艾庆辉 严 晶 麦康森
(中国海洋大学海水养殖教育部重点实验室, 农业部水产动物营养与饲料重点实验室, 青岛 266003)
鱼类脂肪与脂肪酸的转运及调控研究进展
艾庆辉 严 晶 麦康森
(中国海洋大学海水养殖教育部重点实验室, 农业部水产动物营养与饲料重点实验室, 青岛 266003)
由于鱼油资源短缺, 植物油在水产饲料中广泛使用。然而, 随之而来的鱼体脂肪异常沉积等问题也日益突出, 严重危害养殖鱼类健康。脂肪的沉积是一个复杂的过程, 主要包括脂肪的合成、转运和分解。到目前为止, 在鱼类中已经进行了大量关于植物油替代鱼油影响脂肪沉积的研究。但是, 这些研究主要集中于脂肪的合成和分解, 有关脂肪转运的研究十分缺乏。脂肪转运不仅是影响组织脂肪沉积的重要因素, 而且在机体脂稳态和能量平衡中起着重要作用。因此综述了鱼类脂蛋白的种类和组成, 鱼类对脂肪和脂肪酸的转运, 营养因素对脂肪和脂肪酸转运的影响, 指出了脂类转运研究的重要性和紧迫性, 并且提出了未来需要努力的方向。
脂肪转运; 脂肪酸吸收; 脂蛋白; 脂肪酸转运体; 脂肪酸结合蛋白
饲料中适宜的脂肪水平和均衡的脂肪酸组成对维持鱼类正常生长、发育和繁殖起着重要作用。近年来, 随着水产养殖业的快速发展, 高脂或高植物油饲料广泛使用以及重金属、有机物污染等环境因素的影响, 导致养殖鱼类肝脏或腹腔脂肪过度沉积, 引起鱼体代谢紊乱、免疫力降低, 严重危害养殖鱼类的生长和健康, 给养殖业造成巨大损失[1]。脂肪是鱼体最重要的营养物之一, 既可以作为能量来源, 也可以为机体提供多不饱和脂肪酸[2, 3]。多不饱和脂肪酸及其代谢产物作为信号传导因子,直接调控转录因子活性, 影响一系列基因表达[4]。脂肪的沉积是一个复杂过程, 除了在鱼类中已经进行了大量研究的脂肪合成和分解过程外[5], 脂肪转运也是影响脂肪沉积的一个重要因素[6]。与哺乳动物类似, 鱼类的脂肪转运也是通过脂蛋白(Lipoprotein)来完成的。然而, 关于鱼类脂肪转运的研究比较零散[7—10], 到目前为止还未见系统报道。因此, 本文综述了鱼类脂肪和脂肪酸转运及调控的相关研究成果, 以期为未来鱼类脂肪异常沉积的研究提供参考和新的思路。
1.1 脂蛋白的种类
脂蛋白一般根据密度大小分为5种: 乳糜微粒(Chylomicron, CM)、极低密度脂蛋白(Very-low density lipoprotein, VLDL)、中间密度脂蛋白(Intermediate-density lipoprotein IDL)、低密度脂蛋白(Low-density lipoprotein, LDL)和高密度脂蛋白(High-density lipoprotein, HDL)。鱼类血浆中存在CM、VLDL、IDL、LDL和HDL[6], 目前已通过密度梯度离心或快速蛋白液相色谱的方法分离得到了虹鳟(Oncorhynchus mykiss)[11]、欧洲鲈(Dicentrarchus labrax)[12]、条纹鲈(Morone saxatilis)[13]、真鲷(Sparus aurata)[14]、大西洋鲑(Salmo salar)[15]和团头鲂(Megalobrama amblycephala)[7]等鱼类的脂蛋白。
虽然脂蛋白的种类相同, 但在脂蛋白的组成上鱼类与哺乳动物存在差异。哺乳动物中血浆脂蛋白以VLDL和LDL为主, 条纹鲈[13]、真鲷[14]、大西洋鲑[15]和团头鲂[7]等鱼类中血浆HDL所占的比例最大、浓度最高, VLDL浓度明显低于HDL。VLDL的主要作用是将肝脏中过多的脂肪转运到外周组织, 其浓度与鱼类摄食的状态和摄食后的时间密切相关。条纹鲈摄食后血浆VLDL浓度是饥饿4周后的2倍多[13], 欧洲鲈摄食后12—24h内血浆VLDL的浓度明显升高[12]。血浆中低浓度的VLDL表明肝脏向外分泌VLDL的速率比较慢或者VLDL在循环系统中的周转速率非常快。HDL主要负责胆固醇的逆向转运[16], 血浆中高浓度的HDL表明外周组织向肝脏转运胆固醇的速率较快。Santulli等[12]研究发现在欧洲鲈摄食后的72h内血浆HDL的浓度明显高于VLDL和LDL。目前为止, 鱼类中VLDL水平低而HDL水平高的原因仍不清楚, 血浆VLDL浓度低而HDL浓度高的现象可能是鱼类所特有的现象, 这种现象是否可以表明鱼类脂蛋白代谢与哺乳动物存在明显差异还有待深入研究。
1.2 脂蛋白的组成
虽然各脂蛋白的比例上存在差异, 但在血浆脂蛋白的组成上, 鱼类与哺乳动物相似。脂蛋白的核心由疏水性的脂类[甘油三酯(Triacylglycerol, TAG)和胆固醇酯]组成, 这些脂类被亲水性的磷脂(Phospholipids, PL)和胆固醇包被, 在脂蛋白的表面还有载脂蛋白(Apolipoprotein, apo)与脂类相互作用, 其基本功能是运输脂类及稳定脂蛋白。TAG在CM、VLDL中的比例较高, 而PL、胆固醇则在LDL和HDL中的比例较高, 并且每种脂蛋白中均含有多种apo[11—13]。在鳟中, CM、VLDL、LDL和HDL中TAG的比例分别为84%、52%、22%和11%,PL的比例分别为8%、18%、27%和32%。至于apo,CM含apoAI、apoB等, VLDL和IDL含有apoAII、apoB和apoC等, LDL含apoAI、apoB等, HDL中apo的组成与其他脂蛋白的组成差异较大, 不含有apoB, 主要由apoAI和apoAII组成[11]。
apo不仅是脂蛋白的重要组成成分, 而且在脂蛋白的转运和代谢过程中起着重要作用。哺乳动物中apo的功能研究较清楚, HDL中的apoAI是卵磷脂胆固醇酰基转移酶(Lecithin-cholesterol acyltransferase, LCAT)的激活剂, 可以加速游离胆固醇向肝脏转移, 促进胆固醇的清除[17]; apoCII是脂蛋白脂酶(Lipoprotein lipase, LPL)的辅因子, 可以激活LPL[17]; apoCIII可以刺激VLDL的组装、分泌并且抑制VLDL被LPL水解等[17]。在鱼类中, 已在虹鳟等重要经济鱼类中克隆到了编码apoAI、CI和CII的基因, 并确定了它们的部分特性和功能(表 1)[11, 18—26]。例如在虹鳟中, 虽然apoCII在结构上与哺乳动物存在很大的差异, 但也具有激活LPL的作用, 并且在低温(10℃)条件下比人血浆的活性更强, 这表明虹鳟apoCII已经适应在低温条件下发挥作用[22]。此外, 还在鳗(Anguilla japonica)[27]、红鳍东方鲀(Takifugu rubripes)[28]和点带石斑鱼(Epinephelus coioides)[29]中发现了鱼类特有的、分子量为14 kD 的apo(apo 14), 其主要在肝脏和脑中表达, 可能在肝脏和脑的形态发生与生长中发挥重要作用。虽然已经研究了鱼类apo的部分特性和功能, 然而各种apo在脂蛋白组装、转运过程中的作用及营养调控机制在鱼类中的研究仍十分缺乏。
2.1 脂肪转运
