GLP-1对脂肪细胞及相关炎症调控的研究进展

2016-06-05 15:01马振南唐世磊
胃肠病学和肝病学杂志 2016年6期
关键词:肥胖症脂肪组织调节

马振南,刘 源,唐世磊

1.中国医科大学附属盛京医院普通外科,辽宁 沈阳 110022; 2.中国医科大学附属第四医院结直肠、疝及腹壁外科

GLP-1对脂肪细胞及相关炎症调控的研究进展

马振南1,刘 源1,唐世磊2

1.中国医科大学附属盛京医院普通外科,辽宁 沈阳 110022; 2.中国医科大学附属第四医院结直肠、疝及腹壁外科

通过总结近年来胰高血糖素样肽1(Glucagon like peptide1,GLP-1)对脂肪细胞及相关慢性炎症调控机理的最新研究进展,进一步阐明Roux-en-Y胃旁路手术治疗2型糖尿病(type 2 diabetes mellitus,T2DM)的机制。GLP-1能调节脂肪细胞代谢紊乱及抑制以巨噬细胞为主的慢性炎症的发展,RYGB术后GLP-1的升高,可明显改善多种原因导致的胰岛素抵抗,最终长期缓解T2DM患者的高血糖。RYGB术后GLP-1调节脂肪细胞及相关慢性炎症的作用机理尚未完全清楚,进一步认识和研究GLP-1如何发挥生物学作用,将可能为开发用于治疗糖尿病的新药提供理论依据。

2型糖尿病;胃转流;胰高血糖素样肽1;脂肪细胞;炎症

随着社会发展、人们高能食物摄入及低体力活动等生活方式的转变,世界范围内肥胖症人群的发病率呈逐年上升趋势,已严重威胁人们的身体健康[1-2]。大量临床观察和研究已证实,如T2DM、三高症、冠心病、阻塞性睡眠呼吸暂停综合征等与肥胖症密切相关,尤其是T2DM人群约占90%以上[3],已成为威胁人类健康的一大疾病。目前T2DM常用治疗手段不仅医疗费用高昂,且长期疗效不理想,最终引起一系列身体其他器官的严重并发症,因此其治疗备受关注。近年来,源于减肥手术的突破性进展Roux-en-Y胃旁路(Roux-en-Y gastric bypass,RYGB)手术可迅速缓解糖尿病肥胖患者的高血糖并减轻体质量,血糖降至正常的有效率达84%~98%,并可长期维持[4-6]。而其控制血糖的机制相对复杂,至今仍未完全明确,术后外周胰高血糖素样肽1(glucagon like peptide 1,GLP-1)分泌增多对机体的作用被认为是缓解T2DM的重要机制之一,现总结GLP-1水平的变化对脂肪因子及相关慢性炎症调控方面的研究进展,旨在更全面解释RYGB术后治疗肥胖糖尿病的分子机理。

