信息集成和事件驱动技术优化会计业务信息流程,具体流程如图1所示。
1.数据采集。基于“互联网+”将会计流程、业务流程的内外部数据流程有机整合[ 4 ],实现企业内部部门交易信息输入会计信息系统中,利用物联网、移动网络技术将非结构化数据(如原料、产品标签)实时输入会计信息中,使企业经济业务活动的原貌得以全面地进入会计信息流程。为了强化业务交易的真实性,将与企业发生业务关系的第三方纳入到会计信息流程之中,提供印证经济业务的相关信息,从而丰富数据来源。除了收集采购管理、生产管理、销售管理等数据,还要增加高质量产品有效供给信息,提高企业产品的档次和质量,重点增加产品和技术的创新能力信息,包括科技研发的资金、产品、研发力量等信息。
在此基础上,进一步收集企业所处的经济环境信息,包括国家在供给侧改革中释放的市场信息、行业信息、国家金融信息等数据,以扩大财务数据的来源,提供前馈预测信息,提高企业对市场反应的及时性。同时,实现有效的会计大数据分析,为下一步数据挖掘、分析、决策提供可靠保证,实现企业有效纠偏。
2.信息数据处理。将收集的各业务系统数据,包括结构化数据和非结构化数据,引入智能数据处理软件[ 5 ],如OCR技术,将采集的数据规范化,自动提取非结构化数据的内容,并存储到各业务子系统数据库中。业务子系统数据库中的数据按相应事件驱动处理规则触发报账业务流程,生成相应的会计信息存储到会计大数据系统中。
3.形成会计信息大数据库。采用ETC数据信息管理工具,将存储在不同系统、不同物理设备中的历史会计数据进行抽取、集中,实现研发、设计、采购、生产、仓储、质量管理、销售、财务等流程信息紧密衔接,将会计信息系统、不同部门的系统和外部数据中的财务会计数据和非财务会计数据存储在会计信息大数据库系统,实现会计数据共享和会计信息互通,从而提高会计信息质量。
4.会计信息数据分析、决策。供给侧结构性改革宗旨为减少无效供给,扩大有效供给,提高供给结构对需求结构的适应性。要加强生产端分析,重视产品研发成本分析和客户个性需求变化分析,有效利用会计数据,采用先进分析技术、数据挖掘技术、云计算将会计大数据库、方法库、知识库、模型库结合,实现大数据综合分析功能,对企业的生产成本、研发成本、销售成本、盈利水平等进行智能分析,并以报表和查询分析的方式将数据展示出来,反映企业的全面财务情况,帮助管理者对企业经营情况进行事中监控、事后分析,及时发现财务风险,为筹资、成本决策、股权分配等企业经济活动作出正确决策,为企业“三去一降一补”提供强大的会计决策支持。
5.输出多样性信息报表。在大数据分析、决策基础上,输出报表针对当前供给侧结构性改革除了常规性报表信息输出外,还要满足不同需求者的信息报表。
(1)非财务个性化报表。企业会计报表除了披露以货币计量的财务信息外,通过非结构化信息引入,还应披露其他非财务信息。例如,产品占市场份额、新产品新技术开发和服务、企业面临的风险与管控、用户满意程度、主要竞争对手及与人力资源、知识产权有关的无形资产价值等。非财务信息的披露,有利于投资者对企业综合分析的评价及前景的判断。
(2)预测性报表。新常态下,企业决策者在过去和现在的基础上更关注未来。企业除了按照国家规定上市公司在募股说明书和公告中公布盈利预测信息、资产负债、利润、现金流量等信息外,还应通过智能算法建立库存、产能、新产品、金融预测性报表,如提高企业有效供给能力、扩大有效和中高端供给的预测性报表,政府降低制度性交易成本对企业效益影响报表等,为投资者决策提供依据。
三、结论
会计领域要适应供给侧结构改革需要,需要将以往会计算账、报账的传统思维向决策优化、提高全要素生产率方向转变。通过在会计信息系统中嵌入非财务数据业务处理规则,集成经济业务信息、财务信息和市场环境信息,经过结构化与非结构化数据处理,实现财务信息和非财务信息的实时采集、处理、存储、共享,加快企业经济信息的汇总与集成化应用,使企业会计工作由核算型转向管理、决策支持型,为企业供给侧改革提供优质信息保证。
【参考文献】
[1] 刘霞辉.供给侧的宏观经济管理:中国视角[J].经济学动态,2013(10):9-19.
[2] 汤四新,阳杰.IT环境下会计流程持续优化研究[J].财务与会计,2014(10):77-80.
[3] 张丽娟.XY公司会计业务流程再造研究[D].华南理工大学,2015:8-18.
[4] 王慧娟.基于云计算的会计大数据分析平台构建研究[D].云南财经大学,2015:30-39.
[5] 许金叶,李歌今.构建会计大数据分析平台:企业会计云计算建设的核心[J].财务与会计,2013(4):40-43.