在机制上, 鱼类脂肪的转运与哺乳动物相比没有根本性的区别[30]。在鲑鳟中, 肠上皮细胞将吸收的脂类重新酯化并合成为CM, 通过淋巴系统进入血液循环; CM中的TAG在血管内壁LPL的作用下分解为脂肪酸, 被肌肉、脂肪组织等外周组织利用,形成的CM残体被肝脏摄取, 这一过程称为脂肪转运的外源性途径(Exogenous pathway)。肝脏也可以将合成的脂肪通过VLDL转运至机体其他组织贮存或利用, 这一过程称为脂肪转运的内源性途径(Endogenous pathway)。Kjær等[30]在大西洋鳕(Gadus morhua)肠道中观察到类似于CM的囊泡, 颗粒大小130—200 nm, 其大小在鳟CM大小范围内(80—800 nm)。这些CM位于微绒毛附近, 同样也靠近基底膜外侧, 形成了类似“转运的通路”, 表明大西洋鳕中CM是肠道脂类的主要转运载体。在大西洋鳕肝脏中也观察到类似于VLDL的颗粒, 其大小为60—90 nm。到目前为止, 在鱼类中已发现脂蛋白代谢过程中所需要的载脂蛋白(apoA、apoB、apoC等)、酶[微粒体甘油三酯转移蛋白(Microsmal triglyceride transfer protein, MTP)、LPL、LCAT、胆固醇酯转移蛋白(cholesterol ester transfer protein,CETP)等]、脂蛋白受体[低密度脂蛋白受体(LDL receptor, LDLR)、低密度脂蛋白受体相关的蛋白(LDLR related protein-1, LRP-1)、B族Ⅰ型清道夫受体(scavenger receptor B type I, SRBI等][5, 6, 28, 31—33]。因此, 推测鱼类中也存在着与哺乳动物相似的脂肪转运方式。然而, 鱼类脂肪转运的细节仍不清楚。
2.2 肠道脂肪转运的调控
脂蛋白中含有丰富的脂类, 这些脂类的组成易受饲料的影响(尤其是CM和VLDL[6]), 因此饲料中脂类的含量和组成会影响肠道脂肪转运。研究发现饲料中中性脂含量过高、PL不足或者用植物油替代鱼油均会导致大量的脂滴在鲫(Carassius auratus)、金头鲷、北极红点鲑(Salvelinus alpinus)、虹鳟肠上皮细胞中富积[34, 35]。其原因可能是肠上皮细胞脂蛋白合成不足, 不能及时将肠道吸收的脂类转运至机体其他组织, 从而导致脂滴富积。PL是CM的重要组成成分, 研究发现鱼类PL合成能力不足是导致肠道脂滴富积的原因之一。饲料中添加PL可以缓解或者解决肠道脂滴富积, 加速肠道脂类的转运。PL的这种效果在仔稚鱼中尤其明显, 如在饲料中添加大豆磷脂可以显著增加金头鲷仔鱼肠道中脂蛋白的数量及其大小, 促进肠道脂肪的转运[36]; 添加鸡蛋磷脂可以显著增加虹鳟仔鱼血液中CM的水平[37]; 在微颗粒饲料中添加大豆磷脂可以降低黄颡鱼(Pseudobagrus fulvidraco)仔鱼肠道中脂滴的富积, 随着鱼年龄的增长, 鱼体合成PL的能力增强, 肠道富积的脂滴也明显减少[38]。
在促进肠道脂肪转运方面, 不同种类的PL效果也不完全相同。在鲫仔鱼中的研究表明磷脂酰胆碱(Phosphatidylcholine, PC)的效果要好于磷脂酰肌醇(Phosphatidylinositol, PI)[39]。出现这种现象的原因可能有两种: 首先, PC是鱼类脂蛋白中PL的主要成分, 如在大西洋鲑血浆VLDL中其含量高达95%,远远超过脂蛋白中其他的几种PL, 如PI、磷脂酰乙醇胺(Phosphatidylethanolamine, PE)和磷脂酰丝氨酸(Phosphatidylserine, PS)[39]; 其次, PC对于apoB的合成有特殊的效果, 这种现象是在CaCo-2细胞中观察到的, 而PE和PS在合成apoB时没有这种特殊的效果[40]。
除了脂类外, 饲料中的蛋白源也会影响肠道脂肪的转运。Gu等[41]发现植物蛋白源替代60%鱼粉会使大西洋鲑幽门盲囊脂肪大量沉积, apoB、apoAI和MTP基因表达量显著升高, 这些基因表达量的上调可能是为了加速肠道中脂肪的转运。然而, 大多数研究表明植物蛋白源并不会导致肠道脂肪富积, 而是诱导肠炎, 尤其是豆粕的效果非常明显[42]。肠道脂肪酸结合蛋白(FABP2)的功能是负责肠细胞内脂肪酸的转运, 在大豆诱导肠炎的过程中,FABP2的基因与蛋白表达水平均显著降低, 然而还未见到研究FABP2表达降低的原因及降低后对肠道脂肪转运影响的报道。此外, 虽然CM在脂类的外源性转运甚至脂类代谢过程中发挥着重要的作用, 然而有关CM组装及其分泌营养调控的研究在鱼类中尚未开展。
2.3 肝脏脂肪转运的调控
apoB100是VLDL的重要组成成分, 且每个VLDL只含有1个apoB100分子, 因此apoB100的分泌会对VLDL的组装产生重要影响[43]。在哺乳动物中, apoB100的营养调控研究较为透彻。脂肪酸会影响apoB100分泌, 并且不同种类的脂肪酸效果也不尽相同。在碳链长度方面, 与胎牛血清蛋白相比,棕榈酸(16︰0)会显著刺激原代肝细胞apoB100的分泌; 与棕榈酸相比, 己酸(6︰0)、辛酸(8︰0)、癸酸(10︰0)和十二碳酸(12︰0)均会抑制apoB100分泌, 并且癸酸的效果最好[44]。在不饱和度方面, 硬脂酸(18︰1n-9)对apoB100分泌没有明显影响, 棕榈酸和亚油酸(18︰2n-6)会显著促进其分泌[45]; 而花生四烯酸(20︰4n-6, ARA)和二十碳六烯酸(22︰6n-3, DHA)则会抑制其分泌[46]。
对于apoB100分泌的影响, 不同脂肪酸的调控机制也不尽相同。在McA-RH7777细胞(大鼠肝癌细胞)模型中研究发现, 棕榈酸和油酸均会抑制apoB100的表达, 但油酸的作用更强, 因为其会增加神经酰胺、活性氧(Reactive oxygen species, ROS)的生成, 从而诱导内质网应激(Endoplasmic reticu lum stress, ERS); DHA则不会诱导ERS, 但可以通过自噬作用, 抑制apoB100的分泌[47]。另外, 脂肪酸的处理时间和浓度也会影响apoB100的分泌。油酸在短时间内可以刺激apoB100的分泌, 这主要是通过降低apoB100的降解来完成, 但长期、高浓度作用下会导致ERS, 从而抑制apoB100的分泌[47]。除了apoB100外, MTP在VLDL的组装过程中也起着重要作用, 抑制MTP的活性或者编码MTP的基因突变或基因敲除也会导致VLDL组装受阻[48, 49]。
虽然哺乳动物中肝脂转运的营养调控机制较明确, 但鱼类中相关研究仍很缺乏。在团头鲂中,高脂饲料会抑制肝脏TAG的分泌, 导致肝脂沉积增加[7]。在饲料中添加高水平的胆碱(1800 mg/kg饲料)可以显著提高团头鲂肝脏apoB100和MTP的基因表达, 并且显著降低高脂饲料组鱼体肝脏脂肪沉积[50], 可能原因是胆碱促进了肝脏VLDL的分泌从而加速肝脂向外转运。在脂肪源方面, 与菜籽油组相比饲料中高含量的EPA或DHA(EPA、DHA占总脂肪酸的比例超过40%)会降低大西洋鲑肝细胞甘油酯的分泌[5]。此外, 研究发现仅用植物油替代鱼油并不会影响血浆和VLDL中TAG的含量[5, 15, 51], 用植物蛋白完全替代鱼粉会使血浆TAG含量显著降低[52], 然而当用高水平的植物蛋白、植物油同时替代鱼粉、鱼油时血浆TAG含量显著升高[53], 这些结果表明植物蛋白源和植物油在影响鱼体肝脏脂肪转运时存在着交互作用, 具体调控机制还有待深入研究。
表 1 鱼类载脂蛋白的研究进展Tab. 1 Progress of apolipoprotein reasearchin fish
3.1 脂肪酸的跨膜转运
脂蛋白转运的TAG, 在LPL的作用下分解为脂肪酸, 然后才能进入细胞内。LPL是分解脂蛋白中TAG的限速酶。在哺乳动物中, LPL主要由心脏、肌肉和脂肪等组织合成和分泌[6]。然而, 在虹鳟和真鲷肝脏、肌肉和脂肪组织中均发现了LPL基因表达和/或者酶活[54, 55], 并且没有发现肝脂酶活性, 表明鱼类肝脏LPL行使了哺乳动物肝脂酶的功能[26]。与哺乳动物类似, 鱼类血液内水解形成的脂肪酸进入细胞内并不完成是被动扩散的过程, 存在着膜相关的脂肪酸转运体介导的转运[56, 57], 并且发现大西洋鲑肝细胞对长链多不饱和脂肪酸(20︰5n-3>18︰3n-3=22︰6n-3>18︰2n-6>18︰1n-9)的吸收更依赖于膜蛋白的调节[58]。此外, 在虹鳟、大西洋鲑等鱼类中已克隆到两种脂肪酸转运体——脂肪酸移位酶(Fatty acid translocase, CD36)和脂肪酸转运蛋白1 (Fatty acid transport protein, FATP1)的全长或核心片段。在虹鳟中, FATP1在脂肪组织的表达量最高, 在白肌、红肌和心脏中的表达量逐渐增加,与这三种组织β氧化的能力相一致, 而CD36在肝脏的表达量最高[8]。脂肪酸转运体在各组织的表达水平不同, 表明不同种类的脂肪酸转运体在各组织的相对重要性不同, 不同组织在利用脂肪酸作为能量来源上可能存在着差异。如在大西洋鲑中, FATP1在内脏周的脂肪组织表达量高于CD36, 而在其他组织中(如肝脏、白肌、红肌、心脏等)CD36的表达量均高于FATP1, 尤其是肝脏和红肌[10]。