1 肥胖与T2DM

肥胖症表现为体内脂肪组织过度堆积和(或)分布异常致体质量异常增加的一种慢性代谢性疾病(诊断标准为 BMI>25 kg/m2)[7-9]。该人群机体代谢紊乱引起的胰岛素抵抗(insulin resistance,IR)和(或)分泌缺陷在T2DM的进程中起决定作用,IR即机体脂肪、肌肉和肝细胞对胰岛素的敏感性降低。众所周知,肥胖是T2DM最重要的危险因子,90%以上T2DM患者都伴有肥胖或超重,而肥胖人群中脂肪细胞的功能紊乱和以巨噬细胞为主的相关慢性炎症是造成T2DM的主要原因[10-11],且肥胖症人群与许多疾病密切相关[9,12],如:T2DM、非酒精性脂肪肝、心血管疾病、退行性疾病及恶性肿瘤,而脂肪组织不再单是能量储存器官,也是一种很重要的内分泌器官,它分泌的多种脂肪因子参与神经-内分泌-免疫网络的调节[13]。肥胖人群中脂肪细胞的功能紊乱导致脂肪因子和一些炎症因子的分泌及功能异常,如肿瘤坏死因子α(tumor necrosisfactor-α,TNF-α)、IL-1α、白细胞介素6(interleukin-6,IL-6)、瘦素、脂联素、抵抗素等,以及化学趋化因子,如单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)、MCP-1α,以及产生过多的游离脂肪酸(free fatty acid,FFA)等[14]。如脂联素是多肽类激素,通过作用腺苷酸活化蛋白激酶和过氧化物酶增殖物激活受体;瘦素是最早发现的脂肪因子,主要通过抑制食欲、增加能量消耗和抑制脂肪合成等3种调节方式,这些脂肪因子可协同调节葡萄糖、脂肪酸代谢及胰岛素行为[15-16]。但在病态下,脂肪-胰岛轴的反馈机制受损,使脂肪因子分泌紊乱、加速炎症进展等变化,引起胰岛细胞去极化,出现IR、敏感性降低等一系列反应,最终发展成为T2DM。研究已证实,持续的低度炎症反应也是肥胖、IR和T2DM一个共同的重要病理特点[17]。肥胖的IR患者炎性因子表达和(或)分泌增加,如TNF-α、IL-6、C-反应蛋白(C-reactive protein,CRP)等,然而许多炎性因子相互作用也可直接导致脂代谢紊乱,如TNF-α和IL-6能促进脂肪水解,释放过多的FFA、联素水平下降使脂肪氧化下降,最终导致肝脏和肌肉组织脂肪沉积和IR。胰岛素的受体信号通路与炎性信号通路存在交叉,TNF-α可促进胰岛素受体底物(IRS和IRS2)的丝氨酸磷酸化,加重IR,同时多种细胞因子通过不同途径直接或间接作用于胰腺组织,促进T2DM的发生[18]。在肥胖症发展过程中,脂肪组织中巨噬细胞的浸润进行性加重,而巨噬细胞是分泌炎性因子的主要细胞,且与IR呈正相关,在IR的进展中,脂肪细胞和巨噬细胞的交互作用起着非常重要的作用[19]。此外,如趋化因子MCP-1和MCP-1α也可吸引巨噬细胞浸润到脂肪细胞中,在脂肪、肝和肌肉细胞中通过活化JNK和NF-κB通路及长期暴露于高FFA环境下可通过TLR4/TLR2和NF-κB通路活化巨噬细胞,促进炎症的发展[20],使胰岛β细胞下调及凋亡增加,最终导致T2DM。因此,改善肥胖人群中脂肪因子分泌异常、抑制炎症因子的生成是改善IR及提高胰岛素的敏感性、控制高血糖及肥胖相关的代谢性紊乱疾病的关键之一,也是目前研究治疗T2DM和肥胖症的新趋势。

