李菁
摘 要:本文新定义了两种图的运算:多个图的连和联。并分别给出了多个图的连以及多个图的联的Wiener指数、超Wiener指数以及逆Wiener指数的计算公式。
关键词:Wiener指数;逆Wiener指数;超Wiener指数;图的连;图的联
中图分类号:O335 文献标识码:A
2 结论
本文介绍了多个图的连的定义,并得出多个图的连的三种拓扑指数(Wiener指数、超Wiener指数以及逆Wiener指数)的计算公式。新定义了多个图的联,并分别计算出多个图的联的Wiener指数、超Wiener指数以及逆Wiener指数。
参考文献:
[1] H.Wiener, Structrual determination of paraffin boiling points, J.Am.Chem. Soc.,69(1947)17-20.
[2] M.Randic,Novel molecular descriptor for structure-property studies, Chem. Phys. Lett.,211(1993)478-483.
[3] Muhuo Liu, Xuezhong Tan, The first to (k+1)-th smallest Wiener (hyperWiener) indices of connected graphs, Kragujevac Journal of Mathematics, 32(2009) 109-115.
[4] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta. Appl. Math., 66(2001) 211-249.
[5] M.V.Diudea, I.Gutman, Wiener-Type Topological indices, Croat. Chem. Acta, 71(1)(1998) 21-51.
[6] B.Zhou,I.Gutman,Relations betweenWiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett., 394(2004) 93C95.
[7] M.H.Khalifeh, H.Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl., 56 (2008) 1402-1407.
[8] Du Z, Zhou B, On the reverse Wiener indices of unicyclic graphs, Acta applicandae mathematicae, 106(2009) 293-306.