3.2 脂肪酸在细胞内的转运
脂肪酸进入细胞后, 胞质型脂肪酸结合蛋白(Cytoplasmic fatty acid-binding protein, FABPc)将其转运到不同的位点进行代谢或者储存。FABPc在组织中分布广泛, 对脂肪酸有很高的亲和力, 可以将其从细胞膜转运到胞内的利用位点, 在脂肪酸代谢中起着重要作用。哺乳动物中已发现12种FABP,刚发现时一般以其最先被分离的组织来命名, 如肝型(Live-type FABP, L-FABP)、心型(Heart-FABP, HFABP)等[59]。然而, 由于多数FABP不仅在一个组织中分布, Hertzel和Bernlohr[59]提出了新的命名方法, 根据被鉴定的时间顺序, 在每种FABP后加一个阿拉伯数字, 如FABP1 (肝型)、FABP2 (肠型)等。
到目前为止, 已经证实鱼类和虾蟹中也存在多种FABP。这些种类的FABP与哺乳动物的同源性较高, 甚至还发现了在哺乳动物中不存在的FABP10 和FABP11[60—64]。与哺乳动物相比, 鱼类FABP的特点是同源基因很多, 如FABP1a和FABP1b、FABP10a 和FABP10b、FABP11a和FABP11b等, 出现这种现象的原因是发生在2亿多年前的辐鳍鱼家系全基因组倍增(Whole-genome duplication)[65]。肝脏、肌肉和脂肪组织是鱼体的主要脂肪贮存部位, 其中肝脏主要表达FAPB10, 肌肉中FABP3的表达量最高, 其次是FABP11, 脂肪组织主要表达FABP11[10, 66], 因此本文主要讨论这几种FABP在肝脏、肌肉和脂肪组织中的研究进展。
3.3 脂肪酸转运的调控
在鱼类中脂肪酸转运的营养调控已有报道, 主要集中于不同的饲料组成对LPL、CD36、FATP和FABP基因表达的影响。对于LPL, 有研究表明高脂饲料对真鲷和大黄鱼肝脏LPL基因表达没有显著影响[67, 68]。然而, 也有学者发现高脂会显著提高团头鲂、杂交罗非鱼和大菱鲆肝脏LPL的表达量[7, 69, 70]。出现这种差异的原因可能与鱼的种类、饲料组成以及环境条件有关。脂肪源方面, 在真鲷和虹鳟的研究中发现n-3 LC-PUFA可以显著提高肝脏LPL的表达, 肌肉LPL的表达不受影响, 然而脂肪组织的表达量则明显降低[32, 54]。对于不同组织, 有研究发现LPL的表达受季节的影响, 肝脏和脂肪组织在春季LPL表达量最高, 而肌肉LPL在夏季表达量最高。这些结果表明, LPL基因表达的调控在不同品种的鱼类以及不同组织中之间存在着明显差异, 并且受环境的影响较大, 其营养调控机制仍有待深入研究。CD36、FATP和FABP的表达同样受到营养因素的调控。用高脂饲料投喂团头鲂, 肝脏FATP、FABP表达量显著增加, 肝脏脂肪含量增加[71]。在蛋白源方面, 植物蛋白源替代60%的鱼粉对大西洋鲑肝脏CD36表达没有明显影响, 但FATP的表达量显著升高, 同时肝脏中也出现大量脂肪沉积, 这可能暗示了CD36和FATP在脂肪酸的吸收过程中起着不同的作用。在脂肪源方面, 摄食豆油组日本沼虾肝胰腺FABP10基因表达量明显高于牛油和鱼油组[72]。用豆油替代鱼油不会影响大西洋鲑肝细胞对油酸的吸收, 与之对应的是肝细胞CD36和FATP的表达量也没有明显变化[73]。在其他组织中,用混合植物油完全替代鱼油, 大西洋鲑白肌CD36、FATP、FABP3和FABP11的表达量显著降低, 红肌中这些基因的表达量均没有显著变化[10],与之相对应的是, 替代组白肌中TAG和总脂的含量下降了约30%, 而红肌TAG和总脂含量没有显著明显变化[74]。这些结果表明植物油替代鱼油会降低大西洋鲑白肌对脂肪酸的吸收和转运。类似的, 替代组肌隔和内脏脂肪组织总脂含量呈不同程度的降低, FABP11表达量也显著下调, 然而FABP3的表达没有明显变化, 可能原因是FABP3与FABP11在转运脂肪酸的功能上存在着差异。有研究表明FABP3的功能与线粒体β氧化密切相关[6 6],FABP11与哺乳动物的FABP4一样均为脂肪细胞型FABP, 因此其功能可能与FABP4类似(参与细胞内TAG的合成或分解[59]), 不过这还需要进一步的证实。关于组织脂肪酸转运体、FABP的表达与脂肪含量之间的关系, Torstensen等[53]得到了不同的结果, 当用植物蛋白源和植物油替代80%的鱼粉和70%的鱼油时, 大西洋鲑腹腔脂肪组织CD36、FATP1和FABP3的表达不受影响, FABP11的表达量显著降低, 然而其脂肪含量显著升高。出现这种现象的原因可能是FABP11具有与FABP4类似的功能(两者均为脂肪细胞型FABP), 其表达量的降低可以调控脂肪酸从脂肪细胞中流出[59]。另一方面,Jordal等[6 6]研究发现大西洋鲑白肌和红肌中FABP3的蛋白表达存在着转录后调控。因此, 在探讨FABP的营养调控时, 蛋白水平的检测也是非常重要的。
除了饲料组成外, 摄食状态也会影响到鱼体的脂肪酸转运。在正常投喂状态下, 虹鳟白肌、红肌和肝脏FATP1和CD36 的表达量均没有变化, 而脂肪组织FATP1和CD36 的表达量在第35天时显著高于第15和第25天, 这与投喂35d后肠系膜脂肪指数的升高是一致的[8], 说明虹鳟摄食一段时间后会诱导脂肪组织增强对脂肪酸的吸收。在饥饿2周后,大西洋鲑脂肪组织FATP1和CD36的表达量显著降低, 而白肌和肝脏FATP1、CD36的表达量则无显著变化[9], 表明饥饿时脂肪组织通过降低对脂肪酸的吸收以增加其他组织如肌肉对脂肪酸的可获得性, 以便其氧化供能。饥饿后肝脏FABP3的表达量显著升高, FABP3有转运脂肪酸进入线粒体氧化的作用[66], 这说明肝脏中进入线粒体进行氧化的脂肪酸增加, 这对于食物缺乏的自然条件下肝细胞维持能量供应是非常重要的。
本文综述了鱼类脂肪和脂肪酸转运的过程(图 1)及营养因素对转运的影响。然而, 与哺乳动物相比,鱼类的脂肪转运体系和转运的细节尚未明确, 相关研究亟待加强。首先, 要完善脂肪和脂肪酸的转运体系, 掌握鱼类与哺乳类转运之间存在的差异(如鱼类脂蛋白以HDL为主, 而VLDL浓度低), 分析产生差异的原因和对鱼类脂类转运的影响以及具有的生物学意义。其次, 明确不同鱼类鱼油替代前后鱼体主要脂肪储存部位脂类转运的特点、存在的差异和相应的调控机制, 并分析不同组织代谢状态的变化(如脂解率升高等)对其他组织脂肪转运产生的影响, 为营养调控脂肪的转运提供基础。第三,鱼类脂类转运也面临着其他问题(环境污染、抗营养因子、营养过剩等), 研究不同条件对脂类转运的影响及其调控机制将更有利于理解和调控鱼类脂肪转运。
图 1 鱼类中脂类的转运过程(参考Sheridan等[8], 并作适当修改)Fig. 1 Proposed lipid transport process in fish (Sheridan, et al.[8]*)
[1]Du Z Y. Causes of fatty liver in farmed fish: a review and new perspectives [J]. Journal of Fisheries of China, 2014,9(38): 1628—1638 [杜震宇. 养殖鱼类脂肪肝成因及相关思考. 水产学报, 2014, 9(38): 1628—1638]