2 RYGB术与GLP-1

近年来,随着临床上减重代谢外科中心的成立,已证明肥胖合并T2DM的患者RYGB术后体质量明显下降及糖脂代谢明显改善,使血糖恢复至正常并可长期维持且有效率达84%~98%[5,21]。然而迄今RYGB手术治疗肥胖糖尿病的机制尚未完全清楚,值得关注的是,到目前为止大量基础和临床实践表明,糖脂代谢的改善与RYGB术后调节肠道激素的分泌密切相关,如GLP-1、Ghrelin、PYY(peptide YY)、抑胃肽(glucose-dependent insulinotropic polypeptide,GIP)等,目前研究表明主要是GLP-1的作用效果,可调节脂肪细胞功能紊乱和相关慢性炎症所致的IR,从而直接或间接调节机体的血糖水平至正常范围。GLP-1是一个由29~30个氨基酸构成的肽类激素,由胰高血糖素原(preproglucogan)基因编码,在特定的细胞中转录后加工而成。GLP-1由位于回肠末端和结肠的L细胞受营养物质直接刺激而分泌,生理情况下,餐后机体产生的GLP-1很快释放入血参与血糖调节,呈现早期(10~15 min)和延迟(30~60 min)两个分泌相,不幸的是GLP-1在体内常迅速地被二肽基肽酶4(dipeptydil-peptidase-4,DPP-4)降解失活[22]。GLP-1通过与GLP-1R结合发挥生物学作用,而GLP-1R在人体的许多组织中表达,包括胰岛的α、β、δ细胞,肺,心脏,肾脏,胃肠道及中枢神经系统的下丘脑和脑干区域等。因此,GLP-1的作用很广泛,可以促进糖原合成、脂肪分解,抑制肝糖原的输出和胰高血糖素分泌,组织对葡萄糖的利用率增加,提高机体对胰岛素的敏感性。临床已证明Ex-4是GLP-1的长效类似物,不易被DPP-4降解,与GLP-1R结合后在改善糖代谢中起重要作用。RYGB术后GLP-1分泌增高的机制中以“后肠学说”最受关注且已被证实,认为RYGB术后消化道重组, 未消化或部分消化的食物早期进入后肠(末段回肠及结肠),刺激肠 L细胞后主要影响GLP-1分泌,而空腹时GLP-1与术前相比基本一致,但在餐后GLP-1分泌会急剧增加,有研究表明RYGB术后2年,甚至更久GLP-1分泌增加持续存在,且与体质量变化无相关性[23],其更远期效果还有待随访研究。此外,末段回肠分泌的其他因子的提高也对糖代谢的改善有一定关系,如PYY等[24-26]。机体经过GLP-1的生理作用后,促进IR状态脂肪细胞的葡萄糖摄取和脂肪分解增强其对胰岛素的敏感性,增加胰岛素mRNA的表达和胰岛素前体合成,促进胰岛β细胞增生并抑制其凋亡[27],在以上“后肠学说”作用下使血糖恢复至正常,其已经成为治疗糖尿病的新方向。

3 GLP-1与脂肪细胞

GLP-1是由肠L细胞分泌的目前已知作用最强的肠促胰岛素分泌肽。越来越多的研究[28-29]表明,引起糖、脂质代谢紊乱及IR的T2DM的肥胖症人群中,RYGB术后GLP-1分泌增多并作用其受体可发挥多种生物学功能,以明显改善血糖为代表已应用于临床[30]。但目前对GLP-1通过调节脂肪因子的分泌来改善血糖的机制尚未完全清楚。通过RYGB术后GLP-1对脂肪细胞的基础研究显示,Gao等[31]认为脂肪细胞作为胰岛素主要作用的靶器官,GLP-1可促进脂肪细胞的胰岛素依赖性葡萄糖摄取,而仅有GLP-1时则无此效应,然而在发生IR时,GLP-1还可促进脂肪细胞的葡萄糖摄取,从而增强其对胰岛素的敏感度,进而达到缓解机体高血糖环境。在肥胖伴T2DM的人群中,RYGB术后可使血糖恢复至正常水平并持续维持,这与术后GLP-1升高调节脂肪因子表达的变化有关,已有研究证实,术后GLP-1的分泌增多,通过调控核因子κB(NF-κB)来调节脂肪组织中众多糖脂代谢基因的表达,使瘦素和FFA水平降低、保护性因子脂联素的表达显著增加,因多种脂肪因子的相互调节作用,可显著改善糖脂代谢、缓解IR及增加外周器官胰岛素的敏感性,故GLP-1提高可明显缓解T2DM及肥胖相关的代谢障碍性疾病,且到目前为止是现代治愈T2DM被广泛认可的方案。其次,RYGB术后GLP-1分泌增多可以影响前脂肪细胞的增殖、分化[32],其机制与激活ERK、PKC和Akt信号通路(regulation of adipocyte formation by GLP-1/GLP-1R signaling)有关,可使小体积脂肪细胞的数量增加,而总体脂质没有显著变化,GLP-1R与PPARr表达密切相关,是脂肪细胞分化的后期阶段的标志,提示GLP-1R可能与PPARr靶基因直接作用,可调节成熟脂肪细胞的效应,Kang等[33-34]研究发现,小体积脂肪细胞也有助于改善IR和糖脂代谢紊乱,使葡萄糖转运子4(GLIJT-4)表达增加。且术后GLP-1水平的升高可作用于NF-κB来调节脂肪因子的表达和分泌,NF-κB的激活可引起包括IL-6、C/EBPs、TNF-α、IL-6、CRP等在内的多种因子的表达改变,能抑制脂肪组织中巨噬细胞浸润,共同改善肥胖患者脂肪细胞的调节作用。因此,RYGB术后明显改善脂肪细胞的功能紊乱,并有效调节脂肪因子发挥其应有的效应[35],其与术后GLP-1的分泌增加后作用于脂肪细胞息息相关,而其作用机制仍需进一步研究。

