慢性阻塞性肺疾病生物标记物的研究进展

2016-05-14 23:25邱海兵冯起校
中国现代医生 2016年9期
关键词:慢性阻塞性肺疾病

邱海兵 冯起校

[摘要] 慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是一种常见病和多发病,给患者和社会带来巨大的经济负担。肺功能试验是诊断慢阻肺的金标准,慢阻肺急性加重的诊断则主要根据临床表现,缺乏量化指标。血清生物标记物是一种定量指标,有助于慢阻肺急性加重的诊断,可指导治疗和预测预后。本文对最新发现的血清生物标记物作一综述。

[关键词] 慢性阻塞性肺疾病;肺功能试验;急性加重;标记物

[中图分类号] R563.5 [文献标识码] A [文章编号] 1673-9701(2016)09-0159-04

[Abstract] Chronic obstructive pulmonary disease(COPD) is a common and frequently-occurring disease, which may lay a huge financial burden on the patients and the society. Respiratory function tests is the gold standard for the diagnosis of COPD, but the diagnosis of acute exacerbation of COPD is mainly based on clinical manifestations, thereby lacking quantitative indicators. Serum biomarkers is a quantitative indicator that is effective in the diagnosis, treatment, and prognosis of acute exacerbation of COPD. The most recently discovered serum biomarker is reviewed in this paper.

[Key words] Chronic obstructive pulmonary disease; Respiratory function tests; Acute exacerbation; Biomarker

慢性阻塞性肺疾病(简称慢阻肺)是一种严重危害人类健康的常见病和多发病,我国40岁以上人群慢阻肺的发病率约8.2%[1]。慢阻肺急性加重是指患者呼吸系统症状在短时间内恶化的急性事件,通常需要改变治疗方案,对患者的生活质量、肺功能和社会经济负担等造成负面影响[2,3]。慢阻肺患者每年约发生0.5~3.5次急性加重[4],频发急性加重的慢阻肺患者其发作频率随着时间的推移有变得稳定的趋势[5]。根据急性加重发作的时相可以分为突发型和渐进型急性加重。渐进型急性加重患者的临床症状相对较轻,急性加重症状的出现到高峰期约4 d,但其住院时间明显长于突发型急性加重[6]。目前慢阻肺急性加重的诊断主要根据临床表现,缺乏实用的实验室指标[4]。血清生物标记物是一种定量指标,有助于慢阻肺急性加重的诊断、指导治疗和预测预后。一些简单的试验室指标如C-反应蛋白已被用于慢阻肺急性加重的诊断和预测预后[7-9]。本文对最新发现的慢阻肺生物标记物综述如下。

1 脂联素

脂联素是一种由脂肪组织合成和分泌的细胞因子,同时具有抗炎和促炎活性的作用,与全身的炎症反应以及营养状态有关[10]。代谢综合征是慢阻肺的主要合并症[11],而脂联素在代谢综合征的发病机制中发挥重要作用。研究显示,慢阻肺患者血清脂联素水平高于健康人群,与体重指数和1 s用力呼气容积(forced expiratory volume in one second,FEV1)呈负相关[12]。Kento等[13]对3253例年龄大于40岁以上的健康人群连续监测血清脂联素水平和肺功能参数2年,其中872例患者于5年后重新检测上述指标,结果显示血清脂联素水平不仅和FEV1呈负相关,同时和FEV1每年下降的速度显著相关,提示脂联素水平是一个可以预测普通人群FEV1下降速度的指标。肺气肿是慢阻肺重要的病理生理改变之一,也是其中的一个常见表型。血清脂联素水平和CT扫描显示的肺气肿严重程度正相关[14]。Sirpa等[15]证实血清脂联素水平与气道阻力和功能残气量呈正相关。同时脂联素基线水平高的慢阻肺患者表现出对氟替卡松有较好的治疗效果,脂联素水平和圣乔治评分呈负相关,提示血清脂联素可预测激素治疗改善慢阻肺症状的有效性。一项研究结果表明,高脂联素水平的慢阻肺患者的全因死亡率较高[16]。相反,LHS研究显示慢阻肺患者的脂联素水平和住院时间、心血管疾病的致死率负相关和呼吸系统疾病的致死率正相关,但和全因死亡率不存在相关性[17]。上述研究结果显示血清脂联素水平不仅和远端的气道阻塞和肺气肿有关,同时具有良好的预测价值,但其具体在慢阻肺发生的相关机制尚待进一步研究。