[2]Gao W, Liu Y J, Tian L X, et al. Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish: a comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Oreochromis niloticus×O. aureus) [J]. Aquaculture Nutrition, 2011,17(1): 2—12
[3]Shapawi R, Ebi I, Yong A, et al. Optimizing the growth performance of brown-marbled grouper, Epinephelus fuscoguttatus (Forskal), by varying the proportion of dietary protein and lipid levels [J]. Animal Feed Science and Technology, 2014, 191: 98—105
[4]Leaver M J, Bautista J M, Björnsson B T, et al. Towards fish lipid nutrigenomics: current state and prospects for fin-fish aquaculture [J]. Reviews in Fisheries Science, 2008, 16(sup1): 73—94
[5]Kjaer M A, Vegusdal A, Gjoen T, et al. Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes [J]. Biochimica et Biophysica Acta, 2008, 1781(3): 112—122
[6]Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish [J]. Reviews in Fisheries Science,2003, 11(2): 107—184
[7]Lu K L, Xu W N, Li X F, et al. Hepatic triacylglycerol secretion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet [J]. Aquaculture, 2013, 408—409:160—168
[8]Sanchez-Gurmaches J, Cruz-Garcia L, Gutierrez J, et al. mRNA expression of fatty acid transporters in rainbow trout: in vivo and in vitro regulation by insulin, fasting and inflammation and infection mediators [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 163(2): 177—188
[9]Sanchez-Gurmaches J, Ostbye T K, Navarro I, et al. In vivo and in vitro insulin and fasting control of the trans-membrane fatty acid transport proteins in Atlantic salmon (Salmo salar) [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology,2011, 301(4): 947—957
[10]Torstensen B E, Nanton D A, Olsvik P A, et al. Gene expression of fatty acid-binding proteins, fatty acid transport proteins (cd36 and FATP) and β-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil [J]. Aquaculture Nutrition, 2009, 15(4):440—451
[11]Babin P J. Plasma lipoprotein and apolipoprotein distribution as a function of density in the rainbow trout (Salmo gairdneri) [J]. Biochemical Journal, 1987, 246(2):425—429
[12]Santulli A, Messina C M, D'Amelio V. Variations of lipid and apolipoprotein content in lipoproteins during fasting in European sea bass (Dicentrarchus labrax L.) [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 1997, 118(4):1233—1239
[13]MacFarlane R B, Harvey H R, Bowers M J, et al. Serum lipoproteins in striped bass (Morone saxatilis): effects of starvation [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47(4): 739—745
[14]Caballero M J, Torstensen B E, Robaina L, et al. Vegetable oils affect the composition of lipoproteins in sea bream (Sparus aurata) [J]. British Journal of Nutrition,2006, 96(5): 830—839
[15]Jordal A E O, Lie O, Torstensen B E. Complete replacement of dietary fish oil with a vegetable oil blend affect liver lipid and plasma lipoprotein levels in Atlantic salmon (Salmo salar L.) [J]. Aquaculture Nutrition, 2007,13(2): 114—130
[16]Lewis G F, Rader D J. New insights into the regulation of HDL metabolism and reverse cholesterol transport [J]. Circulation Research, 2005, 96(12): 1221—1232
[17]Sundaram M, Zhong S, Khalil M B, et al. Expression of apolipoprotein C-Ⅲ in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions [J]. Journal of Lipid Research, 2010, 51(1): 150—161