4 GLP-1与炎症

目前研究表明,炎症反应与IR、肥胖症和T2DM密切相关,且慢性炎症是肥胖、T2DM的主要特征之一[36]。而这种慢性低度炎症状态主要起源于脂肪组织,脂肪组织不仅是一个储存脂质的器官,还是一个内分泌器官,可以分泌多种胃肠激素及细胞因子等,在调节糖脂代谢、饥饿及饱腹感等信号通路中起至关重要的作用。脂肪组织分泌的细胞因子及趋化因子,统称为脂肪因子(adipokines),如瘦素、脂联素、TNF-α、IL-6、CRP及MCP-1等[37-38]。在肥胖症的IR患者中,其脂肪细胞中炎性因子的表达和(或)分泌增加,反之炎性因子也可直接导致脂肪细胞代谢紊乱,进而对局部及全身产生异常生理效应[39]。肥胖症进展过程中,脂肪组织中以巨噬细胞为主的炎症细胞浸润进行性加重,并在其他异常细胞因子的协同下,加速β细胞的功能损伤和破坏,促进IR的发生、发展,最终导致T2DM[40-41]。有研究[42-47]报道,RYGB术后血循环中促炎性脂肪因子水平明显降低;而抗炎性脂肪因子水平明显升高;脂肪组织巨噬细胞浸润减少;脂肪组织及肝脏组织中炎性因子mRNA表达水平下降等,这些变化与体质量减轻无明显相关性,而受术后胃肠激素变化的影响,其主要是GLP-1的水平升高。事实上,越来越多的研究表明GLP-1能抑制炎症性疾病的发展。Daousi等[48]研究显示T2DM患者静脉注射GLP-1或服用GLP-1类似物后,循环中炎性细胞因子如TNF-α、IL-6及IL-1p水平降低,抗炎性脂肪因子脂联素水平升高,且其抗炎作用与体质量、血糖的变化无关。Lee等[49]通过给ob/ob小鼠注射产生GLP-1的重组腺病毒(recombinant adenovirus producing GLP-1,rAd-GLP-1)使其GLP-1水平升高,可使ob/ob小鼠脂肪细胞中炎症减轻及脂肪组织中浸润的巨噬细胞,有直接抑制炎症信号通路的作用[50]。如NF-κB的活化和JNK信号转导通诱导炎性细胞因子和趋化因子基因的表达,因此产生的IL-6、TNF-α、MCP-1减少,进而改善IR。另外,Terasaki等[51]报道在自发性动脉粥样硬化小鼠体内持续注射低剂量GLP-1,可显著抑制巨噬细胞的浸润和降低动脉粥样硬化病变,其作用与GLP-1在巨噬细胞中介导cAMP活化有关。同样,GLP-1还可在培养的人胰岛中抑制IFN γ诱导趋化因子和炎症因子的表达,应用Ex-4治疗糖尿病大鼠能明显抑制黏附分子1(ICAM-1)的表达和NF-κB的活化,明显改善糖尿病相关的肾脏炎症。然而近期的研究还表明免疫细胞、T细胞和巨噬细胞也可表达GLP-1R。RYGB术后机体炎症的改善状态与胰岛素敏感性呈正相关,使T2DM得到治愈,这些减重术后变化的效果在已发表文献中均有阐述,但其作用机理仍需深入研究。

综上所述,鉴于RYGB术后GL-1释放明显增加、减重效果确切及在治愈T2DM方面具有显著效果,并且GLP-1及其类似物是目前治疗T2DM和肥胖症的药物治疗最有前途的选择。但是,GLP-1对身体组织器官的生理学作用,仍有许多功能机制尚未完全清楚,仍需深入研究RYGB术后GLP-1增加是如何改善脂肪细胞功能紊乱和慢性炎症的作用机制,将为开发治疗糖尿病方面的新药提供理论依据。因此,对GLP-1及其类似物药物的临床应用有效性也需要持续深入的研究。

[1]Yang SH, Dou KF, Song WJ. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(25): 2425-2426.