2 尿酸

血尿酸是一项常规实验室指标,是体内核酸中嘌呤代谢的终末产物。血尿酸水平增高与多种呼吸疾病有关,特别是合并低氧血症和全身性炎症反应[18,19]。在慢阻肺的发病机制中,吸烟诱发体内的氧化应激和肺部炎症反应,导致肺组织的损伤和肺功能下降[20]。一项研究结果表明,普通健康人群的血尿酸水平和反应气流受限的肺功能参数存在显著的相关性[21]。一个小的横断面研究结果显示,血尿酸肌酐比值和肺功能参数呈负相关,与呼吸困难评分量表的评分呈正相关[22]。Bartziokas等[23]在对314例住院慢阻肺急性加重患者的研究中发现,血尿酸增高与更严重的气流受限和频发加重相关。Cox回归显示,血尿酸水平≥6.9 mg/dL时是预测慢阻肺急性加重患者30 d内死亡风险的独立因素,但不是1年内死亡风险的独立预测因素。高血尿酸水平患者的住院时间相对延长,无创通气和入住ICU的风险更高。高尿酸水平的患者1年内反复入院的风险更高。血尿酸是临床实验室常规指标,成本较低,可重复检测,有助于识别高风险的慢阻肺患者。其潜在的临床应用价值巨大,但需更多的临床试验证实其有效性。

3 纤维蛋白原

纤维蛋白原是一种重要的血浆糖蛋白,主要由肝脏合成并在凝血酶的作用下转为纤维蛋白。正常人的纤维蛋白原是(1.5~3.5)g/L,在急性期可快速升高。血浆纤维蛋白原水平可预测慢阻肺患者急性加重的发生次数,稳定期慢阻肺患者的纤维蛋白原水平较高,其发生急性加重的频率越高[24],但血浆纤维蛋白原水平不能预测FEV1的下降速度[25]。一项研究显示,纤维蛋白原水平和慢阻肺的分级相关,3级和4级慢阻肺患者的血浆纤维蛋白原水平>393.0 mg/dL的比例更高。当纤维蛋白原水平>393.0 mg/dL时,慢阻肺患者的死亡率和慢阻肺导致的住院事件的风险更高[26]。需要注意的是,P38丝裂原活化蛋白激酶抑制剂和急性加重期口服糖皮质激素可抑制血浆纤维蛋白原的表达水平[27,28]。纤维蛋白原在慢阻肺发病的相关机制尚不清楚,需进一步研究。

4 生成分化因子-15(growth differentiation factor-15,GDF-15)

GDF-15是一种应激反应蛋白,生理情况下在前列腺和胎盘中高表达,其他组织微弱表达。在病理状态下,如低氧血症、炎症反应、心力衰竭和组织损伤等,GDF-15的表达水平显著上升。近来有研究提示GDF-15可能是一个有预测价值的慢阻肺炎性指标。该研究显示慢阻肺急性加重期患者的血清GDF-15水平高于稳定期患者和健康人群。急性加重期和稳定期患者的GDF-15和C-反应蛋白水平均呈正相关,受试工作者曲线显示GDF-15诊断慢阻肺急性加重期的效能高于C-反应蛋白[29]。一项前瞻性研究显示慢阻肺急性加重期患者的血液和诱导痰中GDF-15水平升高,同时存在外周血CD4+和CD8+细胞下降[30],这提示慢阻肺不仅存在全身性炎症反应,免疫反应还参与其中。GDF-15在慢阻肺的临床应用价值需进一步地研究。

5 Clara细胞蛋白16(clara cell protein 16,CC16)

CC16是一种16-kD大小的同型二聚体蛋白,由支气管黏膜的非纤毛上皮细胞分泌[31],具有抑制免疫反应和抗氧化作用[32]。吸烟和肺损伤可以导致CC16的表达水平下降,是反映支气管黏膜非纤毛上皮细胞功能障碍的一个血清标记物[33]。研究显示吸烟人群中慢阻肺患者的血清CC16表达水平较非慢阻肺患者显著下降。在既往吸烟的慢阻肺患者中CC16表达水平与疾病严重程度的相关性很低[34]。Phye等对4724例中重度气流受限患者的研究发现,低水平的血清CC16与9年内慢阻肺患者的FEV1下降速度有关,提示CC16可用于预测慢阻肺疾病进展[35]。

6 嗜酸性粒细胞

慢阻肺患者诱导痰的嗜酸性粒细胞比例增高具有重要的临床价值,常根据诱导痰的细胞分类来诊断不同的慢阻肺表型[36]。当嗜酸性粒细胞比值大于3%时,提示糖皮质激素治疗效果良好[37]。诱导痰中嗜酸性粒细胞比例高的重度慢阻肺患者长期吸入表面激素或口服糖皮质激素可降低急性加重发作的频率,提高生活质量[38]。目前诱导痰技术相当成熟,但也存在相对禁忌证,如患者基础肺功能差(FEV1小于1 L)或存在呼吸道感染时不适合行诱导痰检查。最近一项研究显示,当血液中嗜酸性粒细胞升高时予口服激素治疗获益明显[39],提示外周血嗜酸性粒细胞同样可以指导激素的使用,而且不存在禁忌证,但其应用价值需进一步的临床研究来证实和推广。