[18]Delcuve G P, Sun J M, Davie J R. Expression of rainbow trout apolipoprotein A-I genes in liver and hepatocellular carcinoma [J]. Journal of Lipid Research, 1992, 33(2):251—262
[19]Llewellyn L, Ramsurn V P, Wigham T, et al. Cloning,characterisation and expression of the apolipoprotein AI gene in the sea bream (Sparus aurata) [J]. Biochimica et Biophysica Acta, 1998, 1442(2): 399—404
[20]Smith R W, Wood C M, Cash P, et al. Apolipoprotein AI could be a significant determinant of epithelial integrity in rainbow trout gill cell cultures: a study in functional proteomics [J]. Biochimica et Biophysica Acta, 2005,1749(1): 81—93
[21]Villarroel F, Bastías A, Casado A, et al. Apolipoprotein AI, an antimicrobial protein in Oncorhynchus mykiss:Evaluation of its expression in primary defence barriers and plasma levels in sick and healthy fish [J]. Fish & Shellfish Immunology, 2007, 23(1): 197—209
[22]Shen Y, Lindberg A, Olivecrona G. Apolipoprotein CⅡfrom rainbow trout (Oncorhynchus mykiss) is functionally active but structurally very different from mammalian apolipoprotein CⅡ [J]. Gene, 2000, 254(1):189—198
[23]Nynca J, Dietrich M A, Karol H, et al. Identification of apolipoprotein CI in rainbow trout seminal plasma [J]. Reproduction, Fertility and Development, 2010, 22(8):1183—1187
[24]Pickart M A, Klee E W, Nielsen A L, et al. Genome-wide reverse genetics framework to identify novel functions of the vertebrate secretome [J]. PLoS One, 2006, 1(1): e104
[25]Zhang T, Yao S, Wang P, et al. ApoA-Ⅱ directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer [J]. Journal of Biological Chemistry, 2011,286(11): 9514—9525
[26]Lindberg A, Olivecrona G. Lipase evolution: trout,Xenopus and chicken have lipoprotein lipase and apolipoprotein C-Ⅱ-like activity but lack hepatic lipase-like activity [J]. Biochimica et Biophysica Acta-Lipids and Lipid Metabolism, 1995, 1255(2): 205—211
[27]Kondo H, Kawazoe I, Nakaya M, et al. The novel sequences of major plasma apolipoproteins in the eel Anguilla japonica [J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2001, 1531(1):132—142
[28]Kondo H, Morinaga K, Misaki R, et al. Characterization of the pufferfish Takifugu rubripes apolipoprotein multigene family [J]. Gene, 2005, 346: 257—266
[29]Wang Y, Zhou L, Li Z, et al. Molecular cloning and expression characterization of ApoC-I in the orange-spotted grouper [J]. Fish Physiology and Biochemistry, 2008,34(4): 339—348
[30]Kjær M A, Vegusdal A, Berge G M, et al. Characterisation of lipid transport in Atlantic cod (Gadus morhua)when fasted and fed high or low fat diets [J]. Aquaculture,2009, 288(34): 325—336
[31]Imai H, Oomiya Y, Kikkawa S, et al. Dynamic changes in the gene expression of zebrafish Reelin receptors during embryogenesis and hatching period [J]. Development,Growth & Differentiation, 2012, 54(2): 253—263
[32]Richard N, Kaushik S, Larroquet L, et al. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss) [J]. British Journal of Nutrition,2006, 96(2): 299—309
[33]Puthanveetil P, Wang Y, Zhang D, et al. Cardiac trigly-ceride accumulation following acute lipid excess occurs through activation of a FoxO1-iNOS-CD36 pathway [J]. Free Radical Biology & Medicine, 2011, 51(2): 352—363
[34]Caballero M, Izquierdo M, Kjørsvik E, et al. Morphological aspects of intestinal cells from gilthead seabream (Sparus aurata) fed diets containing different lipid sources [J]. Aquaculture, 2003, 225(1): 325—340