[2]Smith E, Hay P, Campbell L, et al. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment [J]. Obes Rev, 2011, 12(9): 740-755.

[3]The Chinese Medical Doctor Association Surgeon Surgeons Committee Branch of Obesity and Diabetes. Guidelines for the surgical treatment of obesity and type 2 diabetes in China (2014) [J]. Chinese Journal of Practical Surgery, 2014, 34(11): 1005-1010. 中国医师协会外科医师分会肥胖和糖尿病外科医师委员会. 中国肥胖和2型糖尿病外科治疗指南 (2014) [J]. 中国实用外科杂志, 2014, 34(11): 1005-1010.

[4]Zhong K. Effect of Roux-en-Y gastric bypass surgery on the non-obese patients with type 2 diabetes glucose and lipid metabolism [J]. Modern Medicine Journal of China, 2012, 14(6): 47-49. 钟凯. Roux-en-Y胃旁路术对非肥胖性2型糖尿病患者糖脂代谢的影响[J]. 中国现代医药杂志, 2012, 14(6): 47-49.

[5]Ahn SM, Pomp A, Rubino F. Metabolic surgery for type 2 diabetes [J]. Ann N Y Acad Sci, 2011, 1212: E37-E45.

[6]Kohli R, Stefater MA, Inge TH. Molecular insights from bariatric surgery [J]. Rev Endocr Metab Disord, 2011, 12(3): 211-217.

[7]Sharma NK, Langberg KA, Mondal AK, et al. Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms [J]. PLoS One, 2013, 8(5): e65303.

[8]Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity [J]. J Clin Invest, 2011, 121(6): 2094-2101.

[9]Khan IM, Perrard XY, Brunner G, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance [J]. Int J Obes (Lond), 2015, 39(11): 1607-1618.

[10]Maessen DE, Brouwers O, Gaens KH, et al. Delayed intervention with pyridoxamine improves metabolic function and prevents adipose tissue inflammation and insulin resistance in high-fat diet-induced obese mice [J]. Diabetes, 2015, [Epub ahead of print].

[11]Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease [J]. Nat Rev Immunol, 2011, 11(11): 738-749.

[12]Lee MS, Kim IH, Kim Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C(2) C(12) muscle cells [J]. Nutrients, 2013, 5(5): 1660-1671.

[14]McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation [J]. Clin Sci (Lond), 2015, 129(12): 1083-1096.

[15]Wang J, Song GY. Adiponectin and type 2 diabetes mellitus as well as its complications [J]. Medical Recapitulate, 2008, 14(7): 1079-1081. 王敬, 宋光耀. 脂联素与2型糖尿病及其并发症[J]. 医学综述, 2008, 14(7): 1079-1081.

[16]Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function [J]. J Clin Invest, 2012, 122(12): 4667-4674.

[17]Kang SC, Kim BR, Lee SY, et al. Sphingolipid metabolism and obesity-induced inflammation [J]. Front Endocrinol (Lausanne), 2013, 4: 67.

[18]Yadav A, Kataria MA, Saini V, et al. Role of leptin and adiponectin in insulin resistance [J]. Clin Chim Acta, 2013, 18(417): 80-84.

[19]Eljaafari A, Robert M, Chehimi M, et al. Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation [J]. Diabetes, 2015, 64(7): 2477-2488.

[20]Bao S, Cao Y, Zhou H, et al. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced Toll-like receptor 4 (TLR4) activity via 67 kDa laminin receptor (67LR) in 3T3-L1 adipocytes [J]. J Agric Food Chem, 2015, 63(10): 2811-2819.