7 小结

综上所述,血清生物标记物可以在一定程度上反映患者的病情,有助于慢阻肺急性加重的诊断,指导治疗和预测预后。有关慢阻肺的生物标记物的研究虽然很多,但真正临床上有应用价值的甚少。慢阻肺的本质是慢性气道炎症反应性疾病,特征是存在不可逆的气流受限和肺气肿。许多生物标记物只是炎症反应过程中的炎症介质,辅助诊断慢阻肺急性加重的特异性低,而且不能很好地解释其在慢阻肺发病过程中的机制,特别是如何导致不可逆的气流受限和肺气肿尚不清楚。随着研究的深入,未来会有更多的生物标记物用于诊断、指导治疗和预测预后。

[参考文献]

[1] Zhong N,Wang C,Yao W,et al. Prevalence of chronic obstructive pulmonary disease in China,A large,population-based survey[J]. Am J Respir Crti Care Med,2007,176(8):753-760.

[2] Rodriguez-Roisin R. Toward a consensus definition for COPD exacerbations[J]. Chest,2000,117(5 Suppl 2):398S-401S.

[3] Celli BR,Barnes PJ. Exacerbations of chronic obstructive pulmonary disease[J]. Eur Respir J,2007,29(6):1224-1238.

[4] 慢性阻塞性肺疾病急性加重(AECOPD)诊治专家组. 慢性阻塞性肺疾病急性加重诊治中国专家共识(草案)[J]. 中国呼吸与危重监护杂志,2013,11(6):541-551.

[5] Hurst JR,Vestbo J,Anzueto A,et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease[J]. N Engl J Med,2010,363(12):1128-1138.

[6] Aaron SD,Donaldson GC,Whitmore GA,et al. Time course and pattern of COPD exacerbation onset[J]. Thorax,2012, 67(3),238-243.

[7] Dhal M,Vestbo J,Lange P,et al. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonaly disease[J]. Am J Respir Crit Care Med,2007,175(3):250-255.

[8] Ruiz-Gonzalez A,Lacasta D,Ibarz M,et al. C-reactive protein and other predictors of poor outcome in patients hospitalized with exacerbations of chronic obstructive pulmonary disease[J]. Respirology,2008,13(7):1028-1033.

[9] Perera WR,Hurst JR,Wilkinson TM,et al. Inflammatory changes,rccovery and recurrence at COPD exacerbation[J].Eur Respir J,2007,29(3):527-534.

[10] Ouchi N,Parker JL,Lugus JJ,et al. Adipokines in inflammation and metabolic disease[J]. Nat Rev Immunol,2011, 11(2):85-97.

[11] Lam KB,Jordan RE,Jiang CQ,et al. Airflow obstruction and metabolic syndrome:The guangzhou biobank cohort study[J]. Eur Respir J,2010,35(2):317-323.

[12] Chan KH,Yeung SC,Yao TJ,et al. Elevated plasma adiponectin levels in patients with chronic obstructive pulmonary disease[J]. Int J Tuberc Lung Dis,2010,14(9):1193-1200.

[13] Kento Sato,Yoko Shibata,Shuichi Abe,et al. Association between plasma adiponectin levels and decline in forced expiratory volume in 1s in a general japanese population:The Takahata study[J]. Int J Med Sci,2014,11(8):758-764.

[14] Carolan BJ,Kim YI,Williams AA,et al. The association of adiponectin with computed tomography phenotypes in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2013,188(5):561-566.

[15] Sirpa LK,Lauri L,Katriina V,et al. Adiponectin is associated with dynamic hyperinflation and a favourable response to inhaled glucocorticoids in patients with COPD[J].Respiratory Medicine,2014,108(1):122-128.

[16] Waschki B,Kirsten A,Holz O,et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD:A prospective cohort study[J]. Chest,2011, 140(2):331-342.

[17] Yoon HI,Li Y,Man SF,et al. The complex relationship of serum adiponectin to COPD outcomes COPD and adiponectin[J]. Chest,2012,142(4):893-899.

[18] Ruggiero C,Cherubini A,Ble A,et al. Uric acid and inflammatory markers[J]. Eur Heart J,2006,27(10):1174-1181.