[35]Caballero M, Obach A, Rosenlund G, et al. Impact of different dietary lipid sources on growth, lipid digestibility,tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2002,214(1): 253—271
[36]Liu J, Caballero M J, Izquierdo M, et al. Necessity of dietary lecithin and eicosapentaenoic acid for growth, survival, stress resistance and lipoprotein formation in gilthead sea bream Sparus aurata [J]. Fisheries Science,2002, 68(6): 1165—1172
[37]Azarm H M, Kenari A A, Hedayati M. Effect of dietary phospholipid sources and levels on growth performance,enzymes activity, cholecystokinin and lipoprotein fractions of rainbow trout (Oncorhynchus mykiss) fry [J]. Aquaculture Research, 2013, 44(4): 634—644
[38]Lu S, Zhao N, Zhao A, et al. Effect of soybean phospholipid supplementation in formulated microdiets and live food on foregut and liver histological changes of Pelteobagrus fulvidraco larvae [J]. Aquaculture, 2008, 278(14):119—127
[39]Lie Ø, Sandvin A, Waagbø R. Influence of dietary fatty acids on the lipid composition of lipoproteins in farmed Atlantic salmon (Salmo salar) [J]. Fish Physiology and Biochemistry, 1993, 12(3): 249—260
[40]Field F, Born E, Chen H, et al. Regulation of apolipoprotein B secretion by biliary lipids in CaCo-2 cells [J]. Journal of Lipid Research, 1994, 35(5): 749—762
[41]Gu M, Kortner T M, Penn M, et al. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.) [J]. British Journal of Nutrition, 2014, 111(3):432—444
[42]Venold F F, Penn M H, Thorsen J, et al. Intestinal fatty acid binding protein (fabp2) in Atlantic salmon (Salmo salar): Localization and alteration of expression during development of diet induced enteritis [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 164(1): 229—240
[43]Pan M, Maitin V, Parathath S, et al. Presecretory oxidation, aggregation, and autophagic destruction of apoprotein-B: a pathway for late-stage quality control [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(15): 5862—5867
[44]Sato K, Cho Y, Tachibana S, et al. Impairment of VLDL secretion by medium-chain fatty acids in chicken primary hepatocytes is affected by the chain length [J]. The Journal of Nutrition, 2005, 135(7): 1636—1641
[45]López-Soldado I, Avella M, Botham K M. Differential influence of different dietary fatty acids on very low-density lipoprotein secretion when delivered to hepatocytes in chylomicron remnants [J]. Metabolism, 2009, 58(2):186—195
[46]Pan M, Cederbaum A I, Zhang YL, et al. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production [J]. Journal of Clinical Investigation, 2004, 113(9): 1277—1287
[47]Caviglia J M, Gayet C, Ota T, et al. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy [J]. Journal of Lipid Research, 2011, 52(9): 1636—1651
[48]Wang Y, Tran K, Yao Z. The Activity of Microsomal Triglyceride Transfer Protein Is Essential for Accumulation of Triglyceride within Microsomes in McA-RH7777 cells a unified model for the assembly of very low density lipoproteins [J]. Journal of Biological Chemistry,1999, 274(39): 27793—27800
[49]Chang B HJ, Liao W, Li L, et al. Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse [J]. Journal of Biological Chemistry, 1999, 274(10):6051—6055
[50]Li J Y, Zhang D D, Xu W N, et al. Effects of dietary choline supplementation on growth performance and hepatic lipid transport in blunt snout bream (Megalobrama amblycephala) fed high-fat diets [J]. Aquaculture, 2014,434: 340—347