[21]Mas-Lorenzo A, Benaiges D, Flores-Le-Roux JA, et al. Impact of different criteria on type 2 diabetes remission rate after bariatric surgery [J]. Obes Surg, 2014, 24(11): 1881-1887.

[22]Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1 [J]. Vascul Pharmacol, 2011, 55 (1-3): 10-16.

[23]Omran J, Firwana B, Koerber S, et al. Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis [J]. Obes Rev, 2016, 17(6): 520-530.

[24]Elahi D, Galiatsatos P, Rabiee A, et al. Mechanisms of type 2 diabetes resolution after Roux-en-Y gastric bypass [J]. Surg Obes Relat Dis, 2014, 10(6): 1028-1039.

[25]Ribaric G, Buchwald JN, McGlennon TW. Diabetes and weight in comparative studies of bariatric surgeryvsconventional medical therapy: a systematic review and meta-analysis [J]. Obes Surg, 2014, 24(3): 437-455.

[26]Gaitonde S, Kohli R, Seeley R. The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition [J]. J Surg Res, 2012, 178(1): 33-39.

[27]Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus [J]. Nat Rev Endocrinol, 2009, 5(5): 262-269.

[28]Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity [J]. J Clin Invest, 2011, 121(6): 2094-2101.

[29]Li HX, Xiao L, Wang C, et al. Review: Epigenetic regulation of adipocyte differentiation and adipogenesis [J]. J Zhejiang Univ Sci B, 2010, 11(10): 784-791.

[30]Burmeister MA, Ferre T, Ayala JE, et al. Acute activation of central GLP-1 receptors enhances hepatic insulin action and insulin secretion in high-fat-fed, insulin resistant mice [J]. Am J Physiol Endocrinol Metab, 2012, 302(3): E334-E343.

[31]Gao H, Wang X, Zhang Z, et al. GLP-1 amplifies insulin signaling by up-regulation of IRbeta, IRS-1 and Glut4 in 3T3-L1 adipocytes [J]. Endocrine, 2007, 32(1): 90-95.

[32]Challa TD, Beaton N, Arnold M, et al. Regulation of adipocyte formation by GLP-1/GLP-1R signaling [J]. J Biol Chem, 2012, 287(9): 6421-6430.

[33]Kang JQ, Park CY, Ihm SH, et al. Mechanisms of adipose tissue redistribution with rosiglitazone treatment in various adipose depots [J]. Metabolism, 2010, 59(1): 46-53.

[34]Chang YC, Cho HJ. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line [J]. Biochemical Biophysical Res Communications, 2012, 422(3): 423-428.

[35]Hausman GJ, Barb CR, Dean RG. Gene expression profiling in developing pig adipose tissue: non-secreted regulatory proteins [J]. Animal, 2011, 5(7): 1071-1081.

[36]Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus [J]. Diabetologia, 2014, 57(4): 781-784.

[37]Kitade H, Sawamoto K, Nagashimada M, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2status [J]. Diabetes, 2012, 61(7): 1680-1690.

[38]Keuper M, Blüher M, Schön MR, et al. An inflammatory micro-environment promotes human adipocyte apoptosis [J]. Mol Cell Endocrinol, 2011, 339(1-2): 105-113.

[39]Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liverdisease [J]. Int J Mol Sci, 2014, 15(4): 6184-6123.

[40]Zhong D, Qin ZS, Yu ZQ. Research progress of gastric bypass in the treatment of type 2 diabetes mellitus [J]. Journal of Military Surgeon in Southwest China, 2012, 14(3): 511-513. 钟玳, 覃宗升, 于志清. 胃旁路术治疗2型糖尿病的研究进展[J]. 西南军医, 2012, 14(3): 511-513.

[41]Kuehl MN, Rodriguez H, Burkhardt BR, et al. Tumor necrosis factor-α, matrix-metalloproteinases 8 and 9 levels in the saliva are associated with increased hemoglobin A1c in type 1 diabetes subjects [J]. PLoS One, 2015, 10(4): e0125320.