[19] Saito H,Nishimura M,Shibuya E,et al. Tissue hypoxia in sleep apnea syndrome assessed by uric acid andadenosine[J]. Chest,2002,122(5):1686-1694.

[20] Vestbo J,Hurd SS,Agusti AG,et al. Global strategy for the diagnosis,management and prevention of chronic obstructive pulmonary disease,GOLD executive summary[J].Am J Respir Crit Care Med,2013,187(4):347-365.

[21] Aida Y,Shibata Y,Osaka D,et al. The relationship between serum uric acid and spirometric values in participants in a health check:The Takahata study[J]. Int J Med Sci,2011,8(6): 470-478.

[22] Garcia-Pachon E,Padilla-Navas I,Shum C. Serum uric acid to creatinine ratio in patients with chronic obstructive pulmonary disease[J]. Lung,2007,185(1):21-24.

[23] Bartziokas K,Papaioannou AI,Loukides S,et al. Serum uric acid as a predictor of mortality and future exacerbations of COPD[J]. Eur Respir J,2014,43(1):43-53.

[24] Dnaldson GC,Seemungal TA,Patel IS,et al. Airway and systemic inflammation and decline in lung function in patients with COPD[J]. Chest,2005,128(4):1995-2004.

[25] Duvoix A,Dickens J,Haq I,et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease[J].Thorax,2013,68(7):670-676.

[26] Deepa Valvi,David M,Mannino,et al. Fibrinogen,chronic obstructive pulmonary disease(COPD) and outcomes in two United States cohorts[J]. International Journal of Chronic Obstructive Pulmonary Disease,2012,7(2):173-182.

[27] Lomas DA,Lipson DA,Miller BE,et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease[J]. J Clin Pharmacol,2011,52(3):416-424.

[28] Kunter E,Ilvan A,Ozmen N,et al. Effect of corticosteroids on hemostasis and pulmonary arterial pressure during chronic obstructive pulmonary disease exacerbation[J]. Respiration,2008,75(2):145-154.

[29] Mutlu LC,Altintas N,Aydin M,et al. Growth differentiation factor-15 is a novel biomarker predicting acute exacerbation of chronic obstructive pulmonary disease[J]. Inflammation,2015,38(5):1-9.

[30] Freeman CM,Martinez CH,Todt JC,et al. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15(GDF-15) in peripheral blood[J]. Respiratory Research,2015,16(1):1-14.

[31] Yoneda K. Ultrastructural localization of phospholipases in the Clara cell of therat bronchiole[J]. Am J Pathol,1979,93(3):745-752.

[32] Lakind JS,Holgate ST,Ownby DR,et al. A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects[J]. Biomarkers,2007,12(5):445-467.

[33] Broeckaert F,Bernard A. Clara cell secretory protein(CC16):Characteristics and perspectives as lung peripheral biomarker[J]. Clin Exp Allergy,2000,30(4):469-475.

[34] Lomas DA,Silverman EK,Edwards LD,et al. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort[J]. Thorax,2008,63(12):1058-1063.

[35] Phye Yun,C Andrew,JL Wright,et al. Club cell protein 16 and disease progression in chronic obstructive pulmonary disease[J]. American Journal of Respiratory & Critical Care Medicine,2013,188(12):1413-1419.

[36] Peng G,Jie Z,Xiaoyan H,et al. Sputum inflammatory cell-based classification of patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Plos One,2013,8(5):e57678.

[37] Brightling CE,Monteiro W,Ward R,et al. Sputum eo-sinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease:A randomised controlled trial[J]. Lancet,2000,356(9240):1480-1485.

[38] Siva R,Green RH,Brightling CE,et al. Eosinophilic airway inflammation and exacerbations of COPD:A randomized controlled trial[J]. Eur Respir J,2007,29(5):906-913.

[39] Bafadhel M,McKenna S,Terry S,et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease:A randomized placebo-controlled trial[J]. Am J Respir Crit Care Med,2012,186(1):48-55.

(收稿日期:2016-01-12)

猜你喜欢
慢性阻塞性肺疾病
代赭石降气平喘作用的临床验证观察
布地奈德/福莫特罗粉剂联合噻托溴铵治疗稳定期慢阻肺的疗效探究
慢性阻塞性肺疾病合并支气管扩张的临床诊治分析
无创呼吸机治疗慢性阻塞性肺疾病合并呼吸衰竭的疗效探析
多索茶碱与噻托溴铵联合治疗对慢性阻塞性肺疾病肺功能的影响
有创后序贯无创机械通气治疗慢性阻塞性肺疾病合并严重呼吸衰竭的临床分析
授权理论在使用无创呼吸机COPD患者健康教育中的应用