[51]Castro C, Corraze G, Panserat S, et al. Effects of fish oil replacement by a vegetable oil blend on digestibility,postprandial serum metabolite profile, lipid and glucose metabolism of European sea bass (Dicentrarchus labrax)juveniles [J]. Aquaculture Nutrition, 2014, 21(5):592—603
[52]Dias J, Alvarez M, Arzel J, et al. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax) [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2005, 142(1): 19—31
[53]Torstensen B E, Espe M, Stubhaug I, et al. Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.) [J]. British Journal of Nutrition, 2011, 106(5): 633—647
[54]Liang XF, Ogata H Y, Oku H. Effect of dietary fatty acids on lipoprotein lipase gene expression in the liver and visceral adipose tissue of fed and starved red sea bream Pagrus major [J]. Comparative Biochemistry and Phy- siology Part A: Molecular & Integrative Physiology, 2002,132(4): 913—919
[55]Lindberg A, Olivecrona G. Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals [J]. Gene, 2002, 292(12): 213—223
[56]Librán-Pérez M, Otero-Rodiño C, López-Patiño M A, et al. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout [J]. Physiology & Behavior, 2014, 129:272—279
[57]Librán-Pérez M, Otero-Rodiño C, López-Patiño M,et al. Effects of intracerebroventricular treatment with oleate or octanoate on fatty acid metabolism in Brockmann bodies and liver of rainbow trout [J]. Aquaculture Nutrition, 2015, 21: 194—205
[58]Zhou J S, Stubhaug I, Torstensen B E. Trans-membrane uptake and intracellular metabolism of fatty acids in atlantic salmon (Salmo salar L.) hepatocytes [J]. Lipids,2010, 45(4): 301—311
[59]Hertzel A V, Bernlohr D A. The mammalian fatty acidbinding protein multigene family: molecular and genetic insights into function [J]. Trends in Endocrinology & Metabolism, 2000, 11(5): 175—180
[60]Bayır M, Bayır A, Wright J M. Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2015, 14: 26—32
[61]Thirumaran A, Wright J M, Bell J. Fatty acid-binding protein (fabp) genes of spotted green pufferfish (Tetraodon nigroviridis): comparative genomics and spatial transcriptional regulation [J]. Genome, 2014, 57(5):289—301
[62]Agulleiro M J, André M, Morais S, et al. High transcript level of fatty acid-binding protein 11 but not of very lowdensity lipoprotein receptor is correlated to ovarian follicle atresia in a teleost fish (Solea senegalensis) [J]. Biology of Reproduction, 2007, 77(3): 504—516
[63]Sharma M K, Liu R Z, Thisse C, et al. Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome [J]. FEBS Journal, 2006, 273(14): 3216—3229
[64]Zhao Y Z, Chen X L, Xie D X, et al. Cloning and analysis of full length cDNA of intracellularfatty-acid-binding protein in Litopenaeus vannamei [J]. Journal of Fisheries of China, 2010, 34(11): 1681—1688 [赵永贞, 陈秀荔, 谢达祥, 等.凡纳滨对虾脂肪酸结合蛋白基因全长 cDNA的克隆及序列分析. 水产学报, 2010, 34(11): 1681—1688]
[65]Vandepoele K, De Vos W, Taylor J S, et al. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(6):1638—1643
[66]Jordal A E O, Hordvik I, Pelsers M, et al. FABP3 and FABP10 in Atlantic salmon (Salmo salar L.)-General effects of dietary fatty acid composition and life cycle variations [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2006, 145(2):147—158