[42]Dalmas E, Rouault C, Abdennour M, et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction [J]. Am J Clin Nutr, 2011, 94(2): 450-458.

[43]Aron-Wisnewsky J, Tordjman J, Poitou C, et al. Human adipose tissue macrophages: m1 and m2cell surface markers in subcutaneous and omental depots and after weight loss [J]. J Clin Endocrinol Metab, 2009, 94(11): 4619-4623 .

[44]Miller GD, Nicklas BJ, Fernandez A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery [J]. Surg Obes Relat Dis, 2011, 7(5): 618-624.

[45]Reed MA, Pories WJ, Chapman W, et al. Roux-en-Y gastric bypass corrects hyperinsulinemia implications for the remission of type 2 diabetes [J]. J Clin Endocrinol Metab, 2011, 96(8): 2525-2531.

[46]Peterli R, Steinert RE, Woelnerhanssen B, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial [J]. Obes Surg, 2012, 22(5): 740-748.

[47]Basso N, Capoccia D, Rizzello M, et al. First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis [J]. Surg Endosc, 2011, 25(11): 3540-3550.

[48]Daousi C, Pinkney JH, Cleator J, et al. Acute peripheral administration of synthetic human GLP-1 (7-36 amide) decreases circulating IL-6 in obese patients with type 2 diabetes mellitus: a potential role for GLP-1 in modulation of the diabetic pro-inflammatory state? [J]. Regul Pept, 2013, 183: 54-61.

[49]Lee YS, Park MS, Choung JS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes [J]. Diabetologia, 2012, 55(9): 2456-2468.

[50]Aghamohammadzadeh R, Greenstein AS, Yadav R, et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity [J]. J Am Coll Cardiol, 2013, 62(2): 128-135.

[51]Terasaki M, Nagashima M, Nohtomi K, et al. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin's actions in nondiabetic and diabetic apolipoprotein E-null mice [J]. PLoS One, 2013, 8(8): e70933.

(责任编辑:李 健)

Research progress of GLP-1 on the regulation of fat cells and related inflammation

MA Zhennan1, LIU Yuan1, TANG Shilei2

1.Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110022; 2.Department of Colorectal, Hernia and Abdominal Surgery, the Fourth Affiliated Hospital of China Medical University, China

To further clarify the mechanism of Roux-en-Y gastni bypass(RYGB) in treating type 2 diabetes by summarizing recent research progress of GLP-1 on the regulation of fat cells and related chronic inflammation. GLP-1 can regulate the metabolism disorder of fat cells and inhibit the development of chronic inflammation in macrophages. The improvement of GLP-1 after RYGB operation can significantly improve the insulin resistance (IR) for variety of reasons, and finally help T2DM patients to chronically relieve symptoms caused by hyperglycemia. The mechanism of GLP-1 regulation of fat cells and related chronic inflammation after RYGB operation is not yet fully understood, and further understanding and studying on the biological function of GLP-1 will provide a theoretical basis for the development of new drugs for treating diabetes.

Type 2 diabetes; Gastric bypass; Glucagon like peptide 1; Fat cells; Inflammation

10.3969/j.issn.1006-5709.2016.06.031

辽宁省科学技术基金项目(C916)

马振南,在读硕士研究生,研究方向:肝胆、胃肠微创外科。E-mail:mazhennan8888@163.com

刘源,副教授、副主任,研究方向:肝胆、胃肠微创外科。E-mail:liuy12@sj-hospital.org

R57

A

1006-5709(2016)06-0711-05

2015-09-22

猜你喜欢
肥胖症脂肪组织调节
方便调节的课桌
GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析
高脂肪饮食和生物钟紊乱会影响体内的健康脂肪组织
双源CT对心脏周围脂肪组织与冠状动脉粥样硬化的相关性
穴位埋线法治疗肥胖症的中西医机制研究进展
2016年奔驰E260L主驾驶座椅不能调节
针灸推拿用于肥胖症治疗的作用探究
可调节、可替换的takumi钢笔
癌旁脂肪组织来源脂肪间充质干细胞的特征分析
穴位埋线治疗单纯性肥胖症28例