[67]Wang X, Li Y, Hou C, et al. Physiological and molecular changes in large yellow croaker (Pseudosciaena crocea R.) with high-fat diet-induced fatty liver disease [J]. Aquaculture Research, 2013, 46(2): 272—282
[68]Yan J, Liao K, Wang T J, et al. Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors,fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level [J]. PLoS One, 2015,10(6): e0129937
[69]Han C Y, Wen X B, Zheng Q M, et al. Effects of dietary lipid levels on lipid deposition and activities of lipid metabolic enzymes in hybrid tilapia (Oreochromis niloticus×O. aureus) [J]. Journal of Animal Physiology and Animal Nutrition, 2011, 95(5): 609—615
[70]Peng M, Xu W, Mai K S, et al. Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.)fed diets with various fish oil substitution levels by soybean oil [J]. Aquaculture, 2014, 433: 442—449
[71]Lu K L, Xu W N, Wang L N, et al. Hepatic β-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream megalobrama amblycephala fed a high fat diet [J]. PLoS One, 2014, 9(3): e93135
[72]Ding Z, Chen L, Qin J, et al. Molecular cloning, characterization and expression analysis of the fatty acid-binding protein (MnFABP), involved in dietary lipid sources response in oriental river prawn, Macrobrachium nipponense [J]. Aquaculture Nutrition, 2014, 20(4): 399—409
[73]Zhou J S,Torstensen B E, Stubhaug I. Oleic acid transmembrane uptake in hepatocytes of Atlantic salmon (Salmo salar l.) And effect of replacing dietary fish oil with vegetable oil [J]. Acta Hydrobiologica Sinica, 2014,38(1): 121—128 [周继术, Torstensen B E, Stubhaug I. 饲料中植物油替代鱼油对大西洋鲑肝细胞油酸跨膜吸收的影响. 水生生物学报, 2014, 38(1): 121—128]
[74]Nanton D A, Vegusdal A, Rora A M B, et al. Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar)fed fish oil and vegetable oil [J]. Aquaculture, 2007,265(14): 230—243
RESEARCH PROGRESSES OF LIPIDS AND FATTY ACIDS TRANSPORT IN FISH
AI Qing-Hui, YAN Jing and MAI Kang-Sen
(The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China)
Vegetable oils have been widely used in aquafeeds because of the shortage of global fish oil resources. However, the excess lipid accumulation in fish has been an increasingly serious problem to fish health. Lipid deposition is a complex process, including lipogenesis, lipid transport and lipolysis. Numerous studies examined effects of vegetable oils replacing fish oil on lipid deposition in fish. by mainly focused on the lipogenesis and lipolysis, little researches were conducted on lipid transport that not only regulates lipid deposition of a specific tissue but also plays a pivotal role in lipid homeostasis and energy balance in organisms. Therefore, this paper reviewed the types and compositions of lipoproteins, lipids and fatty acids transports in fish, and effects of nutritional factors on lipids and fatty acids transport, and proposed the direction of future research.
Lipid transport; Fatty acid uptake; Lipoprotein; Fatty acid transporter; Fatty acid binding protein
S965.1
A
1000-3207(2016)04-0859-10
10.7541/2016.111
2015-04-23;
2015-10-10
国家自然科学基金项目(31372541和31172425); 教育部博士点基金(20120132110007);国家重点基础研究发展计划(2014CB138600)资助 [Supported by the National Natural Science Foundation of China (31372541 and 31172425); Ph.D. Programs Foundation of Ministry of Education of China (20120132110007); National Basic Research Program of China (973Program)(2014CB138600)]
艾庆辉, E-mail: qhai@ouc.edu.cn